Exception Handling

BBM 101 - Introduction to Programming |

Hacettepe University
Fall 2015

Fuat Akal, Aykut Erdem, Erkut Erdem, Vahid Garousi

What is an Exception?

An exception is an abnormal condition that arises in a code
sequence at runtime. For instance:

— Dividing a number by zero
— Accessing an element that is out of bounds of an array
— Attempting to open a file which does not exist

When an exceptional condition arises, an object representing

that exception is created and thrown in the code that caused
the error

An exception can be caught to handle it or pass it on

Exceptions can be generated by the run-time system, or they
can be manually generated by your code

What is an Exception?

1 dividend = 5

2 divisor = 0

3 division = dividend / divisor

4 print "Result = " + str(division)

Program crashes on 3™ line!

Traceback (most recent call last):

File "/Users/akal/Programs/PycharmProjects/untitled/bbm101.py", line 5, in
<module>

division = dividend / divisor
ZeroDivisionError: integer division or modulo by zero

What is Exception Handling?

Exception mechanism gives the programmer a chance to do
something against an abnormal condition.

Exception handling is performing an action in response to an
exception.

This action may be:
— Exiting the program
— Retrying the action with or without alternative data
— Displaying an error message and warning user to do something

What is Exception Handling?

1 try:

2 dividend = 5

3 divisor = 0

4 division = dividend / divisor

5 print "Result = " + str(division)

6 except:

7 print “Exception occured and handled!"

Your program now prints a nicer message:

Exception occurred and handled!

What Really Happened

division = dividend / divisor statement causes an exception

Python run-time system throws an exception object that includes
data about the exception

Execution is stopped at the 4th line, and an except block is
searched to handle the exception

Exception is cought by the 6th line and execution continues by the
7th line

Output of the program is:

Exception occurred and handled!

Keywords of Exception Handling

* There are five keywords in Python to deal with
exceptions: try, except, else, raise and finally.

* try: Creates a block to monitor if any
exception occurs.

* except: Follows the try block and catches any
exception which is thrown within it.

Are There Many Exceptions in
Python?

* Yes, some of them are...
— Exception
— ArithmeticError
— OverflowError
— ZeroDivisonError
— EOFError
— NamekError
— |OError
— SyntaxError

Multiple except Statements

It is possible that more than one exception can be thrown in a
code block.
— We can use multiple except clauses

When an exception is thrown, each except statement is
inspected in order, and the first one whose type matches that
of the exception is executed.

— Type matching means that the exception thrown must be an object of
the same class or a sub-class of the declared class in the except
statement

After one except statement executes, the others are
bypassed.

Multiple except Statements

try:
You do your operations here;
except Exception-1:
Execute this block.
except Exception-2:
Execute this block.
except (Exception-3[, Exception-4],...ExceptionN]]]):
If there is any exception from the given exception list,
then execute this block.

10

Multiple except Statements

try:
f = open('outfile.dat', 'w')
dividend = 5
divisor = 0
division = dividend / divisor
f.write(str (division))

except IOError:
print "I can't open the file!”

except ZeroDivisionError:
print "You can't divide by zero!"

You can't divide by zero!

try:

Multiple except Statements

f = open('outfile.dat', 'w')
dividend = 5

divisor = 0

division = dividend / divisor

f.write(str (division))

except Exception:

print "Exception occured and handled!”

except IOError:

print "I can't open the filel!”

except ZeroDivisionError:

print "You can't divide by zero!"

Exception occured and handled!

12

try:

Multiple except Statements

f = open('outfile.dat', 'w')
dividend = 5

divisor = 0

division = dividend / divisor

f.write(str (division))

except:

print "Exception occured and handled!”

except IOError:

print "I can't open the filel!”

except ZeroDivisionError:

print "You can't divide by zero!"

SyntaxError: default 'except:' must be last

13

except-else Statements

try:

You do your operations here
except:

Execute this block.
else:

If there 1s no exception then execute this block.

try:
f = open(arg, 'r')
except IOError:
print 'cannot open', arg
else:
print arg, 'has', len(f.readlines()), 'lines'

finally Statement

finally creates a block of code that will be executed after a
try/execept block has completed and before the code
following the try/except block

finally block is executed whether or not exception is thrown
finally block is executed whether or not exception is caught

It is used to gurantee that a code block will be executed in any
condition.

