Algorithmic Speed

BBM 101 - Introduction to Programming |

Hacettepe University
Fall 2015

Fuat Akal, Aykut Erdem, Erkut Erdem, Vahid Garousi

Slides based on material prepared by E. Grimson, J. Guttagand C. Terman in MITx 6.00.1x

Measuring complexity

* Goals in designing programs

1. It returnsthe correct answer on all legal inputs

2. It performs the computation efficiently

* Typically (1) is most important, but sometimes
(2) is also critical, e.g., programs for collision
detection

* Even when (1) is most important, it is valuable
to understand and optimize (2)

Computational complexity

* How much time will it take a program to run?
* How much memory will it need to run?

* Need to balance minimizing computational
complexity with conceptual complexity

— Keep code simple and easy to understand, but
where possible optimize performance

How do we measure complexity?

Given a function, would like to answer: “How
long will this take to run?”

Could just run on some input and time it.
Problem is that this depends on:

1. Speed of computer

2. Specifics of Python implementation

3. Value of input

Avoid (1) and (2) by measuring time in terms
of number of basic steps executed




Measuring basic steps

Use a random access machine (RAM) as
model of computation
— Steps are executed sequentially
— Step is an operation that takes constant time

* Assignment

* Comparison

* Arithmetic operation

* Accessing objectin memory
For point (3), measure time in terms of size of
input

But complexity might depend on
value of input?

linearSearch(L, x):
e L:
e==x:
True
False
* If x happens to be near front of L, then returns
True almost immediately

* Ifx notinL, then code will have to examine all

elements of L

* Need a general way of measuring

Cases for measuring complexity

Best case: minimum running time over all
possible inputs of a given size

— For linearSearch — constant, i.e. independent of size of
inputs

Worst case: maximum running time over all

possible inputs of a given size

— For linearSearch — linear in size of list

Average (or expected) case: average running
time over all possible inputs of a given size

We will focus on worst case — a kind of upper
bound on running time

Example
def fact(n): * Number of steps
answer = 1 — 1 (for assignment)
while n > 1: — 5*%n (1 for test, plus 2 for

answer *= n first assignment, plus 2 for
_ second assignment in
n-=1 while; repeated n <mes
return answer through while)

— 1 (for return)
* 5*n+2steps
* Butasn getslarge, 2 is

irrelevant, so basically
5*n steps




Example

* What about the multiplicative constant
(5 in this case)?

* We argue that in general, multiplicative
constants are not relevant when comparing
algorithms

Example

sgrtExhaust(x, eps):
step = eps**2
ans = 0.0
abs(ans**2 - x) >= eps ans <= max(x, 1):
ans += step

ans

* |f we call this on 100 and 0.0001, will take one
billion iterations of the loop
— Have roughly 8 steps within each iteration

10

Example

sqrtBi(x, eps):
low = 0.0
high = max(1l, x)
ans = (high + low)/2.0
abs(ans**2 - x) >= eps:
ans**2 < x:
low = ans

high = ans
ans = (high + low)/2.0
ans

* If we call this on 100 and 0.0001, will take thirty iterations of
the loop
— Have roughly 10 steps within each iteration
* 1 billion or8 billionversus 30 or 300 —it is size of problem
that matters

Measuring complexity

* Given this difference in iterations through
loop, multiplicative factor (number of steps
within loop) probably irrelevant

* Thus, we will focus on measuring the
complexity as a function of input size

— Will focus on the largest factor in this expression

— Will be mostly concerned with the worst case
scenario




Asymptotic notation

* Need a formal way to talk about relationship
between running time and size of inputs

* Mostly interested in what happens as size of
inputs gets very large, i.e. approaches infinity

Example
f(x):
i range(1000):
ans = i
i range(x):
ans += 1
i range(x):
J range(x):
ans += 1

Complexity is 1000 + 2x + 2x?, if each line takes one step

14

Example

e 1000+2x+2x2

* |f x is small, constantterm dominates
— E.g., x =10 then 1000 of 1220 steps are in first
loop
* If x is large, quadratic term dominates

— E.g. x=1,000,000, then first loop takes
0.000000005% of time, second loop takes
0.0001% of time (out of 2,000,002,001,000 steps)!

