
C	for	Python	Programmers

BBM	101	- Introduction	 to	Programming	 I

Hacettepe University	
Fall	2015

Fuat	Akal,	Aykut	Erdem,	Erkut Erdem,	Vahid Garousi

1Slides	 based	on	the	material	prepared	by	Carl	Burch	(Hendrix	College)	with	modifications	 by	Elizabeth	Patitsas (U	Toronto)

Creating	computer	programs

• Each	programming	language	provides	a	set	of	
primitive	operations	

• Each	programming	language	provides	mechanisms	
for	combining	primitives	to	form	more	complex,	but	
legal,	expressions	

• Each	programming	language	provides	mechanisms	
for	deducing	meanings	or	values	associated	with	
computations	or	expressions	

Slide	credit:	E.	Grimson,	 J.	Guttag and	C.	Terman

Recall	our	goal

• Learn	the	syntax	and	semantics	of	a	programming
language

• Learn	how	to	use	those	elements	to	translate	
“recipes”	for	solving	a	problem	into	a	form that	the	
computer	can	use	to	do the	work	for	us

• Computational	modes	of	thought	enable	us	to	use	a	
suite	of	methods	to	solve	problems

Slide	credit:	E.	Grimson,	 J.	Guttag and	C.	Terman

Today

• Overview	of	Programming	languages	(PLs)
– Dimensions	of	a	PL
– Programming	paradigms

• How	Python	&	C	are	similar
• How	Python	&	C	are	different
– C	fundamentals
– C	Examples

4

Today

• Overview	of	Programming	languages	(PLs)
– Dimensions	of	a	PL
– Programming	paradigms

• How	Python	&	C	are	similar
• How	Python	&	C	are	different
– C	fundamentals
– C	Examples

5

Dimensions	of	a	Programming	Language
• Low-level	vs.	High-level
– Distinction	according	to	the	level	of	abstraction
– In	low-level	programming	languages	(e.g.	Assembly),	the	set	
of	instructions	used	in	computations	are	very	simple	(nearly	
at	machine	level)

– A	high-level	programming	language	(e.g.	C,	Java)	has	a	much	
richer	and	more	complex	set	of	primitives.

Dimensions	of	a	Programming	Language
• General	vs.	Targeted
– Distinction	according	to	the	range	of	applications
– In	a	general	programming	language,	the	set	of	primitives	
support	a	broad	range	of	applications.

– A	targeted	programming	language aims	at	a	very	specific	set	
of	applications.
• e.g.,	MATLAB	(matrix	laboratory)	is	a	programming	language	
specifically	designed	for	numerical	computing	(matrix	and	vector	
operations)

Dimensions	of	a	Programming	Language
• Interpreted	vs.	Compiled
– Distinction	according	to	how	the	source	code	is	executed
– In	interpreted	languages	(e.g.	Python),	the	source	code	is	
executed	directly	at	runtime	(by	the	interpreter).
• Interpreter	control	the	the	flow	of	the	program	by	going	through	
each	one	of	the	instructions.

– In	compiled	languages	(e.g.	C),	the	source	code	first	needs	
to	be	translated	to	an	object	code	(by	the	compiler)	before	
the	execution.

– More	later	today!

Programming	Language	Paradigms
• Functional

• Treats	computation	as	the	evaluation	of	mathematical	functions	
(e.g.	Lisp,	Scheme,	Haskell,	etc.)

• Imperative
• describes	computation	in	terms	of	statements	that	change	a	program	
state	(e.g.	FORTRAN,	BASIC,	Pascal,	C,	etc.)

• Logical	(declarative)
• expresses	the	logic	of	a	computation	without	describing	its	control	flow	
(e.g.	Prolog)

• Object	oriented
• uses	"objects"	– data	structures	consisting	of	data	fields	and	methods	
together	with	their	interactions	– to	design	applications	and	computer	
programs	(e.g.	C++,	Java,	C#,	Python,	etc.)

