Debugging

BBM 101 - Introduction to Programming |

Hacettepe University
Fall 2015

Fuat Akal, Aykut Erdem, Erkut Erdem, Vahid Garousi

Slides based on material prepared by Ruth Anderson, Michael Ernst and Bill Howe in the course CSE 140 1
University of Washington

Example: Write a Function

Write a function that will return the set of a
user’s friends with a particular user removed
from that set.

The Problem

What you want What your program does
your program to do :

% What is Debugging?

* Grace Hopper was one of U.S.’s first programmers.

* She found a moth in the Mark | computer, which was
causing errors, and called it a computer “bug”

* Thus, the word debugging is coined ©

e
0§ | Onkom shado) §/»17«o 9.037 w37 025
/000 « sw\u’.i SRR 9087 5YL 295 couh
1oc o) me eme EVSETRL celd) 7015 52505500
£39 PRO > 2. 130yaCys
203067635

(rd ‘J ¥ 1
S -L w0 il s ’ 4.‘7//
‘% et
< e

s
1700 Started tne Tape (Sine checl]
e T LA (‘E:T.)

)

@z\w\"ﬁo ?q.\q F

& (not) felay -

* Fic. 1. The first computer bug Al of buy beimy founds
0vs oLeard farem

Debugging Tools

* Python error message

* assert

* print

e Python interpreter

* Python Tutor (http://pythontutor.com)

* Python debugger
* Best tool:

Two Key Ideas

1. The scientific method
2. Divide and conquer

If you master those, you will find debugging
easy, and possibly enjoyable ;-)

The Scientific Method

1. Create a hypothesis

2. Design an experiment to test that hypothesis
— Ensure that it yields insight

3. Understand the result of your experiment

— If you don’t understand, then possibly suspend your main line of
work to understand that

Tips:
* Be systematic
— Never do anything if you don't have a reason
— Don’t just flail
* Random guessing is likely to dig you into a deeper hole
* Don’t make assumptions (verify them)

Example Experiments

1. An alternate implementation of a function
— Run all your test cases afterward

2. A new, simpler test case

— Examples: smaller input, or test a function in
isolation

— Can help you understand the reason for a failure

Your Scientific Notebook

Record everything you do
* Specific inputs and outputs (both expected and actual)
* Specific versions of the program
— If you get stuck, you can return to something that works
— You can write multiple implementations of a function

* What you have already tried

* What you are in the middle of doing now
— This may look like a stack!

* What you are sure of, and why

Your notebook also helps if you need to get help or reproduce
your results

Read the Error Message

First function that was
_— called (<module>

Traceback (most recent call last): P /,,, means the interpreter)
File "nx_error.py", line 41, in <module>L/ g

print friends_of friends(rj, myval) - _ Second function

File "nx_error.py", line 30, in friends_of_ friends| — that was called

|
f = friends(graph, user) ,J :
File "nx error.py", line 25, in friends
return set(graph.neighbors (user))#
File "/Library/Frameworks/“./graph.py",Llrine 978, in neighbors
return list(self.adj[n]) _ T -

S . unhashable tvee: 'list’ | = — Last function that
ypekrroxr: unhas € type: "LisET — ~ was called (this one

suffered an error)

— Call stack or traceback

List of all exceptions (errors): "~ The error message:
http://docs.python.org/2/library/exceptions.html#bltin-exceptions daunting but useful.

Two other resources, with more details about a few of the errors: You need to understand:
http://inventwithpython.com/appendixd.html * the literal meaning of
http://www.cs.arizona.edu/people/mccann/errors-python the error

* the underlying
problems certaiq@
errors tend to suggest

Common Error Types

* AssertionError
— Raised when an assert statement fails.
* IndexError
— Raised when a sequence subscript is out of range.
* KeyError
— Raised when a mapping (dictionary) key is not found in the set of existing keys.
* Keyboardinterrupt
— Raised when the user hits the interrupt key (normally Control-C or Delete).
* NamekError
— Raised when a local or global name is not found.
e SyntaxError
— Raised when the parser encounters a syntax error.
* IndentationError
— Base class for syntax errors related to incorrect indentation.
* TypeError
— Raised when an operation or function is applied to an object of inappropriate type. 1

