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Three Ways to Define a List

* Explicitly write out the whole thing:
squares = [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

* Write aloop to create it:

squares = []

for i in range(1l1):
squares.append (i*i)

*  Write a list comprehension:
squares = [i*i for i in range(11)]

* Alist comprehensionis a concise description of a list
* A list comprehensionis shorthand for a loop

Two ways to convert Centigrade to
Fahrenheit

ctemps = [17.1, 22.3, 18.4, 19.1]

With a loop:
ftemps = []
for ¢ in ctemps:
f = celsius_to_farenheit (c)
ftemps.append(£f)

With a list comprehension:

ftemps = [celsius_to_farenheit(c) for ¢ in ctemps]

The comprehensionis usually shorter, more readable, and more efficient

Syntax of a comprehension

[(x,y) for x in seql for y in seq2 if sim(x,y) > threshold]
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Semantics of a comprehension

[(x,y) for x in seql for y in seq2 if sim(x,y) > threshold]

result = []
for x in seql:
for y in seq2:
if sim(x,y) > threshold:
result.append( (x,y) )
.. use result ..

Types of comprehensions

List

[ i*2 for i in range(3) ]
Set

{ i*2 for i in range(3)}
Dictionary

{ key: value for item in sequence ...}
{ i: i*2 for i in range(3)}

Cubes of the first 10 natural
numbers

Goal:
Produce: [0, 1, 8, 27, 64, 125, 216, 343, 512, 729]

With a loop:

cubes = []
for x in range(10):
cubes. append (x**3)

With a list comprehension:

cubes = [x**3 for x in range(10)]

Powers of 2, 2° through 210

Goal: [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

[2**i for i in range(1l1)]




Even elements of a list
Goal: Given an input list nums, produce a list of
the even numbers in nums

nums = [3, 1, 4, 1, 5, 9, 2, 6, 5]
= [4, 2, 6]

[num for num in nums if num $ 2 == 0]

Dice Rolls

Goal: A list of all possible dice rolls.

With a loop:
rolls = []
for rl in range(1,7):
for r2 in range(1,7):
rolls.append( (rl,r2) )

With a list comprehension:
rolls = [ (rl,r2) for rl in range(1l,7)
for r2 in range(1,7)]

All above-average 2-die rolls

Goal: Result list should be a list of 2-tuples
[(2, 6), (3,5),(3,6), (4, 4),(4,5), (4, 6), (5, 3), (5, 4), (5, 5), (5, 6),
(6, 2), (6, 3), (6, 4), (6,5), (6, 6)]

[(r1l, r2) for rl in [1,2,3,4,5,6]
for r2 in [1,2,3,4,5,6]
if rl + r2 > 7]

OR

[(rl, r2) for rl in range(l, 7)
for r2 in range(8-rl, 7)]

All above-average 2-die rolls

Goal: Result list should be a list of 2-tuples:
[(2, 6), (3, 5),(3,6), (4, 4),(4,5), (4, 6), (5, 3), (5, 4), (5, 5), (5, 6),
(6, 2), (6, 3), (6, 4), (6,5), (6, 6])]

[(rl, r2) for rl in [1,2,3,4,5,6]

for r2 in [1,2,3,4,5,6]

if rl + r2 > 7]
Remove Duplicates: Use Set Comprehensions
{ r1 + r2 for rl in range(l,7)

for r2 in range(1l,7)

if rl + r2 > 7}
= set([(6, 4), (5, 4), (2, 6), (4, 6), (6, 6), (4,
5), (4, 4), (5, 5), (6, 3), (5, 6), (6, 2), (3, 6),
(5, 3), (6, 5), (3, 51)




Making a Matrix

Goal: A matrix were each elementis the sum of it's row and column.

