
Excep&on	Handling	

BBM	101	-	Introduc/on	to	Programming	I	
	

Hace7epe	University		
Fall	2015	

	
Fuat	Akal,	Aykut	Erdem,	Erkut	Erdem,	Vahid	Garousi	

	

1	

What	is	an	Excep&on?	
•  An	excep/on	is	an	abnormal	condi/on	that	arises	in	a	code	

sequence	at	run/me.	For	instance:	
–  Dividing	a	number	by	zero	
–  Accessing	an	element	that	is	out	of	bounds	of	an	array	
–  A7emp/ng	to	open	a	file	which	does	not	exist	

	
•  When	an	excep/onal	condi/on	arises,	an	object	represen/ng	

that	excep/on	is	created	and	thrown	in	the	code	that	caused	
the	error	
	

•  An	excep/on	can	be	caught	to	handle	it	or	pass	it	on	
	

•  Excep/ons	can	be	generated	by	the	run-/me	system,	or	they	
can	be	manually	generated	by	your	code	

2	

What	is	an	Excep&on?	
1 dividend = 5
2 divisor = 0
3 division = dividend / divisor
4 print "Result = " + str(division)

	
Program	crashes	on	3rd	line!	
	
Traceback	(most	recent	call	last):	
		File	"/Users/akal/Programs/PycharmProjects/un=tled/bbm101.py",	line	5,	in	
<module>	
				division	=	dividend	/	divisor	
ZeroDivisionError:	integer	division	or	modulo	by	zero	
	

3	

What	is	Excep&on	Handling?	
•  Excep/on	mechanism	gives	the	programmer	a	chance	to	do	

something	against	an	abnormal	condi/on.	
	

•  Excep/on	handling	is	performing	an	ac/on	in	response	to	an	
excep/on.	
	

•  This	ac/on	may	be:	
–  Exi/ng	the	program	
–  Retrying	the	ac/on	with	or	without	alterna/ve	data	
–  Displaying	an	error	message	and	warning	user	to	do	something	
– 	

4	

What	is	Excep&on	Handling?	
1 try:
2 dividend = 5
3 divisor = 0
4 division = dividend / divisor
5 print "Result = " + str(division)
6 except:
7 print ”Exception occured and handled!"

	
Your	program	now	prints	a	nicer	message:	
	
Excep=on	occurred	and	handled!	
	 5	

What	Really	Happened	
•  division	=	dividend	/	divisor		statement	causes	an	excep/on	

	
•  Python	run-/me	system	throws	an	excep/on	object	that	includes	

data	about	the	excep/on	
	

•  Execu/on	is	stopped	at	the	4th	line,	and	an	except	block	is	
searched	to	handle	the	excep/on	
	

•  Excep/on	is	cought	by	the	6th	line	and	execu/on	con/nues	by	the	
7th	line	
	

•  Output	of	the	program	is:	
	

	Excep=on	occurred	and	handled!	

6	

Keywords	of	Excep&on	Handling	

•  There	are	five	keywords	in	Python	to	deal	with	
excep/ons:	try,	except,	else,	raise	and	finally.	
	

•  try:	Creates	a	block	to	monitor	if	any	
excep/on	occurs.	

	
•  except:	Follows	the	try	block	and	catches	any	
excep/on	which	is	thrown	within	it.	

7	

Are	There	Many	Excep&ons	in	
Python?	

•  Yes,	some	of	them	are…	
– Excep/on	
– Arithme/cError	
– OverflowError	
– ZeroDivisonError	
– EOFError	
– NameError	
–  IOError	
– SyntaxError	

8	

Mul&ple	except	Statements	

9	

•  It	is	possible	that	more	than	one	excep/on	can	be	thrown	in	a	
code	block.	
–  We	can	use	mul/ple	except	clauses	

	

•  When	an	excep/on	is	thrown,	each	except	statement	is	
inspected	in	order,	and	the	first	one	whose	type	matches	that	
of	the	excep/on	is	executed.		
–  Type	matching	means	that	the	excep/on	thrown	must	be	an	object	of	

the	same	class	or	a	sub-class	of	the	declared	class	in	the	except	
statement	
	

•  Aeer	one	except	statement	executes,	the	others	are	
bypassed.	