C	(1973)

• Developed	by	Ken	Thompson	and	Dennis	Ritchie	at			
AT&T	Bell	Labs	for	use	on	the	UNIX	operating	system.		
– now	used	on	practically	every	operating	system	
– popular	language	for	writing	system	software		

• Features:		
– An	extremely	simple	core	language,	with	non-essential			

functionality	provided	by	a	standardized	set	of	library	routines.			
– Low-level	access	to	computer	memory	via	the	use	of	pointers.			

• C	ancestors:	C++,	C#,	Java	

10
Slide	credit:	Thomas	J.	Cortina

The	Strange	Birth	and	Long	Life	of	Unix

• http://spectrum.ieee.org/computing/software/the-
strange-birth-and-long-life-of-unix

Photo:	Alcatel-Lucent

Python

• Created	by	Guido	van	Rossum in	the	late	1980s
• Allows	programming	in	multiple	paradigms:	object-
oriented,	structured,	functional

• Uses	dynamic	typing	and	garbage	collection

Slide	credit:	Thomas	J.	Cortina

Today

• Overview	of	Programming	languages	(PLs)
– Dimensions	of	a	PL
– Programming	paradigms

• How	Python	&	C	are	similar
• How	Python	&	C	are	different
– C	fundamentals
– C	Examples

13

Building	a	simple	program	in	C	
(as	compared	to	Python)

• Compilers	versus	interpreters
• Variable	declarations
• Whitespace
• The printf() function
• Functions

14

Compilers	versus	interpreters

• One	major	difference	between	C	and	Python	is	how	the	
programs	written	in	these	two	languages are	executed.

• With	C	programs,	you	usually	use	a compiler when	you	
are	ready	to	see	a	C	program	execute.

• By	contrast,	with	Python,	you	typically	use	an interpreter.

15

Compilers	versus	interpreters

• An interpreter reads	the	user-written	program	and	
performs	it	directly.	

• A compiler generates	a	file	containing	the	translation	
of	the	program	into	the	machine's	native	code.
– The	compiler	does	not	actually	execute	the	program!
– Instead,	you	first	execute	the	compiler	to	create	a	native	
executable,	and	then	you	execute	the	generated	executable.

16

The	Programming	Process	in	C

• After	creating	a	C	program,	executing	it	is	a	two	step	
process:

me@computer:~$ gcc my_program.c
me@computer:~$./a.out

17

The	Programming	Process	in	C

me@computer:~$ gcc my_program.c
me@computer:~$./a.out

• invokes	the	compiler,	named gcc.
• The	compiler	reads	the	source	file my_program.c
containing	the	C	codes

• It	generates	a	new	file	named a.out containing	a	
translation	of	this	code	into	the	binary	code	used	by	
the	machine.

18

Compilers	versus	interpreters

me@computer:~$ gcc my_program.c
me@computer:~$./a.out

• tells	the	computer	to	execute	this	binary	code.
• As	it	is	executing	the	program,	the	computer	has	no	idea	
that a.outwas	just	created	from	some	C	program.

19

The	Programming	Process	in	C

Create/Edit	
Program Compile Execute

“The	cycle	ends	once	the	programmer	is	satisfied	with	the	
program,	e.g.,	performance	and	correctness-wise.”

Compilers	versus	interpreters

• An interpreter reads	the	user-written	program	and	
performs	it	directly.	

• A compiler generates	a	file	containing	the	translation	
of	the	program	into	the	machine's	native	code.

• Being	compiled	has	some	radical	implications	to	
language	design.	

• C	is	designed	so	the	compiler	can	tell	everything	it	
needs	to	know	to	translate	the	C	program	without	
actually	executing	the	program.

21

Variable	declarations

• C	requires variable	declarations,	 informing	the	compiler	
about	the	variable	before	the	variable	is	actually	used.

• In	C,	the	variable	declaration	defines	the	variable's type.
• No	such	thing	in	Python!

