
Algorithmic	Speed

BBM	101	- Introduction	 to	Programming	 I

Hacettepe University	
Fall	2015

Fuat	Akal,	Aykut	Erdem,	Erkut Erdem,	Vahid Garousi

1Slides	 based	on	material	prepared	by	E.	Grimson,	 J.	Guttag and	C.	Terman in	MITx 6.00.1x

Measuring	complexity

• Goals	in	designing	programs
1. It	returns	the	correct	answer	on	all	legal	inputs	
2. It	performs	the	computation	efficiently

• Typically	(1)	is	most	important,	but	sometimes	
(2)	is	also	critical,	e.g.,	programs	for	collision	
detection	

• Even	when	(1)	is	most	important,	it	is	valuable	
to	understand	and	optimize	(2)	

2

Computational	complexity

• How	much	time	will	it	take	a	program	to	run?	
• How	much	memory	will	it	need	to	run?

• Need	to	balance	minimizing	computational		
complexity	with	conceptual	complexity	
– Keep	code	simple	and	easy	to	understand,	but	
where	possible	optimize	performance	

3

How	do	we	measure	complexity?	

• Given	a	function,	would	like	to	answer:	“How	
long	will	this	take	to	run?”	

• Could	just	run	on	some	input	and	time	it.	
• Problem	is	that	this	depends	on:	

1. Speed	of	computer
2. Specifics	of	Python	implementation
3. Value	of	input	

• Avoid	(1)	and	(2)	by	measuring	time	in	terms	
of	number	of	basic	steps	executed	

4

Measuring	basic	steps	

• Use	a	random	access	machine	(RAM)	as	
model	of	computation	
– Steps	are	executed	sequentially	
– Step	is	an	operation	that	takes	constant	time
• Assignment	
• Comparison
• Arithmetic	operation
• Accessing	object	in	memory	

• For	point	(3),	measure	time	in	terms	of	size	of	
input	

5

But	complexity	might	depend	on	
value	of	input?	

def linearSearch(L, x):
for e in L:

if e==x:
return True

return False

• If	x	happens	to	be	near	front	of	L,	then	returns	
True	almost	immediately	

• If	x	not	in	L,	then	code	will	have	to	examine	all	
elements	of	L	

• Need	a	general	way	of	measuring	

6

Cases	for	measuring	complexity	
• Best	case:	minimum	running	time	over	all	
possible	inputs	of	a	given	size	
– For	linearSearch – constant,	i.e.	independent	of	size	of	
inputs	

• Worst	case:	maximum	running	time	over	all	
possible	inputs	of	a	given	size	
– For	linearSearch – linear	in	size	of	list

• Average	(or	expected)	case:	average	running	
time	over	all	possible	inputs	of	a	given	size	

• We	will	focus	on	worst	case	– a	kind	of	upper	
bound	on	running	time	

7

Example
• Number	of	steps	
– 1 (for	assignment)	
– 5*n (1	for	test,	plus	2	for	
first	assignment,	plus	2	for	
second	assignment	in	
while;	repeated	n	<mes
through	while)	

– 1 (for	return)	
• 5*n+2steps	
• But	as	n	gets	large,	2	is	
irrelevant,	so	basically	
5*n	steps	

8

def fact(n):
answer = 1
while n > 1:

answer *= n
n -= 1

return answer

Example

• What	about	the	multiplicative	constant	
(5	in	this	case)?	

• We	argue	that	in	general,	multiplicative	
constants	are	not	relevant	when	comparing	
algorithms	

9

Example	
def sqrtExhaust(x, eps):

step = eps**2
ans = 0.0
while abs(ans**2 - x) >= eps and ans <= max(x, 1):

ans += step

return ans

• If	we	call	this	on	100	and	0.0001,	will	take	one	
billion	iterations	of	the	loop	
– Have	roughly	8	steps	within	each	iteration	

10

Example
def sqrtBi(x, eps):

low = 0.0
high = max(1, x)
ans = (high + low)/2.0
while abs(ans**2 - x) >= eps:

if ans**2 < x:
low = ans

else:
high = ans

ans = (high + low)/2.0
return ans

• If	we	call	this	on	100	and	0.0001,	will	take	thirty	iterations	of	
the	loop
– Have	roughly	10	steps	within	each	iteration	

• 1	billion	or	8	billion	versus	30	or	300	– it	is	size	of	problem	
that	matters	

11

Measuring	complexity	

• Given	this	difference	in	iterations	through	
loop,	multiplicative	factor	(number	of	steps	
within	loop)	probably	irrelevant	

• Thus,	we	will	focus	on	measuring	the	
complexity	as	a	function	of	input	size	
–Will	focus	on	the	largest	factor	in	this	expression	
–Will	be	mostly	concerned	with	the	worst	case	
scenario	

12

Asymptotic	notation

• Need	a	formal	way	to	talk	about	relationship	
between	running	time	and	size	of	inputs	

• Mostly	interested	in	what	happens	as	size	of	
inputs	gets	very	large,	i.e.	approaches	infinity	

13

Example
def f(x):

for i in range(1000):
ans = i

for i in range(x):
ans += 1

for i in range(x):
for j in range(x):

ans += 1

Complexity	is	1000	+	2x	+	2x2,	if	each	line	takes	one	step	

14

Example

• 1000+2x+2x2

• If	x	is	small,	constant	term	dominates
– E.g.,	x	=	10	then	1000	of	1220	steps	are	in	first	
loop

• If	x	is	large,	quadratic	term	dominates	
– E.g.	x	=	1,000,000,	then	first	loop	takes	
0.000000005%	of	time,	second	loop	takes	
0.0001%	of	time	(out	of	2,000,002,001,000	 steps)!	