Mul&ple	except	Statements	

10	

try:	
	You	do	your	opera/ons	here;		

except	Excep&on-1:		
	Execute	this	block.		

except	Excep&on-2:		
	Execute	this	block.		

except	(Excep&on-3[,	Excep&on-4[,...Excep&onN]]]):		
	If	there	is	any	excep/on	from	the	given	excep/on	list,		
	then	execute	this	block.	

Mul&ple	except	Statements	
try:
 f = open('outfile.dat', 'w')
 dividend = 5
 divisor = 0
 division = dividend / divisor
 f.write(str(division))

except IOError:
 print "I can't open the file!”

except ZeroDivisionError:
 print "You can't divide by zero!"

11	

You	can't	divide	by	zero!	

Mul&ple	except	Statements	
try:
 f = open('outfile.dat', 'w')
 dividend = 5
 divisor = 0
 division = dividend / divisor
 f.write(str(division))

except Exception:
 print "Exception occured and handled!”

except IOError:
 print "I can't open the file!”

except ZeroDivisionError:
 print "You can't divide by zero!"

12	

Excep/on	occured	and	handled!	

Mul&ple	except	Statements	
try:
 f = open('outfile.dat', 'w')
 dividend = 5
 divisor = 0
 division = dividend / divisor
 f.write(str(division))

except:
 print "Exception occured and handled!”

except IOError:
 print "I can't open the file!”

except ZeroDivisionError:
 print "You can't divide by zero!"

13	

SyntaxError:	default	'except:'	must	be	last	

except-else	Statements	

14	

try:
 You do your operations here

except:
 Execute this block.

else:
 If there is no exception then execute this block.

 try:
 f = open(arg, 'r')
 except IOError:
 print 'cannot open', arg
 else:
 print arg, 'has', len(f.readlines()), 'lines'

finally	Statement	

15	

•  finally	creates	a	block	of	code	that	will	be	executed	aeer	a	
try/execept	block	has	completed	and	before	the	code	
following	the	try/except	block	
	

•  finally	block	is	executed	whether	or	not	excep/on	is	thrown		
	

•  finally	block	is	executed	whether	or	not	excep/on	is	caught	
	

•  It	is	used	to	gurantee	that	a	code	block	will	be	executed	in	any	
condi/on.		

finally	Statement	

16	

You	can	use	it	to	clean	up	files,	database	connec/ons,	etc.	
	
try:

 You do your operations here

except:
 Execute this block.

finally:
 This block will definitely be executed.

	

try:
 file = open(’out.txt', 'w')
 do something…

finally:
 file.close()
 os.path.remove(’out.txt')

Nested	try	Blocks	
•  When	an	excep/on	occurs	inside	a	try	block;	

–  If	the	try	block	does	not	have	a	matching	except,	then	the	outer	try	
statement’s	except	clauses	are	inspected	for	a	match	

–  If	a	matching	except	is	found,	that	except	block	is	executed	
–  If	no	matching	except	exists,	execu/on	flow	con/nues	to	find	a	

matching	except	by	inspec/ng	the	outer	try	statements	
–  If	a	matching	except	cannot	be	found	at	all,	the	excep/on	will	be	

caught	by	Python’s	excep/on	handler.		
	

•  Execu/on	flow	never	returns	to	the	line	that	excep/on	was	
thrown.	This	means,	an	excep/on	is	caught	and	except	block	
is	executed,	the	flow	will	con/nue	with	the	lines	following	this	
except	block	

17	

Let’s	clarify	it	on	various	scenarios	

18	

try:		
				statement1	
				try:	

	statement2	
				except	Excep/on1:		

	statement3 		
				except	Excep/on2:		

	statement4; 		
				try	

	statement5	
				except	Excep/on3:	

	statement6	
				statement7;	
except	Excep/on3:	
				statement8	
statement9;	

Informa/on:	Excep/on1	and	Excep/on2	are	
subclasses	of	Excep/on3	
	
	
Ques/on:	Which	statements	are	executed	if	
1-	statement1	throws	Excep/on1	
2-	statement2	throws	Excep/on1	
3-	statement2	throws	Excep/on3	
4-	statement2	throws	Excep/on1	and	
statement3	throws	Excep/on2	

Scenario:	statement1	throws	Excep&on1	

19	

try:		
				statement1	
				try:	

	statement2	
				except	Excep/on1:		

	statement3 		
				except	Excep/on2:		

	statement4; 		
				try	

	statement5	
				except	Excep/on3:	

	statement6	
				statement7;	
except	Excep/on3:	
				statement8	
statement9;	

Exception1	
Step1:	Excep/on	is	thrown	

Step2:	except	clauses	of	the	try	
block	are	inspected	for	a	
matching	except	statement.	
Excep/on3	is	super	class	of	
Excep/on1,	so	it	matches.	

