Algorithmic Speed

BBM 101 - Introduction to Programming I
Hacettepe University
Fall 2016
Fuat Akal, Aykut Erdem, Erkut Erdem

Measuring complexity

• Goals in designing programs
 1. It returns the correct answer on all legal inputs
 2. It performs the computation efficiently

• Typically (1) is most important, but sometimes (2) is also critical, e.g., programs for collision detection

• Even when (1) is most important, it is valuable to understand and optimize (2)

Computational complexity

• How much time will it take a program to run?
• How much memory will it need to run?

• Need to balance minimizing computational complexity with conceptual complexity
 – Keep code simple and easy to understand, but where possible optimize performance

How do we measure complexity?

• Given a function, would like to answer: “How long will this take to run?”
• Could just run on some input and time it.
• Problem is that this depends on:
 1. Speed of computer
 2. Specifics of Python implementation
 3. Value of input

• Avoid (1) and (2) by measuring time in terms of number of basic steps executed
Measuring basic steps

• Use a random access machine (RAM) as model of computation
 – Steps are executed sequentially
 – Step is an operation that takes constant time
 • Assignment
 • Comparison
 • Arithmetic operation
 • Accessing object in memory
• For point (3), measure time in terms of size of input

But complexity might depend on value of input?

def linearSearch(L, x):
 for e in L:
 if e==x:
 return True
 return False

• If x happens to be near front of L, then returns True almost immediately
• If x not in L, then code will have to examine all elements of L
• Need a general way of measuring

Cases for measuring complexity

• Best case: minimum running time over all possible inputs of a given size
 – For linearSearch – constant, i.e. independent of size of inputs
• Worst case: maximum running time over all possible inputs of a given size
 – For linearSearch – linear in size of list
• Average (or expected) case: average running time over all possible inputs of a given size
• We will focus on worst case – a kind of upper bound on running time

Example

def fact(n):
 answer = 1
 while n > 1:
 answer *= n
 n -= 1
 return answer

• Number of steps
 – 1 (for assignment)
 – 5*n (1 for test, plus 2 for first assignment, plus 2 for second assignment in while; repeated n times through while)
 – 1 (for return)
• 5*n+2steps
• But as n gets large, 2 is irrelevant, so basically 5*n steps
Example

• What about the multiplicative constant (5 in this case)?
• We argue that in general, multiplicative constants are not relevant when comparing algorithms

```
def sqrtExhaust(x, eps):
    step = eps**2
    ans = 0.0
    while abs(ans**2 - x) >= eps and ans <= max(x, 1):
        ans += step
    return ans
```

• If we call this on 100 and 0.0001, will take one billion iterations of the loop
 – Have roughly 9 steps within each iteration

```
def sqrtBi(x, eps):
    low = 0.0
    high = max(1, x)
    ans = (high + low)/2.0
    while abs(ans**2 - x) >= eps:
        if ans**2 < x:
            low = ans
        else:
            high = ans
        ans = (high + low)/2.0
    return ans
```

• If we call this on 100 and 0.0001, will take thirty iterations of the loop
 – Have roughly 10 steps within each iteration
• 1 billion or 9 billion versus 30 or 300 – it is size of problem that matters

Measuring complexity

• Given this difference in iterations through loop, multiplicative factor (number of steps within loop) probably irrelevant
• Thus, we will focus on measuring the complexity as a function of input size
 – Will focus on the largest factor in this expression
 – Will be mostly concerned with the worst case scenario
Asymptotic notation

• Need a formal way to talk about relationship between running time and size of inputs
• Mostly interested in what happens as size of inputs gets very large, i.e. approaches infinity

Example

```python
def f(x):
    for i in range(1000):
        ans = i
    for i in range(x):
        ans += 1
    for i in range(x):
        for j in range(x):
            ans += 1
```

Complexity is $1000 + 2x + 2x^2$, if each line takes one step

Example

• 1000+2x+2x²
• If x is small, constant term dominates
 – E.g., x = 10 then 1000 of 1220 steps are in first loop
• If x is large, quadratic term dominates
 – E.g. x = 1,000,000, then first loop takes 0.000000005% of time, second loop takes 0.0001% of time (out of 2,000,002,001,000 steps)!

Example

• So really only need to consider the nested loops (quadratic component)
• Does it matter that this part takes $2x^2$ steps, as opposed to say x^2 steps?
 – For our example, if our computer executes 100 million steps per second, difference is 5.5 hours versus 2.25 hours
 – On the other hand if we can find a linear algorithm, this would run in a fraction of a second
• So multiplicative factors probably not crucial, but order of growth is crucial
Rules of thumb for complexity

• Asymptotic complexity
 – Describe running time in terms of number of basic steps
 – If running time is sum of multiple terms, keep one with the largest growth rate
 – If remaining term is a product, drop any multiplicative constants
• Use “Big O” notation (aka Omicron)
 – Gives an upper bound on asymptotic growth of a function

Complexity classes

• $O(1)$ denotes constant running time
• $O(\log n)$ denotes logarithmic running time
• $O(n)$ denotes linear running time
• $O(n \log n)$ denotes log-linear running time
• $O(n^c)$ denotes polynomial running time (c is a constant)
• $O(c^n)$ denotes exponential running time (c is a constant being raised to a power based on size of input)