15

Example
• So	really	only	need	to	consider	the	nested	loops	
(quadratic	component)	

• Does	it	matter	that	this	part	takes	2x2 steps,	as	
opposed	to	say	x2 steps?	
– For	our	example,	if	our	computer	executes	100	million	
steps	per	second,	difference	is	5.5	hours	versus	2.25	
hours	

– On	the	other	hand	if	we	can	find	a	linear	algorithm,	
this	would	run	in	a	fraction	of	a	second	

– So	multiplicative	factors	probably	not	crucial,	but	
order	of	growth	is	crucial	

16

Rules	of	thumb	for	complexity	

• Asymptotic	complexity	
– Describe	running	time	in	terms	of	number	of	basic	
steps	

– If	running	time	is	sum	of	multiple	terms,	keep	one	
with	the	largest	growth	rate	

– If	remaining	term	is	a	product,	drop	any	
multiplicative	constants	

• Use	“Big	O”	notation	(aka	Omicron)	
– Gives	an	upper	bound	on	asymptotic	growth	of	a	
function	

17

Complexity	classes	

• O(1)	denotes	constant	running	time	
• O(log	n)	denotes	logarithmic	running	time	
• O(n)	denotes	linear	running	time	
• O(n	log	n)	denotes	log-linear	running	time	
• O(nc)	denotes	polynomial	running	time	(c	is	a	
constant)	

• O(cn)	denotes	exponential	running	time	(c	is	a	
constant	being	raised	to	a	power	based	on	size	of	
input)	

18

Constant	complexity	

• Complexity	independent	of	inputs	
• Very	few	interesting	algorithms	in	this	class,	
but	can	often	have	pieces	that	fit	this	class	

• Can	have	loops	or	recursive	calls,	but	number	
of	iterations	or	calls	independent	of	size	of	
input	

19

Logarithmic	complexity	

• Complexity	grows	as	log	of	size	of	one	of	its	
inputs	

• Example:
– Bisection	search
– Binary	search	of	a	list	

20

Logarithmic	complexity	

21

def intToStr(i):
digits = '0123456789'
if i == 0:

return '0'
result = ''
while i > 0:

result = digits[i%10] + result
i = i/10

return result

Logarithmic	complexity	
• Only	have	to	look	at	
loop	as	no	function	
calls	

• Within	while	loop	
constant	number	of	
steps	

• How	many	times	
through	loop?	
– How	many	times	can	
one	divide	i by	10?	

– O(log(i))	

22

def intToStr(i):
digits = '0123456789'
if i == 0:

return '0'
result = ''
while i > 0:

result = digits[i%10]
+ result

i = i/10
return result

Linear	complexity	
• Searching	a	list	in	order	to	see	if	an	element	is	
present	

• Add	characters	of	a	string,	assumed	to	be	
composed	of	decimal	digits	

def addDigits(s):
val = 0
for c in s:

val += int(c)

return val

• O(len(s))	
23

Linear	complexity	
• Complexity	can	depend	on	number	of	recursive	
calls	

def fact(n):
if n == 1:

return 1
else:

return n*fact(n-1)

• Number	of	recursive	calls?
– Fact(n),	then	fact(n-1),	etc.	until	get	to	fact(1)	
– Complexity	of	each	call	is	constant
– O(n)	 24

Log-linear	complexity

• Many	practical	algorithms	are	log-linear	
• Very	commonly	used	log-linear	algorithm	is	
merge	sort	

• Will	return	to	this	

25

Polynomial	complexity

• Most	common	polynomial	algorithms	are	
quadratic,	i.e.,	complexity	grows	with	square	
of	size	of	input	

• Commonly	occurs	when	we	have	nested	loops	
or	recursive	function	calls	

26

Quadratic	complexity	

27

def isSubset(L1, L2):
for e1 in L1:

matched = False
for e2 in L2:

if e1 == e2:
matched = True
break

if not matched:
return False

return True

Quadratic	complexity	

• Outer	loop	executed	
len(L1)	times	

• Each	iteration	will	
execute	inner	loop	up	
to	len(L2)	times	

• O(len(L1)*len(L2))	
• Worst	case	when	L1	

and	L2	same	length,	
none	of	elements	of	L1	
in	L2	

• O(len(L1)2)	
28

def isSubset(L1, L2):
for e1 in L1:

matched = False
for e2 in L2:

if e1 == e2:
matched = True
break

if not matched:
return False

return True

Quadratic	complexity	

Find	intersection	of	two	lists,	return	a	list	with	each	
element	appearing	only	once	