22

Declaring	a	Variable

• Declaring	a	variable	is	simple	enough.
• You	enter	the	variable's	type,	some	whitespace,	

the	variable's	name,	and	a	semicolon:

double x;

• Value	assignment	is	similar	to	Python:

x=3;
• x will	actually	hold	the	floating-point	value	3.0	rather	than	the	

integer	3.
• However,	once	you	declare	a	variable	to	be	of	a	particular	

type,	you	cannot	change	its	type!

23

Declaring	a	Variable

• In	C,	variable	declarations	belong	at	the	top	of	the	
function	in	which	they	are	used.

• If	you	forget	to	declare	a	variable,	the	compiler	will	
refuse	to	compile	the	program:
– A variable	is	used	but	is	not	declared.	

• To	a	Python	programmer,	it	seems	a	pain	to	have	to	
include	these	variable	declarations	in	a	program,	though	
this	gets	easier	with	more	practice.

24

Whitespace

• In	Python,	whitespace	characters	like	tabs	and	newlines	
are	important:	
– You	separate	your	statements	by	placing	them	on	separate	
lines,	and	you	indicate	the	extent	of	a	block	using	
indentation.

– like	the	body	of	a while or if	statement

• C	does	not	use	whitespace	except	for	separating	words.	
• Most	statements	are	terminated	with	a	semicolon	';',	and	

blocks	of	statements	are	indicated	using	a	set	of	braces,	'{'	
and	'}'.

25

Whitespace
C	fragment
disc = b * b - 4 * a * c;
if (disc < 0)
{

num_sol = 0;
}
else
{

t0 = -b / a;
if (disc == 0)
{

num_sol = 1;
sol0 = t0 / 2;

}
else
{

num_sol = 2;
t1 = sqrt(disc) / a;
sol0 = (t0 + t1) / 2;
sol1 = (t0 - t1) / 2;

}
}

Python	equivalent
disc = b * b - 4 * a * c
if disc < 0:

num_sol = 0
else:

t0 = -b / a
if disc == 0:

num_sol = 1
sol0 = t0 / 2

else:
num_sol = 2
t1 = disc ** 0.5 / a
sol0 = (t0 + t1) / 2
sol1 = (t0 - t1) / 2

26

Whitespace
• As	said,	whitespace	is	insignificant	in	C.
• The	computer	would	be	just	as	happy	if	the	previous	code	

fragment	is	written	as	follows:

disc=b*b-4*a*c;if(disc<0){
num_sol=0;}else{t0=-b/a;if(
disc==0){num_sol=1;sol0=t0/2
;}else{num_sol=2;t1=sqrt(disc/a;
sol0=(t0+t1)/2;sol1=(t0-t1)/2;}}

• However,	do	not	write	your	programs	like	this!

27

The	printf()function

• In	Python,	displaying	results	for	the	user	is	
accomplished	by	using print.

• In	C,	instead	you	use	the printf()function	which	is	
provided	by	the	C's	standard	library.

• The	way	the	parameters	to printf()work	 is	
a	bit	complicated	but	also	quite	convenient.

28

The	printf()function

• The	first	parameter	is	a	string	specifying	the	format	of	what	to	
print,	and	the	following	parameters	indicate	the	values	to	print.

• Consider	the	following	example:
printf("# solns: %d\n", num_sol);

• “# solns: %d\n” is	the	format	string,	num_sol is	the	
value	to	be	printed.	

• The	percent	character	is	special	to printf().
– It	says	to	print	a	value	specified	in	a	subsequent	parameter.
– %d for	integers/decimals

• If	the	value	stored	in	num_sol is	2,	the	output	is:
solns: 2

29

The	printf()function

• Like	Python,	C	allows	you	to	include	escape	
characters	in	a	string	using	a	backslash:
– The	“\n”	sequence	represents	the	newline	character,	
– The	“\t”	sequence	represents	the	tab	character,	
– “\"”	sequence represents	the	double-quote	character,	
– “\\”	sequence	represents	the	backslash	character.	

