List comprehensions
(and other shortcuts)

BBM 101 - Introductionto Programming |

Hacettepe University
Fall 2015

Fuat Akal, Aykut Erdem, Erkut Erdem, Vahid Garousi

Slides based on material prepared by Ruth Anderson, Michael Ernst and Bill Howe in the qourse CSE 140
University of Washington

Three Ways to Define a List

* Explicitly write out the whole thing:
squares = [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

* Write aloop to create it:

squares = []

for i in range(1l1):
squares.append (i*i)

* Write a list comprehension:
squares = [i*i for i in range(11)]

* Alist comprehensionis a concise description of a list
* A list comprehensionis shorthand for a loop

Two ways to convert Centigrade to
Fahrenheit

ctemps = [17.1, 22.3, 18.4, 19.1]

With a loop:
ftemps = []
for ¢ in ctemps:
f = celsius_to_farenheit (c)
ftemps.append(£f)

With a list comprehension:

ftemps = [celsius_to_farenheit(c) for ¢ in ctemps]

The comprehensionis usually shorter, more readable, and more efficient

Syntax of a comprehension

[(x,y) for x in seql for y in seq2 if sim(x,y) > threshold]

)

\ J \ J \
Y Y — Y
expression for clause (required) zero or more zero or more if clauses
assigns value to the additional
variable x for clauses
_'_l
something
that can be
iterated

Semantics of a comprehension

[(x,y) for x in seql for y in seq2 if sim(x,y) > threshold]

result = []
for x in seql:
for y in seq2:
if sim(x,y) > threshold:
result.append((x,y))
.. use result ..

Types of comprehensions

List

[i*2 for i in range(3)]
Set

{ i*2 for i in range(3)}
Dictionary

{ key: value for item in sequence ...}
{ i: i*2 for i in range(3)}

Cubes of the first 10 natural
numbers

Goal:
Produce: [0, 1, 8, 27, 64, 125, 216, 343, 512, 729]

With a loop:

cubes = []
for x in range(10):
cubes. append (x**3)

With a list comprehension:

cubes = [x**3 for x in range(10)]

Powers of 2, 2° through 210

Goal: [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

[2**i for i in range(1l1)]

Even elements of a list
Goal: Given an input list nums, produce a list of
the even numbers in nums

nums = [3, 1, 4, 1, 5, 9, 2, 6, 5]
= [4, 2, 6]

[num for num in nums if num $ 2 == 0]

Dice Rolls

Goal: A list of all possible dice rolls.

With a loop:
rolls = []
for rl in range(1,7):
for r2 in range(1,7):
rolls.append((rl,r2))

With a list comprehension:
rolls = [(rl,r2) for rl in range(1l,7)
for r2 in range(1,7)]

All above-average 2-die rolls

Goal: Result list should be a list of 2-tuples
[(2, 6), (3,5),(3,6), (4, 4),(4,5), (4, 6), (5, 3), (5, 4), (5, 5), (5, 6),
(6, 2), (6, 3), (6, 4), (6,5), (6, 6)]

[(r1l, r2) for rl in [1,2,3,4,5,6]
for r2 in [1,2,3,4,5,6]
if rl + r2 > 7]

OR

[(rl, r2) for rl in range(l, 7)
for r2 in range(8-rl, 7)]

All above-average 2-die rolls

Goal: Result list should be a list of 2-tuples:
[(2, 6), (3, 5),(3,6), (4, 4),(4,5), (4, 6), (5, 3), (5, 4), (5, 5), (5, 6),
(6, 2), (6, 3), (6, 4), (6,5), (6, 6])]

[(rl, r2) for rl in [1,2,3,4,5,6]

for r2 in [1,2,3,4,5,6]

if rl + r2 > 7]
Remove Duplicates: Use Set Comprehensions
{ r1 + r2 for rl in range(l,7)

for r2 in range(1l,7)

if rl + r2 > 7}
= set([(6, 4), (5, 4), (2, 6), (4, 6), (6, 6), (4,
5), (4, 4), (5, 5), (6, 3), (5, 6), (6, 2), (3, 6),
(5, 3), (6, 5), (3, 51)

Making a Matrix

Goal: A matrix were each elementis the sum of it's row and column.