Divide and Conquer

* Where is the defect (or “bug”)?
* Your goal is to find the one place that it is
* Finding a defect is often harder than fixing it

* Initially, the defect might be anywhere in your program
— Itisimpractical to find it if you have to look everywhere

* ldea: bit by bit reduce the scope of your search

* Eventually, the defect is localized to a few lines or one line
— Then you can understand and fix it

* 4 ways to divide and conquer:

In the program code

In test cases

— During the program execution
During the development history

Divide and Conquer in the Program Code

* Localize the defect to part of the program
— e.g., one function, or one part of a function
* Code that isn’t executed cannot contain the defect

3 approaches:
* Test one function at a time
* Add assertions or print statements
— The defect is executed before the failing assertion (and maybe after a
succeeding assertion)
* Split complex expressions into simpler ones
Example: Failure in
result = set({graph.neighbors (user)})
Change it to
nbors = graph.neighbors (user)
nbors_set = {nbors}
result = set(nbors_set)
The error occurs on the “nbors_set = {nbors}" line

Divide and Conquer in Test Cases

* Your program fails when run on some large input
— It’s hard to comprehend the error message
— The log of print statement output is overwhelming

* Try a smaller input

— Choose an input with some but not all characteristics of
the large input

— Example: duplicates, zeroes in data, ...

Divide and Conquer in Execution Time
via Print (or “logging”) Statements

e Asequence of print statements is a record of the
execution of your program

* The print statements let you see and search
multiple moments in time

* Print statements are a useful technique, in moderation

* Be disciplined
— Too much output is overwhelming rather than informative

— Remember the scientific method: have a reason (a
hypothesis to be tested) for each print statement

— Don’t only use print statements

Divide and Conquer
in Development History

* The code used to work (for some test case)
* The code now fails
* The defect is related to some line you changed

* This is useful only if you kept a version of the
code that worked (use good names!)

* This is most useful if you have made few changes

* Moral: test often!
— Fewer lines to compare
— You remember what you were thinking/doing recently

A Metaphor About Debugging

If your code doesn’t work as
expected, then by definition you
don’t understand what is going on.

* You're lost in the woods.

* You're behind enemy lines.

e All bets are off.

* Don’t trust anyone or anything.

Don’t press on into unexplored
territory -- go back the way you
came!

(and leave breadcrumbs!)

You’re trying to “advance the front lines,” not “trailblaze”

Time-Saving Trick:
Make Sure You are Debugging the Right Problem

The game is to go from “working to working”

When something doesn’t work, STOP!
— It’s wild out there!

FIRST: Go back to the last situation that worked properly.

— Rollback your recent changes and verify that everything still works as
expected.

— Don’t make assumptions — by definition, you don’t understand the code
when something goes wrong, so you can’t trust your assumptions.

— You may find that even what previously worked now doesn’t

— Perhaps you forgot to consider some “innocent” or unintentional change,
and now even tested code is broken

A Bad Timeline

A works, so celebrate a little

Now try B

B doesn’t work

Change B and try again

Change B and try again

Change B and try again

A Better Timeline

* A works, so celebrate a little
* NowtryB

* Bdoesn’'t work

* Rollback to A

* Does A still work?

— Yes: Find A’ that is somewhere between A and B

— No: You have unintentionally changed something else, and there’s no
point futzing with B at all!

These “innocent” and unnoticed changes happen more than you would think!
* You add a comment, and the indentation changes.

* You add a print statement, and a function is evaluated twice.

* You move a file, and the wrong one is being read

* You are on a different computer, and the library is a different version

20

Once You are on Solid Ground You can
Set Out Again

* Once you have something that works and something
that doesn’t work, it is only a matter of time

* You just need to incrementally change the working
code into the non-working code, and the problem will
reveal itself.

* Variation: Perhaps your code works with one input, but
fails with another. Incrementally change the good
input into the bad input to expose the problem.

Simple Debugging Tools

print
— shows what is happening whether there is a problem or
not
— does not stop execution
assert
— Raises an exception if some condition is not met
— Does nothing if everything works
— Example: assert len(rj.edges()) == 16
— Use this liberally! Not just for debugging!

22