• These	escape	characters	are	part	of	C	syntax,	not	
part	of	the	printf() function.

30

The	printf()function

• Let's	look	at	another	example.
printf("# of solns: %d\n", num_sol);
printf("solns: %f, %f", sol0, sol1);

• Let's	assumenum_sol holds	2, sol0 holds	4,	andsol1 holds	
1.	

• When	the	computer	reaches	these	two	printf() function	calls,	
it	executes	them	sequentially.	

• The	output	is:	
of solns: 2

solns: 4.0, 1.0

31

The	printf()function

• There's	a	variety	of	characters	that	can	follow	the	percent	
character	in	the	formatting	string.
– %d,	as	we've	already	seen,	says	to	print	an int value	in	decimal	

form.
– %f says	to	print	a double value	in	decimal-point	form.
– %e says	to	print	a double value	in	scientific	notation	(for	

example,3.000000e8).
– %c says	to	print	a char value.
– %s says	to	print	a	string.	

• There's	no	variable	type	for	representing	a	string,	but	C	does	
support	some	string	facilities	using	arrays	of	characters.

32

Functions
• Unlike	Python,	all	C	code	must	be	nested	within	functions,	

and	functions	cannot	be	nested	within	each	other.	
• A	C	program's	overall	structure	is	typically	very	

straightforward.
• It	is	a	list	of	function	definitions,	one	after	another,	each	

containing	a	list	of	statements	to	be	executed	when	the	
function	is	called.

33

Functions
• A	C	function	is	defined	by	naming	the	return	type,	followed	by	the	function	

name,	followed	by	a	set	of	parentheses	listing	the	parameters.
• Each	parameter	is	described	by	including	the	type	of	the	parameter	and	the	

parameter	name.	
• Here's a	simple	example of a	function definition:

float expon(float b, int e)
{

if (e == 0)
{

return 1.0;
}
else
{

return b * expon(b, e - 1);
}

}

34

This	is a	function named
expon,	which takes two
arguments,	 first a	floating point
number and next an	integer,	
and returns a	floating point
number.

Functions

• If	you	have	a	function	that	does	not	have	any	useful	
return	value,	then	you'd	use void as	the	return	type.

• Programs	have	one	special	function	named main,	whose	
return	type	is	an	integer.	

• This	function	is	the	“starting	point”	for	the	program:	
– The	computer	essentially	calls	the	program's main function	
when	it	wants	to	execute	the	program.	

– The	integer	return	value	is	largely	meaningless;	we'll	
always	return	0	rather	than	worrying	about	how	the	return	
value	might	be	used.

35

Functions
C	program
int gcd(int a, int b)
{
if (b == 0)
{

return a;
}
else
{

return gcd(b, a % b);
}

}

int main()
{
printf("GCD: %d\n“, gcd(24,40));
return 0;

}

Python	program
def gcd(a, b):
if b == 0:

return a
else:

return gcd(b, a % b)

print("GCD: " + str(gcd(24, 40)))

36

Statement-level	constructs

• Operators
• Basic	types
• Braces
• Statements
• Arrays
• Comments

37

Operators	in	C
Major	operators	in	C	and	Python

• They	look	similar	but	there	are	some	significant	
differences 38

C	operator	precedence Python	operator	precedence
++ -- (postfix) **
+ - ! (unary) + - (unary)
* / % * / % //
+ - (binary) + - (binary)
< > <= >= < > <= >= == !=
== != not
&& and
|| or
= += -= *= /= %=

Operators	in	C	–
Important	Distinctions

39

• C	does	not	have	an	exponentiation	operator	like	Python's	
**	operator.	For	exponentiation	in	C,	you'd	want	to	use	
the	library	function	pow().	For	example,	
pow(1.1, 2.0) computes	1.1².

• C	uses	symbols	rather	than	words	for	the	Boolean	
operations	AND	(&&),	OR	(||),	and	NOT	(!).