29

def intersect(L1, L2):
tmp = []
for e1 in L1:

for e2 in L2:
if e1 == e2:

tmp.append(e1)
res = []
for e in tmp:

if not(e in res):
res.append(e)

return res

Quadratic	complexity	

• First	nested	loop	
takes	len(L1)*len(L2)	
steps	

• Second	loop	takes	at	
most	len(L1)	steps	

• Latter	term	
overwhelmed	by	
former	term	

• O(len(L1)*len(L2))	

30

def intersect(L1, L2):
tmp = []
for e1 in L1:

for e2 in L2:
if e1 == e2:

tmp.append(e1)
res = []
for e in tmp:

if not(e in res):
res.append(e)

return res

Exponential	complexity	

• Recursive	functions	where	more	than	one	
recursive	call	for	each	size	of	problem	
– Towers	of	Hanoi

• Many	important	problems	are	inherently	
exponential	
– Unfortunate,	as	cost	can	be	high	
–Will	lead	us	to	consider	approximate	solutions	
more	quickly	

31

Exponential	complexity	

32

def genSubsets(L):
res = []
if len(L) == 0:

return [[]] #list of empty list
smaller = genSubsets(L[:-1])
get all subsets without last element
extra = L[-1:]
create a list of just last element
new = []
for small in smaller:

new.append(small+extra)
for all smaller solutions, add one with last element
return smaller+new
combine those with last element and those without

Exponential	complexity	

• Assuming	append	is	
constant	time	

• Time	includes	time	to	
solve	smaller	
problem,	plus	time	
needed	to	make	a	
copy	of	all	elements	
in	smaller	problem	

33

def genSubsets(L):
res = []
if len(L) == 0:

return [[]]
smaller = genSubsets(L[:-1])
extra = L[-1:]
new = []
for small in smaller:

new.append(small+extra)
return smaller+new

Exponential	complexity	

• But	important	to	
think	about	size	of	
smaller	

• Know	that	for	a	set	of	
size	k	there	are	2k	
cases	

• So	to	solve	need	2n-1 +	
2n-2 +	...	+20 steps	

• Math	tells	us	this	is	
O(2n)	

34

def genSubsets(L):
res = []
if len(L) == 0:

return [[]]
smaller = genSubsets(L[:-1])
extra = L[-1:]
new = []
for small in smaller:

new.append(small+extra)
return smaller+new

Complexity	classes	

• O(1)	denotes	constant	running	time	
• O(log	n)	denotes	logarithmic	running	time	
• O(n)	denotes	linear	running	time	
• O(n	log	n)	denotes	log-linear	running	time	
• O(nc)	denotes	polynomial	running	time	(c	is	a	
constant)	

• O(cn)	denotes	exponential	running	time	(c	is	a	
constant	being	raised	to	a	power	based	on	size	of	
input)	

35

Comparing	complexities	

• So	does	it	really	matter	if	our	code	is	of	a	
particular	class	of	complexity?	

• Depends	on	size	of	problem,	but	for	large	
scale	problems,	complexity	of	worst	case	
makes	a	difference	

36

Constant	versus	Logarithmic

37

Constant*versus*logarithmic*

Observations

• A	logarithmic	algorithm	is	often	almost	as	
good	as	a	constant	time	algorithm	

• Logarithmic	costs	grow	very	slowly	

38

Logarithmic	versus	Linear

39

Logarithmic*versus*Linear*

Observations

• Logarithmic	clearly	better	for	large	scale	
problems	than	linear	

• Does	not	imply	linear	is	bad,	however	

40

Linear	versus	Log-linear

41

Linear*versus*LogFlinear*

Observations

• While	log(n)	may	grow	slowly,	when	
multiplied	by	a	linear	factor,	growth	is	much	
more	rapid	than	pure	linear	

• O(n	log	n)	algorithms	are	still	very	valuable	

42

Log-linear	versus	Quadratic

43

LogFlinear*versus*Quadra/c*

Observations

• Quadratic	is	often	a	problem,	however.	
• Some	problems	inherently	quadratic	but	if	
possible	always	better	to	look	for	more	
efficient	solutions	

44

Quadratic	versus	Exponential	
• Exponential	algorithms	very	expensive	
– Right	plot	is	on	a	log	scale,	since	left	plot	almost	
invisible	given	how	rapidly	exponential	grows	

• Exponential	generally	not	of	use	except	for	
small	problems	

45

Quadra/c*versus*Exponen/al*

•  Exponen/al*algorithms*very*expensive*
– Right*plot*is*on*a*log*scale,*since*leD*plot*almost*
invisible*given*how*rapidly*exponen/al*grows*

•  Exponen/al*generally*not*of*use*except*for*
small*problems**

