Recursion

BBM 101 - Introduction to Programming I
Hacettepe University
Fall 2015

Fuat Akal, Aykut Erdem, Erkut Erdem, Vahid Garousi

Recursive functions

- A function is called recursive if the body of that function calls itself, either directly or indirectly.
- Implication: Executing the body of a recursive function may require applying that function

Iterative algorithms

- Looping constructs (e.g. while or for loops) lead naturally to iterative algorithms
- Can conceptualize as capturing computation in a set of "state variables" which update on each iteration through the loop

Iterative multiplication by successive additions

- Imagine we want to perform multiplication by successive additions:
- To multiply a by b, add a to itself b times
- State variables:
- i-iteration number; starts at b
- result - current value of computation; starts at 0
- Update rules
$-i \leqslant i-1$; stop when 0
- result \leftarrow result + a

Iterative multiplication by successive additions

def iterMul(a, b):
result $=0$
while $\mathrm{b}>0$:
result $+=\mathrm{a}$
b $-=1$
return result

Recursive version

- An alternative is to think of this computation as:

$$
a^{*} b=\underbrace{a+a+\ldots+a}_{b \text { copies }}
$$

$$
=a+a *(b-1)
$$

Recursion

- This is an instance of a recursive algorithm
- Reduce a problem to a simpler (or smaller) version of the same problem, plus some simple computations
- Recursive step
- Keep reducing until reach a simple case that can be solved directly
- Base case
- $a^{*} b=a$; if $b=1$ (Base case)
- $a^{*} b=a+a$ * (b-1); otherwise (Recursive case)

Recursive multiplication

def recurMul (a,b):

$$
\text { if } \mathrm{b}==1 \text { : }
$$

return a
else:
return $a+r e c u r M u l(a, b-1)$

Let's try it out

def recurMul (a,b):
if $\mathrm{b}=1$: return a
else:
return $\mathbf{a}+$

recurMul (a,b-1)

Let's try it out

def recurMul (a,b):
if $\mathrm{b}=1$: return a
else:
return $a+$
 recurMul (a,b-1)
recurMul $(2,3)$

Let's try it out

def recurMul (a,b):

$$
\text { if } b=1:
$$ return a

else:
return $a+$
 recurMul (a,b-1)
recurMul $(2,3)$

Let's try it out

def recurMul (a,b):
if $\mathrm{b}==1:$
return a
else:
return $a+$
recurMul $(\mathrm{a}, \mathrm{b}-1)$
recurMul $(2,3)$

Let's try it out

def recurMul (a,b):

recurMul $(2,3)$

Let's try it out

def recurMul (a,b):

recurMul $(2,3)$

The Anatomy of a Recursive Function

- The def statement header is similar to other functions
- Conditional statements check for base cases
- Base cases are evaluated without recursive calls
- Recursive cases are evaluated with recursive calls
def recurMul (a, b) :

```
    if b == 1:
                retur\Omega a
    else:
    return a + recurMul(a,b-1)
```


Inductive reasoning

- How do we know that our recursive code will work?
- iterMul terminates because b is initially positive, and decrease by 1 each time around loop; thus must eventually become less than 1
- recurMul called with $b=1$ has no recursive call and stops
- recurMul called with $b>1$ makes a recursive call with a smaller version of b; must eventually reach call with $b=1$

Mathematical induction

- To prove a statement indexed on integers is true for all values of n :
- Prove it is true when n is smallest value (e.g. $n=0$ or $\mathrm{n}=1$)
- Then prove that if it is true for an arbitrary value of n, one can show that it must be true for $n+1$

Example

- $0+1+2+3+\ldots+n=(n(n+1)) / 2$
- Proof
- If $n=0$, then LHS is 0 and RHS is $0^{*} 1 / 2=0$, so true
- Assume true for some k, then need to show that
- $0+1+2+\ldots+k+(k+1)=((k+1)(k+2)) / 2$
- LHS is $k(k+1) / 2+(k+1)$ by assumption that property holds for problem of size k
- This becomes, by algebra, ((k+1)(k+2))/2
- Hence expression holds for all $n>=0$

What does this have to do with code?

- Same logic applies
def recurMul (a, b):

```
if b == 1:
```

return a
else:
return a + recurMul (a, b-1)

- Base case, we can show that recurMul must return correct answer
- For recursive case, we can assume that recurMul correctly returns an answer for problems of size smaller than b, then by the addition step, it must also return a correct answer for problem of size b
- Thus by induction, code correctly returns answer

Sum digits of a number

```
def split(n):
    """Split positive n into all but its last digit and its last digit."""
    return n // 10, n % 10
def sum_digits(n):
    """Return the sum of the digits of positive integer n.""""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```


Some observations

- Each recursive call to a function creates its own environment, with local scoping of variables
- Bindings for variable in each frame distinct, and not changed by recursive call
- Flow of control will pass back to earlier frame once function call returns value

The "classic" recursive problem

- Factorial

$$
\begin{aligned}
n! & =n *(n-1) * \ldots * 1 \\
& = \begin{cases}1 & \text { if } n=0 \\
n *(n-1)! & \text { otherwise }\end{cases}
\end{aligned}
$$

Recursion in Environment Diagrams