• The	precedence	level	of	NOT	(the	! operator)	is	very	high	
in	C.	This	is	almost	never	desired,	so	you	end	up	needing	
parentheses	most	times	you	want	to	use	the	! operator.

Operators	in	C	–
Important	Distinctions

• C	defines	assignment	as	an	operator,	whereas	Python	
defines	assignment	as	a	statement.	

• The	value	of	the	assignment	operator	is	the	value	assigned.
• A	consequence	of	C's	design	is	that	an	assignment	can	

legally	be	part	of	another	statement.
• Example:

– The	value	returned	by	getchar() is	assigned	to	the	variable	a,
– The	value	assigned	to	a is	tested	whether	it	matches	the	EOF

constant	
– It	is	used	to	decide	whether	to	repeat	the	loop	again.

40

while ((a = getchar()) != EOF)

Operators	in	C	–
Important	Distinctions

• C	defines	assignment	as	an	operator,	whereas	Python	
defines	assignment	as	a	statement.	

• The	value	of	the	assignment	operator	is	the	value	assigned.
• A	consequence	of	C's	design	is	that	an	assignment	can	

legally	be	part	of	another	statement.
• Example:

– The	value	returned	by	getchar() is	assigned	to	the	variable	a,
– The	value	assigned	to	a is	tested	whether	it	matches	the	EOF

constant	
– It	is	used	to	decide	whether	to	repeat	the	loop	again.

41

while ((a = getchar()) != EOF)

Operators	in	C	–
Important	Distinctions

• C's	operators	++ and	-- are	for	incrementing	and	
decrementing	a	variable.	Thus,	the	statement	“i++”	is	a	
shorter	form	of	the	statement	“i = i + 1”	(or	“i +=
1”).”

• C's	division	operator	/ does	integer	division	if	both	sides	of	
the	operator	have	an	int type;	that	is,	any	remainder	is	
ignored	with	such	a	division.	
– Thus,	in	C	the	expression	“13/5”	evaluates	to	2,	while	
“13/5.0”	 is	2.6:	The	first	has	integer	values	on	each	side,	
while	the	second	has	a	floating-point	number	on	the	right.

42

Basic	types	in	C

• C's	list	of	basic	types	is	quite	constrained.
int for	an	integer
char for	a	single	character
float for	a	single-precision	floating-point	number
double for	a	double-precision	floating-point	number

• Data	Type	Modifiers
– signed /	unsigned
– short /	long

43

int

• 4	bytes	(on	Unix)		
• Base-2	representation.		
• need	one	bit	for	+	or	-
• Range:	-231 to	231

• Variants:	short (2	bytes),	long (8	bytes),	unsigned
(only	non-negative)

Slide	credit:	Bert	Huang	

char

• 1	byte
• ASCII	representation	in	base-2		
• Range:	0-255	(lots	of	unused)

Slide	credit:	Bert	Huang	

float

• Stands	for	“floating	decimal	point”		
• 4	bytes		
• Similar	to	scientific	notation:	4.288	*	103

• Very	different	interpretation	of	bits	than	int and	char.		
• Range:	-1038 to	1038

Slide	credit:	Bert	Huang	

No	Boolean	type	for	representing	
true/false

• This	has	major	implications	for	a	statement	like	if,	where	
you	need	a	test	to	determine	whether	to	execute	the	
body.	C's	approach	is	to	treat	the	integer	0	as	false and	
all	other	integer	values	as	true.

• Example

47

int main() {
int i = 5;
if (i) {

printf("in if\n");
}
else {

printf("in else\n");
}
return 0;

}

prints	“in if”	when	
executed	since	the	
value	of	(i) is	5	
which	is	not	0

No	Boolean	type	in	C!

• C's	operators	that	look	like	they	should	compute	Boolean	
values	(like ==,	&&,	and	||)	actually	compute	int values	
instead.

• In	particular,	they	compute	1	to	represent	true and	0	to	
represent	false.	

• This	means	that	you	could	legitimately	type	the	following	
to	count	how	many	of	a,	b,	and	c	are	positive.

