
Tes$ng	

BBM	101	-	Introduc/on	to	Programming	I	
	

Hace7epe	University		
Fall	2015	

	
Fuat	Akal,	Aykut	Erdem,	Erkut	Erdem,	Vahid	Garousi	

	

1	Slides	based	on	material	prepared	by	Ruth	Anderson,	Michael	Ernst	and	Bill	Howe	in	the	course	CSE	140	
University	of	Washington	

Tes$ng	

•  Programming	to	analyze	data	is	powerful	
•  It	is	useless	if	the	results	are	not	correct	
•  Correctness	is	far	more	important	than	speed	

2	

Famous	Examples	
•  Ariane	5	rocket	
– On	June	4,	1996,	the	maiden	flight	of	the	European	
Ariane	5	launcher	crashed	about	40	seconds	aVer	
takeoff.	

– Media	reports	indicated	that	the	amount	lost	was	half	
a	billion	dollars	

–  The	explosion	was	the	result	of	a	soVware	error	
	

•  Therac-25	radia/on	therapy	machine	
–  In	1985	a	Canadian-built	radia/on-treatment	device	
began	blas/ng	holes	through	pa/ents'	bodies.	

3	

Tes$ng	does	not	Prove	Correctness	

•  Edsger	Dijkstra:	“Program	tes/ng	can	be	used	
to	show	the	presence	of	bugs,	but	never	to	
show	their	absence!”	

4	

Tes$ng	=	Double-Checking	Results	
•  How	do	you	know	your	program	is	right?	
–  Compare	its	output	to	a	correct	output	
	

•  How	do	you	know	a	correct	output?	
–  Real	data	is	big	
–  You	wrote	a	computer	program	because	it	is	not	
convenient	to	compute	it	by	hand	
	

•  Use	small	inputs	so	you	can	compute	by	hand	
	

•  Example:		standard	devia/on	
– What	are	good	tests	for	std_dev?	

5	

Tes$ng	≠	Debugging	

•  Tes$ng:		Determining	whether	your	program	is	
correct	
– Doesn’t	say	where	or	how	your	program	is	incorrect	
	

•  Debugging:		Loca/ng	the	specific	defect	in	your	
program,	and	fixing	it	
2	key	ideas:	
–  divide	and	conquer	
–  the	scien/fic	method	

6	

What	is	a	Test?	
•  A	test	consists	of:	

–  an	input	(some/mes	called	“test	data”)	
–  an	oracle	(a	predicate	(boolean	expression)	of	the	output)	

•  Example	test	for	sum:	
–  input:		[1,	2,	3]	
–  oracle:		result	is	6	
–  write	the	test	as:			sum([1, 2, 3]) == 6

•  Example	test	for	sqrt:	
–  input:		3.14	
–  oracle:		result	is	within	0.00001	of	1.772	
–  ways	to	write	the	test:	
•  sqrt(3.14) – 1.772 < 0.00001 and sqrt(3.14) – 1.772 > -0.00001
•  -0.00001 < sqrt(3.14) – 1.772 < 0.00001
•  math.abs(sqrt(3.14) – 1.772) < 0.00001

	
7	

Test	Results	

•  The	test	passes	if	the	boolean	expression	evaluates	
to	True

•  The	test	fails	if	the	boolean	expression	evaluates	to	
False

•  Use	the	assert	statement:	
–  assert sum([1, 2, 3]) == 6
–  assert True does	nothing	
–  assert False crashes	the	program	and	prints	a	
message	

8	

Where	to	Write	Test	Cases	
•  At	the	top	level:		is	run	every	/me	you	load	your	program	

def hypotenuse(a, b):
 …
assert hypotenuse(3, 4) == 5
assert hypotenuse(5, 12) == 13

•  In	a	test	func$on:		is	run	when	you	invoke	the	func/on		
def hypotenuse(a, b):
 …
def test_hypotenuse():
 assert hypotenuse(3, 4) == 5
 assert hypotenuse(5, 12) == 13

9	

Asser$ons	are	not	Just	for	Test	Cases	

•  Use	asser/ons	throughout	your	code	
	

•  Documents	what	you	think	is	true	about	your	
algorithm	
	

•  Lets	you	know	immediately	when	something	goes	
wrong	
–  The	longer	between	a	code	mistake	and	the	programmer	
no/cing,	the	harder	it	is	to	debug		

10	

Asser$ons	Make	Debugging	Easier	
•  Common,	but	unfortunate,	course	of	events:	

–  Code	contains	a	mistake	(incorrect	assump/on	or	algorithm)	
–  Intermediate	value	(e.g.,	result	of	a	func/on	call)	is	incorrect	
–  That	value	is	used	in	other	computa/ons,	or	copied	into	other	
variables	

–  Eventually,	the	user	no/ces	that	the	overall	program	produces	a	
wrong	result	

–  Where	is	the	mistake	in	the	program?		It	could	be	anywhere.	
	