Example

* Soreally only need to consider the nested loops
(quadratic component)

* Does it matter that this part takes 2x? steps, as
opposed to say x? steps?
— For our example, if our computer executes 100 million

steps per second, difference is 5.5 hoursversus 2.25
hours

— On the other hand if we can find a linear algorithm,
this would run in a fraction of a second

— So multiplicative factors probably not crucial, but
order of growth is crucial




Rules of thumb for complexity

* Asymptotic complexity
— Describe running time in terms of number of basic
steps

— If running time is sum of multiple terms, keep one
with the largest growth rate

— If remaining term is a product, drop any
multiplicative constants

* Use “Big O” notation (aka Omicron)

— Gives an upper bound on asymptotic growth of a
function

17

Complexity classes

O(1) denotes constant running time

O(log n) denotes logarithmic running time

O(n) denotes linear running time

O(n log n) denotes log-linear running time

O(n¢) denotes polynomial running time (c is a
constant)

O(c") denotes exponential running time (cis a
constant being raised to a power based on size of
input)

18

Constant complexity

* Complexity independent of inputs

* Very few interesting algorithms in this class,
but can often have pieces that fit this class

* Can have loops or recursive calls, but number
of iterations or calls independent of size of
input

Logarithmic complexity

Complexity grows as log of size of one of its
inputs

Example:

— Bisection search

— Binary search of a list

20




Logarithmic complexity

def intToStr(i):

digits = '0123456789"
if 1 ==

return '0'
result = "'

while 1 > 0
result = digits[i%10] + result
i=1i/10

return result

21

Logarithmic complexity

def intToStr(i): * Only have to look at
digits = '0123456789"' .
if 1 == 03 loop as no function
return '0"' calls
result = "' e .
while i > 0: * Within while loop
result = digits[i%10] constant number of
+ result Steps
i=1i/10 _
return result * How many times

through loop?

— How many times can
one dividei by 10?

— Oflog(i))

22

Linear complexity

* Searching a listin order to see if an element is
present

* Add characters of a string, assumed to be
composed of decimal digits

addDigits(s):
val = 0
c St
val += int(c)

val

* Oflen(s))

23

Linear complexity

* Complexity can depend on number of recursive
calls

fact(n):
n == 1:

else:
n*fact(n-1)

* Number of recursive calls?
— Fact(n), then fact(n-1), etc. until get to fact(1)
— Complexity of each call is constant
— 0O(n) 2




Log-linear complexity

* Many practical algorithms are log-linear

* Very commonly used log-linear algorithm is
merge sort

* Will return to this

Polynomial complexity

* Most common polynomial algorithms are
quadratic, i.e., complexity grows with square
of size of input

* Commonly occurs when we have nested loops
or recursive function calls

26

Quadratic complexity

def isSubset(Ll, L2):
for el in L1l:
matched = False
for e2 in L2:
if el == e2:
matched = True
break
if not matched:
return False
return True

27

Quadratic complexity

def isSubset(Ll, L2): « Outer loop executed
for el in L1l: .

matched = False len(L1) times
for e2 in L2: * Each iteration will

if el == e2: .

matched = True execute inner loop up

, break to len(L2) times
if not matched:

return False * Oflen(L1)*len(L2))

return True

* Worst case when L1
and L2 same length,
none of elements of L1
in L2

* Oflen(L1)?)