48

pos = (a > 0) + (b > 0) + (c > 0);

No	Boolean	type	in	C!

• C's	operators	that	look	like	they	should	compute	Boolean	
values	(like ==,	&&,	and	||)	actually	compute	int values	
instead.

• In	particular,	they	compute	1	to	represent	true and	0	to	
represent	false.	

• This	means	that	you	could	legitimately	type	the	following	
to	count	how	many	of	a,	b,	and	c	are	positive.

49

pos = (a > 0) + (b > 0) + (c > 0);

Basic	Data	Types
Type Size	in	Bytes Range
signed char 1 -127	to	+127
unsigned char 1 0	to	255
short int 2 -32,767	to	+32,767
unsigned short int 2 0	to	65535
int 4 -32,767	to	+32,767
unsigned int 4 0	to	65,535
long int 8 -2,147,483,647	to	+2,147,483,647
unsigned long int 8 0	to	4,294,967,295
float 4 ~10-37 to	~1038

double 8 ~10-307 to	~10308

long double 16 ~10-4931 to	~104932

Braces

• Several	statements,	like	the	if statement,	include	a	body	
that	can	hold	multiple	statements.	

• Typically	the	body	is	surrounded	by	braces	('{'	and	'}')	to	
indicate	its	extent.	But	when	the	body	holds	only	a	single	
statement,	the	braces	are	optional.

• Example:

51

if (first > second)
max = first;

else
max = second;

Braces

• C	programmers	use	this	quite	often	when	they	want	one	
of	several	if tests	to	be	executed.	

• Example:

52

disc = b * b - 4 * a * c;
if (disc < 0) {

num_sol = 0;
}
else {

if (disc == 0) {
num_sol = 1;

}
else {

num_sol = 2;
}

}

Notice	that	the	
else clause	here	
holds	just	one	
statement	(an	
if…else
statement),	so	we	
can	omit	the	
braces	around	it.

Braces

• C	programmers	use	this	quite	often	when	they	want	one	
of	several	if tests	to	be	executed.	

• Example:

53

disc = b * b - 4 * a * c;
if (disc < 0) {

num_sol = 0;
}
else

if (disc == 0) {
num_sol = 1;

}
else {

num_sol = 2;
}

But	this	situation	
arises	often	enough	
that	C	programmers	
follow	a	special	rule	
for	indenting	in	this	
case	— a	rule	that	
allows	all	cases	to	be	
written	at	the	same	
level	of	indentation.

Braces

• C	programmers	use	this	quite	often	when	they	want	one	
of	several	if tests	to	be	executed.	

• Example:

54

disc = b * b - 4 * a * c;
if (disc < 0) {

num_sol = 0;
}
else if (disc == 0) {

num_sol = 1;
}
else {

num_sol = 2;
}

Braces

• C	programmers	use	this	quite	often	when	they	want	one	
of	several	if tests	to	be	executed.	

• Example:

55

disc = b * b - 4 * a * c;
if (disc < 0) {

num_sol = 0;
}
else if (disc == 0) {

num_sol = 1;
}
else {

num_sol = 2;
}

Statements

1. Variable declarations
– No	parallel in	Python!
– Example:

56

int x;

Statements

2. An	expression	as	a	statement
Two	forms:
– An	operator	that	changes	a	variable's	value,	like	the	
assignment	operator	(“x = 3;”),	the	addition	assignment	
operator	+=,	or	the	the	increment	operator	++.	
• Example:

– A	function	call,	like	a	statement	that	simply	calls	
the	printf() function.
• Example:

57

x = y + z;

printf("%d", x);

Statements
3. An if statement
–Works	very	similarly	to	Python's	if statement
– The	only	major	difference	is	the	syntax:
• In	C,	an	if statement's	condition	must	be	enclosed	in	
parentheses,	there	is	no	colon	following	the	condition,	and	
the	body	has	a	set	
of	braces	enclosing	it.
• As	we've	already	seen,	C	does	not	have	an	elif clause	as	in	
Python;	instead,	C	programmers	use	the	optional-brace	rule	
and	write	“else if”.