With a loop:

matrix = []
for i in range(5):
row = []
for j in range(5):
row.append (i+j)
matrix.append (row)

With a list comprehension:

matrix = [[i+]J for j in range(5)] for i in range(5)]

More examples

function4x?2-4

With a loop:

num list = []
for i in range(-10,11):

num list.append (4*i**2 - 4)

With a list comprehension:
num list = [4*i**2 - 4 for i in range(-10,11)]

Normalize a list

With a loop:

num list = [6,4,2,8,9,10,3,2,1,3]
total = float(sum(num list))
for i in range(len(num list)):

num list[i] =
num list[i]/float(total)

With a list comprehension:

num list = [i/total for i in num list]

16

Matrix of zeros

With a loop:

matrix = []
for i in range(10):
matrix.append([0]*10)

With a list comprehension:
matrix = [[0]*10 for i in range(10)]

Multiplication table

With a loop:

table = []
for r in range(1,10):
row = []
for ¢ in range(1,10):
row.append (r*c)
table.append (row)

With a list comprehension:

table = [[r*c for c in range(1,10)] for r

in range(1,10)]

Mapping of powers of ten

With a loop:

powers = {}
for i in range(-6,7,3):

powers[i] = 10**i

With a list comprehension:
powers = {i:10**i for i in range(-6,7,3)}

19

Dictionary mapping integers to
multiples under 100

With a loop:

for n in range(1,11):
multiples list = []
for i in range(1,101):
if i%n == 0:
multiples list.append (i)
multiples[n] = multiples list

With a list comprehension:
multiples = {n:[i for i in range(1,101)
i%n == 0] for n in range(1l,11) }

if

20

A word of caution

List comprehensions are great, but they can get confusing.
Error on the side of readability.

nums = [n for n in range(100) if
sum([int(j) for j in str(n)]) % 7 == 0]

nums = []
for n in range(100):
digit_sum = sum([int(j) for j in str(n)])
if digit_ sum % 7 == O0:
nums . append (n)

A word of caution

List comprehensions are great, but they can get confusing.
Error on the side of readability.

nums = [n for n in range(100) if
sum([int(j) for j in str(n)]) % 7 == 0]

nums = []
for n in range(100):
digit sum = sum([int(j) for j in str(m)])
if digit sum $ 7 == 0:
nums . append (n)

A word of caution

List comprehensions are great, but they can get confusing.

Error on the side of readability.

nums = [n for n in range(100) if
sum([int(j) for j in str(n)]) % 7 == 0]
def sum digits(n):
digit list = [int (1) for 1 str(n)]
return sum(digit list)
nums = [n for n in range (100) 1if

Q

sum digits(n) % 7 == 0]

More shortcuts!

Enumerate a list

the list = [10**1 for 1 in range(10)]
for i1 in range(len(the list)):
print str(i) + ': ' + str(the list[i])

LTE——J L)
index !

value

Or:

for index,value in enumerate(the list):
print str(index) + ': ' + str(value)

Enumerate a list

Goal: add each element’s index itself

the list = range(10)

new_list = []

for i,v in enumerate(the_list):
new_list.append (i+v)

With a list comprehension:

the_list
new_list

range (10)
[i+v for i,v in enumerate(the_list)]

Ternary Assignment

A common pattern in python

if x > threshold:
flag = True
else:
flag = False

Or

flag = False
if x > threshold:
flag = True

Ternary Assignment

A common pattern in python

if x > threshold:
flag = True
else:
flag = False

flag = True if x > threshold else False

Ternary Assignment

flag = True if x > threshold else False
_'_l | Y J _'_l

Result if true " Result if false
Condition

Only works for single expressions as results.
Only works for if and else (no elif)

Ternary Assignment

Goal: A list of 'odd' or 'even' if that index is odd or even.

the list = []
for i in range(1l6):
if i%2 ==
the list.append('even')
else:
the list.append('odd'")

or

the list = []
for 1 in range(106):
the list.append('even' if i%2 == 0 else 'odd')

Ternary Assignment

Goal: A list of 'odd' or 'even' if that index is odd or even.

the list = []
for 1 in range(106):
if i%2 == 0:
the list.append('even')
else:
the list.append('odd'")

or

the_list = ['even' if i%2 == 0 else 'odd' for i in range(16)]

Get more practice

List Comprehensions:

[(x,y) for x in seql for y in seq2 if
sim(x,y) > threshold]

Enumerate:

for index,value in enumerate (seq) :

Ternary If Statement:

flag = True if x > threshold else False