•  Suppose	you	had	10	asser/ons	evenly	distributed	in	your	
code	
–  When	one	fails,	you	can	localize	the	mistake	to	1/10	of	your	
code	(the	part	between	the	last	asser/on	that	passes	and	the	
first	one	that	fails)	

11	

Where	to	Write	Asser$ons	
•  Func/on	entry:		Are	arguments	legal?	
–  Place	blame	on	the	caller	before	the	func/on	fails	
	

•  Func/on	exit:		Is	result	correct?	
	

•  Places	with	tricky	or	interes/ng	code	
	

•  Asser/ons	are	ordinary	statements;	e.g.,	can	appear	
within	a	loop:	
	
for n in myNumbers:
 assert type(n) == int or type(n) == float

12	

Where	not	to	Write	Asser$ons	
•  Don’t	clu7er	the	code	

–  Same	rule	as	for	comments	
	

•  Don’t	write	asser/ons	that	are	certain	to	succeed	
–  The	existence	of	an	asser/on	tells	a	programmer	that	it	might	
possibly	fail	
	

•  Don’t	write	an	asser/on	if	the	following	code	would	fail	
informa/vely	
	

 assert type(name) == str
 print "Hello, " + name

•  Write	asser/ons	where	they	may	be	useful	for	debugging	

13	

What	to	Write	Asser$ons	About	

•  Results	of	computa/ons	
	

•  Correctly-formed	data	structures	
	

assert 0 <= index < len(mylist)
assert len(list1) == len(list2)

14	

When	to	Write	Tests	
•  Two	possibili/es:	

–  Write	code	first,	then	write	tests	
–  Write	tests	first,	then	write	code	
	

•  If	you	write	the	code	first,	you	remember	the	
implementa/on	while	wri/ng	the	tests	
–  You	are	likely	to	make	the	same	mistakes	in	the	implementa/on	
	

•  If	you	write	the	tests	first,	you	will	think	more	about	the	
func/onality	than	about	a	par/cular	implementa/on	
–  You	might	no/ce	some	aspect	of	behavior	that	you	would	have	
made	a	mistake	about	

–  This	is	the	be7er	choice	

15	

Write	the	Whole	Test	
•  A	common	mistake:	

1.  Write	the	func/on	
2.  Make	up	test	inputs	
3.  Run	the	func/on	
4.  Use	the	result	as	the	oracle	

	
•  You	didn’t	write	a	test,	but	only	half	of	a	test	

–  Created	the	tests	inputs,	but	not	the	oracle	
	

•  The	test	does	not	determine	whether	the	func/on	is	
correct	
–  Only	determines	that	it	con/nues	to	be	as	correct	(or	incorrect)	
as	it	was	before	

16	

Tes$ng	Approaches	

•  Black	box	tes$ng	-	Choose	test	data	without	
looking	at	implementa/on		

		
•  Glass	box	(white	box,	clear	box)	tes$ng		-
Choose	test	data	with	knowledge	of	
implementa/on		

17	

Inside	Knowledge	might	be	Nice	
•  Assume	the	code	below:	

 c = a + b
 if c > 100
 print “Tested”
 print “Passed”

	

•  Crea/ng	a	test	case	with	a=40	and	b=70	is	not	enough	
–  Although	every	line	of	the	code	will	be	executed	

	

•  Another	test	case	with	a=40	and	b=30	would	complete	the	
test	

18	

Tests	might	not	Reveal	an	Error	
Some$mes	

def mean(numbers):
 """Returns the average of the argument list.
 The argument must be a non-empty list of numbers."""
 return sum(numbers)/len(numbers)

Tests
assert mean([1, 2, 3, 4, 5]) == 3
assert mean([1, 2.1, 3.2]) == 2.1

This	implementa/on	is	elegant,	but	wrong!	

mean([1,2,3,4]) à would return 2!!!
	

19	

Last	but	not	Least,	Don’t	Write	
Meaningless	Tests	

def mean(numbers):
 """Returns the average of the argument list.
 The argument must be a non-empty list of numbers."""
 return sum(numbers)/len(numbers)

Unnecessary	tests.		Don’t	write	these:	

mean([1, 2, "hello"])
mean("hello")
mean([])

20	