15

finally Statement

You can use it to clean up files, database connections, etc.

try:

You do your operations here
except:

Execute this block.
finally:

This block will definitely be executed.

try:
file = open('out.txt', 'w')
do something..

finally:
file.close()
os.path.remove (' out.txt"')

16

Nested try Blocks

 When an exception occurs inside a try block;

— If the try block does not have a matching except, then the outer try
statement’s except clauses are inspected for a match

— If a matching except is found, that except block is executed

— If no matching except exists, execution flow continues to find a
matching except by inspecting the outer try statements

— If a matching except cannot be found at all, the exception will be
caught by Python’s exception handler.

Execution flow never returns to the line that exception was
thrown. This means, an exception is caught and except block
is executed, the flow will continue with the lines following this
except block

17

Let’s clarify it on various scenarios

try: Information: Exceptionl and Exception2 are
statement1 subclasses of Exception3
try:
statement2
except Exceptionl: : . :
statement3 Question: Which statements -are executed if
except Exception2: 1- statement1 throws Exceptionl
statement4; 2- statement2 throws Exceptionl
try 3- statement2 throws Exception3
statement5 4- statement2 throws Exceptionl and
except Exception3: statement3 throws Exception?2
statement6
statement’/;
except Exception3:
statement8

statement9;

18

Scenario: statementl throws Exceptionl

try: Stepl: Exception is thrown
statementl > @ceptloD

try:
statement2
except Exceptionl:
statement3 Step2: except clauses of the try
except Exception2: block are inspected for a
statement4; matching except statement.
try Exception3 is super class of
statement5 Exceptionl, so it matches.
except Exception3:
statement6
statement/;
except Exceptions: Step3: statement8 is executed, exception is handled and execution
statement8 fl ill tinue bypassing the following except clauses
ow will continue byp g g D
statement9;

Step4: statement9 is executed

19

Scenario: statement2 throws Exceptionl

try:
statementl

try: Stepl: Exception is thrown
statement2 >@ceptioD

except Exceptionl:

statement3
except Exception2: Step2: except clauses of the try block are
statement4; inspected for a matching except statement. First

try clause catches the exception
statementh
except Exception3: Step3: statement3 is executed, exception is
statement6 handled
statement/, Step4: execution flow will continue bypassing the
except Exceptions: following except clauses. statement5 is executed.
statement8
statement9;

Step5: Assuming no exception is thrown by
statement5, program continues with statement?7

and statement9.
20

Scenario: statement2 throws Exception3

try:
statementl

try: Stepl: Exception is thrown

statement2 >@ceptioD
except Exceptionl:

statement3 (-\

except Exception2: Step2: except clauses of the try block are
statement4: inspected for a matching except statement.

try , None of these except clauses match Exception3
statement5

except Exception3:
statement6

statement’/;

- Step3: except clauses of the outer try statement
are inspected for a matching except . Exception3 is

catched and statement8 is executed

except Exception3:
statement8
statement9;

Step4: statement9 is executed
21

Scenario: statement2 throws Exceptionl
and statement3 throws Exception2
try:

statementl

try: Stepl: Exception is thrown
statement?2 > @ceptioD
except Exception1: (_J
statement3 Step2: Exception is catched and statement3 is

except Exception2: executed.
statement4;

try Step3: statement3 throws a new exception

statement5 @ceptioD
except Exception3:

statement6
statement7; Step4: Except clauses of the outer
except Exception3: try statement are inspected for a
statement8 matching except. Exception2 is
statement9; catched and statement8 is
executed

Step5: statement9 is executed
22

raise Statement

* You can raise exceptions by using the raise
statement.

def myLevel (level):
if level < 1: raise "Invalid level!", level
The code below to this would not be executed

if we raise the exception

try:

call to the function myLevel (-1)
except "Invalid level!":

Exception handling goes here...

23

Custom Exceptions

e Users can define their own exception by creating a
new class in Python.

* This exception class has to be derived, either directly
or indirectly, from Exception class.

* Most of the built-in exceptions are also derived form
this class.

24

Custom Exceptions

class ValueTooSmallError (Exception) :
"""Raised when the input value 1is too small'"""

pass

class ValueToolLargeError (Exception) :
"""Raised when the input value is too large'""

pass
number = 10 # you need to guess this number

while True:
try:
i num = int (input ("Enter a number: "))
if i num < number:
raise ValueTooSmallError
elif 1 num > number:
raise ValueToolLargeError
break
except ValueTooSmallError:
print ("This value is too small, try again!")
except ValueToolargeError:
print ("This value is too large, try again!")

print ("Congratulations! You guessed it correctly.")

25