```
def fact(n):
if n == 0:
    return 1
        else:
        return n * fact(n-1)
    fact(3)
```


Recursion in Environment Diagrams

```
    1 def fact(n):
\(\rightarrow 2\) if \(n=0\) :
        return 1
        else:
        return \(n\) * fact (n-1)
    fact(3)
```

(Demo)
Global frame
fact
f1: fact [parent=Global]
n 3
f2: fact [parent=Global]
n 2
f3: fact [parent=Global]
n 1
f4: fact [parent=Global]

$$
\begin{array}{r|l}
n & 0 \\
\begin{array}{c}
\text { Return } \\
\text { value }
\end{array} & 1
\end{array}
$$

Recursion in Environment Diagrams

- The same function fact is called multiple times

Recursion in Environment Diagrams

```
    1 def fact(n):
\(\Rightarrow 2\) if \(n=0\) :
        return 1
        else:
        return \(n\) * fact \((n-1)\)
    fact(3)
```

- The same function fact is called multiple times
- Different frames keep track of the different arguments in each call
(Demo)

```
Global frame
                                func fact(n) [parent=Global]
fact
```

f1: fact [parent=Global]
n 3
f2: fact [parent=Global]
n 2
f3: fact [parent=Global]
n 1
f4: fact [parent=Global]
n 0
Return 1
value

Recursion in Environment Diagrams

- The same function fact is called multiple times
- Different frames keep track of the different arguments in each call
- Whatn evaluatesto depends upon the current environment

Recursion in Environment Diagrams

- The same function fact is called multiple times
- Different frames keep track of the different arguments in each call
- Whatn evaluatesto depends upon the current environment
- Each call to fact solves a simpler problem than the last: smaller \mathbf{n}

Iteration vs Recursion

$$
4!=4 \cdot 3 \cdot 2 \cdot 1=24
$$

Iteration vs Recursion

$$
4!=4 \cdot 3 \cdot 2 \cdot 1=24
$$

Using while:

```
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
        total, k = total*k, k+1
        return total
```

Math:

$$
n!=\prod_{k=1}^{n} k
$$

Names: n, total, k, fact_iter

Iteration vs Recursion

$$
4!=4 \cdot 3 \cdot 2 \cdot 1=24
$$

Using while:

```
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
        total, k = total*k, k+1
        return total
```

Math:

$$
n!=\prod_{k=1}^{n} k
$$

Names:
n, total, k, fact_iter

Using recursion:

```
def fact(n):
    if n == 0:
        return 1
        else:
            return n * fact(n-1)
```

$n!= \begin{cases}1 & \text { if } n=0 \\ n \cdot(n-1)! & \text { otherwise }\end{cases}$
n, fact

Recursion on non-numerics

- How could we check whether a string of characters is a palindrome, i.e., reads the same forwards and backwards
- "Able was I ere I saw Elba" - attributed to

Napolean

- "Are we not drawn onward, we few, drawn onward to new era?"

How to we solve this recursive?

- First, convert the string to just characters, by stripping out punctuation, and converting upper case to lower case
- Then
- Base case: a string of length 0 or 1 is a palindrome
- Recursive case:
- If first character matches last character, then is a palindrome if middle section is a palindrome

Example

- 'Able was I ere I saw Elba' \rightarrow 'ablewasiereisawleba'
- isPalindrome('ablewasiereisawleba') is same as
- 'a' == 'a' and isPalindrome('blewasiereisawleb')

Palindrome or not?

def toChars(s):
$\mathrm{s}=\mathrm{s}$. lower ()
ans = ''
for \mathbf{c} in s :
if c in 'abcdefghijklmnopqrstuvwxyz':

$$
\text { ans }=\text { ans }+c
$$

return ans
def isPal(s):
if len(s) <= 1:
return True
else:
return $s[0]==s[-1]$ and isPal(s[1:-1])
def isPalindrome(s):
return isPal(toChars(s))

Divide and conquer

- This is an example of a "divide and conquer" algorithm
- Solve a hard problem by breaking it into a set of sub-problems such that:
- Sub-problems are easier to solve than the original
- Solutions of the sub-problems can be combined to solve the original

Global variables

- Suppose we wanted to count the number of times fib calls itself recursively
- Can do this using a global variable
- So far, all functions communicate with their environment through their parameters and return values
- But, (though a bit dangerous), can declare a variable to be global - means name is defined at the outermost scope of the program, rather than scope of function in which appears

Example

def fibMetered(x):
global numCalls
numCalls $+=1$
if $\mathbf{x}=0$ or $\mathbf{x}=1$:
return 1
else:
return fibMetered (x-1) + fibMetered $(x-2)$
def testFib(n):
for i in range ($n+1$):
global numCalls
numCalls $=0$
print('fib of $'+s t r(i)+'=1+s t r(f i b M e t e r e d(i)))$
print('fib called ' + str(numCalls) + 'times')

Global variables

- Use with care!!
- Destroy locality of code
- Since can be modified or read in a wide range of places, can be easy to break locality and introduce bugs!!

Mutual recursion

- Mutual recursion is a form of recursion where two functions or data types are defined in terms of each other.

The Luhn Algorithm

- A simple checksum formula used to validate a variety of identification numbers, such as credit card numbers, IMEI numbers, etc.

MasterCard

The Luhn Algorithm

- From Wikipedia:http://en.wikipedia.org/wiki/Luhn algorithm
- First: From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., $7 * 2=14$), then sum the digits of the products (e.g., 10: $1+0=1,14: 1+4=5$)
- Second: Take the sum of all the digits

1	3	8	7	4	3
2	3	$1+6=7$	7	8	3

- The Luhn sum of a valid credit card number is a multiple of 10

The Luhn Algorithm