28




Quadratic complexity

Find intersection of two lists, return a list with each
element appearing only once

def intersect(Ll, L2):

tmp = []
for el in Ll:
e2 L2:
el == e2:
tmp.append(el)
res = []
tmp:
(e res):
res.append(e)
res

29

Quadratic complexity

def intersect(Ll, L2): * First nested loop
tmp = [] *
A S takes len(L1)*len(L2)
e2 in L2: steps
el == e2:  Second loop takes at

tmp. d(el
mp . append(el) most len(L1) steps

res = []
tmp: * Latterterm
(e res): overwhelmed by
res.append(e)
e former term

* O(len(L1)*len(L2))

30

Exponential complexity

* Recursive functions where more than one
recursive call for each size of problem

— Towers of Hanoi

* Many important problems are inherently
exponential
— Unfortunate, as cost can be high

— Will lead us to consider approximate solutions
more quickly

Exponential complexity

genSubsets(L):
res = []
len(L) == 0:
[[]1] #list of empty list

smaller = genSubsets(L[:-1])
# get all subsets without last element
extra = L[-1:]
# create a list of just last element
new = []

small smaller:

new.append(small+extra)
# for all smaller solutions, add one with last element

smaller+new

# combine those with last element and those without

32




Exponential complexity

9en5ub[s<]’—ts<L>= * Assuming append is
res = .
len(L) == 0: constant time

[r11

smaller = genSubsets(L[:-1]) ° Tlme |nc|udes time to

extra = L{-1:] solve smaller
new = [] .
small smaller: problem, plUS time
new.append(small+extra) needed to make a
smaller+new

copy of all elements
in smaller problem

Exponential complexity

genSubsets(L): * Butimportant to
res = [] . .
len(L) == 0: think about size of
[r1l smaller
smaller = genSubsets(L[:-1])
extra = L[-1:] * Know that for a set of
new = [] size k there are 2k
small smaller:
new.append(small+extra) cases
smaller+new * So tosolve need 2™ +

2"2 + ... +20 steps

¢ Math tells us this is
O(2n)

34

Complexity classes

O(1) denotes constant running time

O(log n) denotes logarithmic running time

O(n) denotes linear running time

O(n log n) denotes log-linear running time

O(n¢) denotes polynomial running time (c is a
constant)

O(c") denotes exponential running time (cis a
constant being raised to a power based on size of
input)

Comparing complexities

So does it really matter if our code is of a
particular class of complexity?

Depends on size of problem, but for large
scale problems, complexity of worst case
makes a difference




Constant versus Logarithmic

Constant (20) vs. Log
30 - -

—— constant(20)
— log

25|

20

10

Time

0 200000 400000 600000 800000 1000000
Input Size

37

Observations

* A logarithmic algorithm is often almost as
good as a constanttime algorithm

* Logarithmic costs grow very slowly

38

Logarithmic versus Linear

— log
— linear

Log vs. Linear
1000 . -

800 |-

600 [-

Time

400 -

200 -

0 200 400 600 800 1000
Input Size

39

Observations

* Logarithmic clearly better for large scale
problems than linear

* Does not imply linear is bad, however

40




Time

Linear versus Log-linear

10000

Linear vs. Log-linear
. T

8000 |

6000 |-

4000 |

2000 |

-
— linear
—— log-linear

200

400 600
Input Size

41

Observations

* While log(n) may grow slowly, when
multiplied by a linear factor, growth is much
more rapid than pure linear

* O(n log n) algorithms are still very valuable

42

Time

Log-linear versus Quadratic

1000000

800000 |

600000 |

400000 |

200000 |

Log-linear vs. Quadratic

— log-linear
—— quadratic

200

400 600
Input Size

43

Observations

* Quadratic is often a problem, however.

* Some problems inherently quadratic but if
possible always better to look for more
efficient solutions

44




Quadpratic versus Exponential

* Exponential algorithms very expensive
— Right plot is on a log scale, since left plot almost
invisible given how rapidly exponential grows
* Exponential generally not of use except for
small problems

Quadratic vs. Exponential Quadrati

wwwwwwwwwwwwwwwwww




