1. Python is Like a Calculator

You Type Expressions. Python Computes Their Values.

- 5
- 3+4
- 44/2
- 2**3
- 3*4+5*6
 - If precedence is unclear, use parentheses
- \((72 - 32) / 9 * 5 \)
An Expression is Evaluated From the Inside Out

• How many expressions are in this Python code?

\[
\frac{(72 - 32)}{9.0 * 5} \quad \frac{(72 - 32)}{9.0 * 5} \quad \frac{(40)}{9.0 * 5} \quad \frac{40}{9.0 * 5} \quad 4.44 * 5 \quad 22.2
\]

2. A Variable is a Container

Variables Hold Values

• Recall variables from algebra:
 – Let \(x = 2 \) ...
 – Let \(y = x \) ...

• To assign a variable, use “\texttt{varname} = \texttt{expression}”

\[
\texttt{pi} = 3.14
\texttt{var} = 6*10**23
\]

\[
\texttt{22} = \texttt{x} \quad \# \text{ Error!}
\]

• Not all variable names are permitted
Changing Existing Variables ("re-binding" or "re-assigning")

x = 2
x
y = 2
y
x = 5
x
y

• "=" in an assignment is not a promise of eternal equality
 – This is different than the mathematical meaning of "=

• Evaluating an expression gives a new (copy of a) number, rather than changing an existing one

More Expressions: Conditionals (value is True or False)

22 > 4 # condition, or conditional
22 < 4 # condition, or conditional
22 == 4 ...
x == 100 # Assignment, not conditional!
22 == 4 # Error!
x >= 5
x >= 100
x >= 200
not True
not (x >= 200)
3<4 and 5<6
4<3 or 5<6
temp = 72
water_is_liquid = (temp > 32 and temp < 212)

Numeric operators: +, *, **
Boolean operators: not, and, or
Mixed operators: <, >, ==

More Expressions: strings

• A string represents text
 – 'Python'
 – myString = "BHM 101-Introduction to Programming"
 – ""

• Empty string is not the same as an unbound variable
 – "" and "" are the same

Operations:

• Length:
 – len(myString)

• Concatenation:
 – "Hacettepe" + " " + 'University'

• Containment/searching:
 – 'a' in myString
 – "a" in myString

How an Assignment is Executed

1. Evaluate the right-hand side to a value
2. Store that value in the variable

```
x = 2
print(x)
y = x
print(y)
z = x + 1
print(z)
x = 5
print(x)
print(y)
print(z)
```

State of the computer:

```
x: 2
y: 2
z: 3
```

Printed output:

```
2
2
3
```

To visualize a program's execution:
http://pythontutor.com
3. Different Types cannot be Compared

```python
anInt = 2
aString = "Hacettepe"
anInt == aString  # Error
```

Types of Values

- **Integers** (`int`): -22, 0, 44
 - Arithmetic is **exact**
 - Some funny representations: 12345678901L
- **Real numbers** (`float`, for “floating point”): 2.718, 3.1415
 - Arithmetic is **approximate**, e.g., 6.022*10**23
 - Some funny representations: 6.022e+23
- **Strings** (`str`): "I love Python",
- **Truth values** (`bool`, for “Boolean”): True, False

Operations Behave differently on Different Types

- `3.0 + 4.0`
- `3 + 4`
- `3 + 4.0`
- "3" + "4" # Concatenation
- `3 + "4"` # Error
- `3 + True` # Error

Moral: Python only *sometimes* tells you when you do something that does not make sense.

Operations on Different Types

<table>
<thead>
<tr>
<th></th>
<th>Python 3.5</th>
<th>Python 2.x</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>15.0 / 4.0</code></td>
<td>3.75</td>
<td>3.75</td>
</tr>
<tr>
<td><code>15 / 4</code></td>
<td>3.75</td>
<td>3</td>
</tr>
<tr>
<td><code>15.0 / 4</code></td>
<td>3.75</td>
<td>3.75</td>
</tr>
<tr>
<td><code>15 / 4.0</code></td>
<td>3.75</td>
<td>3.75</td>
</tr>
<tr>
<td><code>15.0 // 4.0</code></td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td><code>15 // 4</code></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td><code>15.0 // 4</code></td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td><code>15 // 4.0</code></td>
<td>3.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Before Python version 3.5, operand used to determine the type of division.

/ : Division
//: Integer Division
Type Conversion

- `float(15)` 15.0
- `int(15.0)` 15
- `int(15.5)` 15
- `int("15")` 15
- `str(15.5)` 15.5
- `float(15) / 4` 3.75

Design the Algorithm Before Coding

- We should think (design the algorithm) before coding
- Algorithmic thinking is the logic. Also, called problem solving
- Coding is the syntax
- Make this a habit
- Some students do not follow this practice and they get challenged in all their courses and careers!

A Program is a Recipe

![Image of a recipe chart]

What is a Program?

- A program is a sequence of instructions
- The computer executes one after the other, as if they had been typed to the interpreter
- Saving your work as a program is better than re-typing from scratch

```python
x = 1
y = 2
x + y
print(x + y)
print("The sum of", x, "and", y, "is", x+y)
```
The print() Statement

• The print statement always prints one line
 – The next print statement prints below that one

• Write 0 or more expressions after print, separated by commas
 – In the output, the values are separated by spaces

• Examples:
 x = 1
 y = 2
 print(3.1415)
 print(2.718, 1.618)
 print()
 print(20 + 2, 7 * 3, 4 * 5)
 print("The sum of", x, "and", y, "is", x+y)

Exercise: Convert Temperatures

• Make a temperature conversion chart as the following

• Fahrenheit to Centigrade, for Fahrenheit values of: -40, 0, 32, 68, 98.6, 212
 C = (F - 32) × 5/9

• Output:
 Fahrenheit Centigrade
 -40 -40.0
 0 -17.7778
 32 0.0
 68 20.0
 98.6 37.0
 212 100.0

• You have created a Python program!
 • (It doesn’t have to be this tedious, and it won’t be.)

Expressions, Statements, and Programs

• An expression evaluates to a value
 3 + 4
 pi * r**2

• A statement causes an effect
 pi = 3.14159
 print(pi)

• Expressions appear within other expressions and within statements
 (fahr - 32) * (5.0 / 9)
 print(pi * r**2)

• A statement may not appear within an expression
 3 + print(pi) # Error!

• A program is made up of statements
 – A program should do something or communicate information

print() Function

Run main
C:\Python34\python.exe C:/Users/Varid/Sources/PycharmProjects/untitled/main.py6
abcabcabc
True
False
None
1. Python is a calculator
2. A variable is a container
3. Different types cannot be compared
4. A program is a recipe

Programming Languages

- A programming language is a “language” to write programs in, such as Python, C, C++, Java
- The concept of programming languages are quite similar
- Python: `print("Hello, World!")`
- Java: `public static void main(String[] args) {
 System.out.println("Hello, World");
}
- Python is simpler! That’s why we are learning it first 😊

Evolution of Programming Languages

Most Popular Coding Languages of 2015

- Python 31.2%
- Java 19.6%
- C# 7.4%
- Ruby 7.1%
- Javascript 6.5%
- Ruby 3.6%