– Example:
58if (x < 0) { printf("negative"); }

Statements

4. A	return statement
– You	can	have	a	return statement	to	exit	a	function	
with	a	given	return	value.	

– Or	for	a	function	with	no	return	value	(and	a	void
return	type),	you	would	write	simply	“return;”.

– Example:

59

return 0;

Statements

5. A	while statement
– The	while statement	works	identically	to	
Python's,	although	the	syntax	is	different	in	the	
same	way	that	the	if syntax	is	different.

– Example:

60

while (i >= 0)
{

printf("%d\n", i);
i--;

}

Statements

6. A	for	statement
– While	Python	also	has	a	for statement,	its	purpose	
and	its	syntax	bear	scant	similarity	to	C's	for
statement

– Syntax:
for (init; test; update)

body;

• The	program	will	keep	executing	the	body	inside	the	for as	
long	as	the	condition	is	true	(non	zero)

• The	init is	tested	beforeeach	iteration	of	the	loop.	The	loop	
terminates	when	the	condition	is	false.	

• The	loop	is	controlled	by	a	variable	which	is	initialized		and	
modified	by	the	init and	update	(e.g.	increment	operation)	
expressions,	respectively. 61

Statements

6. A	for	statement	(cont’d.)
– Example	1:

– Example	2:

62

for (p = 1; p <= 512; p *= 2)
{

printf("%d\n", p);
}

for (i = 0; i < n; i++)
{
body

}

for loops	are	mostly	
used	for	counting	out	n
iterations

Notice	how	the	update	
portion	of	the	for
statement	has	changed	
to	“p *= 2”.

Arrays

• Python	supports	many	types	that	combine	the	basic	atomic	
types	into	a	group:	tuples,	lists,	strings,	dictionaries,	sets.

• C's	support	is	much	more	rudimentary:	The	only composite	
type	is	the	array
– Similar	to	Python's	list	except	that	an	array	in	C	cannot	grow	or	

shrink	— its	size	is	fixed	at	the	time	of	creation.
• Example:

• Another	way	to	make	an	array,	if	you	know	all	the	elements	
upfront,	is:

63

double pops[50];
pops[0] = 897934;
pops[1] = pops[0] + 11804445;

char vowels[6]	=	{'a',	'e',	'i',	'o',	'u',	'y'};

Arrays
• C	does	not	have	an	support	for	accessing	the	length	of	
an	array	once	it	is	created;	that	is,	there	is	nothing	
analogous	to	Python's	len(pops)

• What	happens	if	you	access	an	array	index	outside	the	
array,	like	accessing	pops[50]or	pops[-100]?	
– With	Python,	this	will	terminate	the	program	with	a	
friendly	message	pointing	to	the	line	at	fault	and	saying	
that	the	program	went	beyond	the	array	bounds.	

– C	is	not	nearly	so	friendly.	When	you	access	beyond	an	
array	bounds,	it	blindly	does	it.

64

Arrays
• Example:

• Some	systems	(including	some	Linux	distributions)	would	place	i
in	memory	just	after	the	vals array.	

• When	i reaches	5	and	the	computer	executes	“vals[i] = 0”,
it	in	fact	resets	the	memory	corresponding	to	i to	0.	
– The	for loop	has	reset,	and	the	program	goes	through	the	loop	again,	and	

again,	repeatedly.	
– The	program	never	reaches	the	printf function	call,	and	the	program	never	

terminates.
65

int main() {
int i;
int vals[5];

for (i = 0; i <= 5; i++) {
vals[i] = 0;

}
printf("%d\n", i);
return 0;

}

Arrays
• Example:

• Some	systems	(including	some	Linux	distributions)	would	place	i
in	memory	just	after	the	vals array.	