With a loop:

matrix = []
for i in range(5):
row = []
for j in range(5):
row.append (i+j)
matrix.append (row)

With a list comprehension:

matrix = [[i+]J for j in range(5)] for i in range(5)]

More examples

function4x?2-4

With a loop:

num list = []
for i in range(-10,11):

num list.append (4*i**2 - 4)

With a list comprehension:
num list = [4*i**2 - 4 for i in range(-10,11)]

Normalize a list

With a loop:

num list = [6,4,2,8,9,10,3,2,1,3]
total = float(sum(num list))
for i in range(len(num list)):

num list[i] =
num list[i]/float(total)

With a list comprehension:

num list = [i/total for i in num list]
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Matrix of zeros

With a loop:

matrix = []
for i in range(10):
matrix.append([0]*10)

With a list comprehension:
matrix = [[0]*10 for i in range(10)]

Multiplication table

With a loop:

table = []
for r in range(1,10):
row = []
for ¢ in range(1,10):
row.append (r*c)
table.append (row)

With a list comprehension:

table = [ [r*c for c in range(1,10)] for r

in range(1,10)]

Mapping of powers of ten

With a loop:

powers = {}
for i in range(-6,7,3):

powers[i] = 10**i

With a list comprehension:
powers = {i:10**i for i in range(-6,7,3)}
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Dictionary mapping integers to
multiples under 100

With a loop:

for n in range(1,11):
multiples list = []
for i in range(1,101):
if i%n == 0:
multiples list.append (i)
multiples[n] = multiples list

With a list comprehension:
multiples = {n:[i for i in range(1,101)
i%n == 0] for n in range(1l,11) }

if
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A word of caution

List comprehensions are great, but they can get confusing.
Error on the side of readability.

nums = [n for n in range(100) if
sum([int(j) for j in str(n)]) % 7 == 0]

nums = []
for n in range(100):
digit_sum = sum([int(j) for j in str(n)])
if digit_ sum % 7 == O0:
nums . append (n)

A word of caution

List comprehensions are great, but they can get confusing.
Error on the side of readability.

nums = [n for n in range(100) if
sum([int(j) for j in str(n)]) % 7 == 0]

nums = []
for n in range(100):
digit sum = sum([int(j) for j in str(m)])
if digit sum $ 7 == 0:
nums . append (n)

A word of caution

List comprehensions are great, but they can get confusing.

Error on the side of readability.

nums = [n for n in range(100) if
sum([int(j) for j in str(n)]) % 7 == 0]
def sum digits(n):
digit list = [int (1) for 1 str(n)]
return sum(digit list)
nums = [n for n in range (100) 1if

Q

sum digits(n) % 7 == 0]

More shortcuts!




Enumerate a list

the list = [10**1 for 1 in range(10)]
for i1 in range(len(the list)):
print str(i) + ': ' + str(the list[i])
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Or:

for index,value in enumerate(the list):
print str(index) + ': ' + str(value)

Enumerate a list

Goal: add each element’s index itself

the list = range(10)

new_list = []

for i,v in enumerate(the_list):
new_list.append (i+v)

With a list comprehension:

the_list
new_list

range (10)
[ i+v for i,v in enumerate(the_list) ]

Ternary Assignment

A common pattern in python

if x > threshold:
flag = True
else:
flag = False

Or

flag = False
if x > threshold:
flag = True

Ternary Assignment

A common pattern in python

if x > threshold:
flag = True
else:
flag = False

flag = True if x > threshold else False




Ternary Assignment

flag = True if x > threshold else False
\_'_l | Y J \_'_l

Result if true " Result if false
Condition

Only works for single expressions as results.
Only works for if and else (no elif)

Ternary Assignment

Goal: A list of 'odd' or 'even' if that index is odd or even.

the list = []
for i in range(1l6):
if i%2 ==
the list.append('even')
else:
the list.append('odd'")

or

the list = []
for 1 in range(106):
the list.append('even' if i%2 == 0 else 'odd')

Ternary Assignment

Goal: A list of 'odd' or 'even' if that index is odd or even.

the list = []
for 1 in range(106):
if i%2 == 0:
the list.append('even')
else:
the list.append('odd'")

or

the_list = ['even' if i%2 == 0 else 'odd' for i in range(16)]

Get more practice

List Comprehensions:

[(x,y) for x in seql for y in seq2 if
sim(x,y) > threshold]

Enumerate:

for index,value in enumerate (seq) :

Ternary If Statement:

flag = True if x > threshold else False