Step3:	statement8	is	executed,	excep/on	is	handled	and	execu/on	
flow	will	con/nue	bypassing	the	following	except	clauses	

Step4:	statement9	is	executed	

Scenario:	statement2	throws	Excep&on1	

20	

try:		
				statement1	
				try:	

	statement2	
				except	Excep/on1:		

	statement3 		
				except	Excep/on2:		

	statement4; 		
				try	

	statement5	
				except	Excep/on3:	

	statement6	
				statement7;	
except	Excep/on3:	
				statement8	
statement9;	

Exception1	
Step1:	Excep/on	is	thrown	

Step2:	except	clauses	of	the	try	block	are	
inspected	for	a	matching	except	statement.	First	
clause	catches	the	excep/on	

Step3:	statement3	is	executed,	excep/on	is	
handled	

Step4:	execu/on	flow	will	con/nue	bypassing	the	
following	except	clauses.	statement5	is	executed.	

Step5:	Assuming	no	excep/on	is	thrown	by	
statement5,	program	con/nues	with	statement7	
and	statement9.	

Scenario:	statement2	throws	Excep&on3	

21	

try:		
				statement1	
				try:	

	statement2	
				except	Excep/on1:		

	statement3 		
				except	Excep/on2:		

	statement4; 		
				try	

	statement5	
				except	Excep/on3:	

	statement6	
				statement7;	
except	Excep/on3:	
				statement8	
statement9;	

Exception3	
Step1:	Excep/on	is	thrown	

Step2:	except	clauses	of	the	try	block	are	
inspected	for	a	matching	except	statement.	
None	of	these	except	clauses	match	Excep/on3	

Step3:	except	clauses	of	the	outer	try	statement	
are	inspected	for	a	matching	except	.	Excep/on3	is	
catched	and	statement8	is	executed	

Step4:	statement9	is	executed	

Scenario:	statement2	throws	Excep&on1	
and	statement3	throws	Excep&on2	

22	

try:		
				statement1	
				try:	

	statement2	
				except	Excep/on1:		

	statement3 		
				except	Excep/on2:		

	statement4; 		
				try	

	statement5	
				except	Excep/on3:	

	statement6	
				statement7;	
except	Excep/on3:	
				statement8	
statement9;	

Exception1	
Step1:	Excep/on	is	thrown	

Step2:	Excep/on	is	catched	and	statement3	is	
executed.	

Step3:	statement3	throws	a	new	excep/on	

Step5:	statement9	is	executed	

Exception2	

Step4:	Except	clauses	of	the	outer	
try	statement	are	inspected	for	a	
matching	except.	Excep/on2	is	
catched	and	statement8	is	
executed	

raise	Statement	

•  You	can	raise	excep/ons	by	using	the	raise	
statement.		

def myLevel(level):
 if level < 1: raise "Invalid level!", level
 # The code below to this would not be executed
 # if we raise the exception

try:

 call to the function myLevel (-1)
except "Invalid level!":

 Exception handling goes here...

23	

Custom	Excep&ons	

24	

•  Users	can	define	their	own	excep/on	by	crea/ng	a	
new	class	in	Python.	
		

•  This	excep/on	class	has	to	be	derived,	either	directly	
or	indirectly,	from	Excep/on	class.		
	

•  Most	of	the	built-in	excep/ons	are	also	derived	form	
this	class.	

Custom	Excep&ons	
class ValueTooSmallError(Exception):
 """Raised when the input value is too small"""
 pass

class ValueTooLargeError(Exception):
 """Raised when the input value is too large"""
 pass

number = 10 # you need to guess this number

while True:
 try:
 i_num = int(input("Enter a number: "))
 if i_num < number:
 raise ValueTooSmallError
 elif i_num > number:
 raise ValueTooLargeError
 break
 except ValueTooSmallError:
 print("This value is too small, try again!")
 except ValueTooLargeError:
 print("This value is too large, try again!")

print("Congratulations! You guessed it correctly.") 25	