```
def luhn_sum(n):
    """Return the digit sum of n computed by the Luhn algorithm"""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return luhn_sum_double(all_but_last) + last
def luhn_sum_double(n):
    """Return the Luhn sum of n, doubling the last digit."""
    all_but_last, last = split(n)
    luhn_digit = sum_digits(2 * last)
    if n < 10:
        return luhn_digit
    else:
        return luhn_sum(all_but_last) + luhn_digit
```


Tree Recursion

- Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call.

Tree Recursion

- Fibonacci numbers
- Leonardo of Pisa (aka Fibonacci) modeled the following challenge
- Newborn pair of rabbits (one female, one male) are put in a pen
- Rabbits mate at age of one month
- Rabbits have a one month gestation period
- Assume rabbits never die, that female always produces one new pair (one male, one female) every month from its second month on.
- How many female rabbits are there at the end of one year?

Fibonacci

- After one month (call it 0) - 1 female
- After second month - still 1 female (now pregnant)
- After third month - two females, one pregnant, one not
- In general, females(n) = females(n-1) + females($\mathrm{n}-2$)

Month	Females
0	1
1	1
2	2
3	3
4	5
5	8
6	13

- Every female alive at month n - 2 will produce one female in month n;
- These can be added those alive in month $n-1$ to get total alive in month n

Fibonacci

- Base cases:
- Females(0) = 1
- Females(1) = 1
- Recursive case
- Females(n) $=$ Females $(\mathrm{n}-1)+$ Females($\mathrm{n}-2$)

Fibonacci

def fib(n):
"""assumes n an int $>=0$
returns Fibonacci of n"""
assert type (n) $==$ int and $n>=0$ if $\mathrm{n}=0$:
return 1
elif $\mathrm{n}=\mathbf{1 :}$
return 1
else:
return $\mathrm{fib}(\mathrm{n}-2)+\mathrm{fib}(\mathrm{n}-1)$

A tree-recursive process

- The computational process of fib evolves into a tree structure

A tree-recursive process

- The computational process of fib evolves into a tree structure fib(5)

A tree-recursive process

- The computational process of fib evolves into a tree structure

fib(3)

A tree-recursive process

- The computational process of fib evolves into a tree structure

A tree-recursive process

- The computational process of fib evolves into a tree structure

A tree-recursive process

- The computational process of fib evolves into a tree structure

A tree-recursive process

- The computational process of fib evolves into a tree structure

A tree-recursive process

- The computational process of fib evolves into a tree structure

Pitfalls of Recursion

- With recursion, you can compose compact and elegant programs that fail spectacularly at runtime.
- Missing base case
- No guarentee of convergence
- Excessive space requirements
- Excessive recomputation

Missing base case

def $H(n):$ return $H(n-1)+1.0 / n$;

- This recursive function is supposed to compute Harmonic numbers, but is missing a base case.
- If you call this function, it will repeatedly call itself and never return.

No guarantee of convergence

def $H(n):$

```
if n == 1:
```

 return 1.0
 return $H(n)+1.0 / n$

- This recursive function will go into an infinite recursive loop if it is invoked with an argument n having any value other than 1.
- Another common problem is to include within a recursive function a recursive call to solve a subproblem that is not smaller.

Excessive space requirements

- Python needs to keep track of each recursive call to implement the function abstraction as expected.
- If a function calls itself recursively an excessive number of times before returning, the space required by Python for this task may be prohibitive.

```
def H(n):
    if n == 0:
        return 0.0
    return H(n-1) + 1.0/n
```

- This recursive function correctly computes the nth harmonic number.
- However, we cannot use it for large n because the recursive depth is proportional to n, and this creates a StackOverflowError.

Excessive recomputation

- A simple recursive program might require exponential time (unnecessarily), due to excessive recomputation.
- For example, fib is called on the same argument multiple time

Recursive Graphics

- Simple recursive drawing schemes can lead to pictures that are remarkably intricate - Fractals
- For example, an H-tree of order n is defined as follows:
- The base case is null for $n=0$.
- The reduction step is to draw, within the unit square three lines in the shape of the letter H four H -trees of order $\mathrm{n}-1$.
- One connected to each tip of the H with the additional provisos that the H -trees of order $n-1$ are centered in the four quadrants of the square, halved in size.

More recursive graphics

- Sierpinski triangles

- Recursive trees