• When	i reaches	5	and	the	computer	executes	“vals[i] = 0”,
it	in	fact	resets	the	memory	corresponding	to	i to	0.	
– The	for loop	has	reset,	and	the	program	goes	through	the	loop	again,	and	

again,	repeatedly.	
– The	program	never	reaches	the	printf function	call,	and	the	program	never	

terminates.
66

int main() {
int i;
int vals[5];

for (i = 0; i <= 5; i++) {
vals[i] = 0;

}
printf("%d\n", i);
return 0;

}

Comments

• In	C's	original	design,	all	comments	begin	with	a	slash	
followed	by	an	asterisk	(“/*”)	and	end	with	an	asterisk	
followed	by	a	slash	(“*/”).	

• The	comment	can	span	multiple	lines.
• Example:

67

/* gcd - returns the greatest common
* divisor of its two parameters */
int gcd(int a, int b) {

...

Comments

• C++	introduced	a	single-line	comment	that	has	proven	so	
handy	that	most	of	today's	C	compilers	also	support	it.	

• It	starts	with	two	slash	characters	(“//”)	and	goes	to	the	
end	of	the	line.

• Example:

68

int gcd(int a, int b) {
if (b == 0) {
return a;

}
else {
// recurse if b != 0
return gcd(b, a % b);

}
}

Libraries

• Separating	a	program	into	various	files
– Function	prototypes
– Header	files
– Constants

69

Function	prototypes

• In	C,	a	function	must	be	declared	above	the	location	
where	you	use	it.

• The	compiler	would	complain	if	a	function	is	called	
before	defining	it.

• The	reason	is	C	assumes	that	a	compiler	reads	a	
program	from	the	top	to	bottom.

• One	way	to	get	around	this,	is	to	use	function	
prototyping,	writing	the	function	header	but	
omitting	the	body	definition.

70

Function	prototypes
• Consider	the	following	example:

int gcd(int a, int b);

int main()
{

printf("GCD: %d\n", gcd(24, 40));
return 0;

}

• By	using function prototypes,	we are	declaring that the function will
eventually be defined,	but	we are	not	defining it yet.	

• The compiler accepts this and	obediently compiles the program	
with no	complaints.

71

Line	for the function prototype

Header	files

• Larger	programs	spanning	several	files	frequently	
contain	many	functions	that	are	used	many	times	in	
many	different	files.	

• It	would	be	painful	to	repeat	every	function	prototype	
in	every	file	that	happens	to	use	the	function.	

• So	we	instead	create	a	file	called	a header	file.

72

Header	files

• A	header	file	contains	each	prototype	written	just	once	
(and	possibly	some	additional	shared	information).

• The	header	files	can	then	be	referred	to	in	each	source	
file	that	wants	the	prototypes.	

• The	file	of	prototypes	is	called	a	header	file,	since	it	
contains	the	“heads”	of	several	functions.	

• Conventionally,	header	files	use	the .h prefix,	rather	
than	the .c prefix	used	for	C	source	files.

73

Header	files
• Consider	that	the	prototype	int gcd(int a,int b) is	put	

into	a	header	file	called mathfun.h.
• We	can	incorporate	this	header	file	at	the	top	of	main.c.

#include <stdio.h>
#include "mathfun.h"

int main() {
printf("GCD: %d\n", gcd(24, 40));
return 0;

}

• The	#include directive	tells	the	preprocessor	to	replace	
this line	with	the	contents	of	the	file	specified.
– The	angle	brackets	are	for	standard	header	files	such	as	stdio.h.	
– The	quotation	marks	are	for	custom-written	header	files	that	can	be	

found	in	the	same	directory	as	the	source	files. 74

Constants

• #define directive	tells	the	preprocessor	to	substitute	
all	future	occurrences	of	some	word	with	something	else.

• Example:

– The	preprocessors	automatically	translate	the	above	
expression	into:

75

#define PI 3.14159
printf("area: %f\n", PI * r * r);

printf("area: %f\n", 3.14159 * r * r);