Constant complexity

• Complexity independent of inputs
• Very few interesting algorithms in this class, but can often have pieces that fit this class
• Can have loops or recursive calls, but number of iterations or calls independent of size of input

Logarithmic complexity

• Complexity grows as log of size of one of its inputs
• Example:
 – Bisecton search
 – Binary search of a list
Logarithmic complexity

```python
def intToStr(i):
    digits = '0123456789'
    if i == 0:
        return '0'
    result = ''
    while i > 0:
        result = digits[i%10] + result
        i = i//10
    return result
```

Logarithmic complexity

- Only have to look at loop as no function calls
- Within while loop constant number of steps
- How many times through loop?
 - How many times can one divide i by 10?
 - $O(\log(i))$

Linear complexity

- Searching a list in order to see if an element is present
- Add characters of a string, assumed to be composed of decimal digits

```python
def addDigits(s):
    val = 0
    for c in s:
        val += int(c)
    return val
```

- $O(\text{len}(s))$

Linear complexity

- Complexity can depend on number of recursive calls

```python
def fact(n):
    if n == 1:
        return 1
    else:
        return n*fact(n-1)
```

- Number of recursive calls?
 - Fact(n), then fact(n-1), etc. until get to fact(1)
 - Complexity of each call is constant
 - $O(n)$
Log-linear complexity

- Many practical algorithms are log-linear
- Very commonly used log-linear algorithm is merge sort
- Will return to this

Polynomial complexity

- Most common polynomial algorithms are quadratic, i.e., complexity grows with square of size of input
- Commonly occurs when we have nested loops or recursive function calls

Quadratic complexity

```python
def isSubset(L1, L2):
    for e1 in L1:
        matched = False
        for e2 in L2:
            if e1 == e2:
                matched = True
                break
        if not matched:
            return False
    return True
```

Quadratic complexity

```python
def isSubset(L1, L2):
    for e1 in L1:
        matched = False
        for e2 in L2:
            if e1 == e2:
                matched = True
                break
        if not matched:
            return False
    return True
```

```python
def isSubset(L1, L2):
    for e1 in L1:
        matched = False
        for e2 in L2:
            if e1 == e2:
                matched = True
                break
        if not matched:
            return False
    return True
```

- Outer loop executed \(\text{len}(L1) \) times
- Each iteration will execute inner loop up to \(\text{len}(L2) \) times
- \(O(\text{len}(L1) \times \text{len}(L2)) \)
- Worst case when \(L1 \) and \(L2 \) same length, none of elements of \(L1 \) in \(L2 \)
- \(O(\text{len}(L1)^2) \)
Quadratic complexity

Find intersection of two lists, return a list with each element appearing only once

```python
def intersect(L1, L2):
    tmp = []
    for e1 in L1:
        for e2 in L2:
            if e1 == e2:
                tmp.append(e1)
    res = []
    for e in tmp:
        if not(e in res):
            res.append(e)
    return res
```

Quadratic complexity

• First nested loop takes $\text{len}(L1) \times \text{len}(L2)$ steps
• Second loop takes at most $\text{len}(L1)$ steps
• Latter term overwhelmed by former term
• $O(\text{len}(L1) \times \text{len}(L2))$

Exponential complexity

• Recursive functions where more than one recursive call for each size of problem
 – Towers of Hanoi
• Many important problems are inherently exponential
 – Unfortunate, as cost can be high
 – Will lead us to consider approximate solutions more quickly

```python
def genSubsets(L):
    res = []
    if len(L) == 0:
        return [[]] #list of empty list
    smaller = genSubsets(L[:-1])
    # get all subsets without last element
    extra = L[-1:]
    # create a list of just last element
    new = []
    for small in smaller:
        new.append(small+extra)
        # for all smaller solutions, add one with last element
    return smaller+new
    # combine those with last element and those without
```
Exponential complexity

- Assuming append is constant time
- Time includes time to solve smaller problem, plus time needed to make a copy of all elements in smaller problem

```python
def genSubsets(L):
    res = []
    if len(L) == 0:
        return [[]]
    smaller = genSubsets(L[:-1])
    extra = L[-1:]
    new = []
    for small in smaller:
        new.append(small+extra)
    return smaller+new
```

Exponential complexity

- But important to think about size of smaller
- Know that for a set of size k there are 2^k cases
- So to solve need 2^{n-1} + 2^{n-2} + ... + 2^0 steps
- Math tells us this is $O(2n)$

Complexity classes

- $O(1)$ denotes constant running time
- $O(\log n)$ denotes logarithmic running time
- $O(n)$ denotes linear running time
- $O(n \log n)$ denotes log-linear running time
- $O(n^c)$ denotes polynomial running time (c is a constant)
- $O(c^n)$ denotes exponential running time (c is a constant being raised to a power based on size of input)

Comparing complexities

- So does it really matter if our code is of a particular class of complexity?
- Depends on size of problem, but for large scale problems, complexity of worst case makes a difference
Constant versus Logarithmic

Observations

- A logarithmic algorithm is often almost as good as a constant time algorithm.
- Logarithmic costs grow very slowly.

Logarithmic versus Linear

Observations

- Logarithmic clearly better for large scale problems than linear.
- Does not imply linear is bad, however.
Linear versus Log-linear

Observations
- While $\log(n)$ may grow slowly, when multiplied by a linear factor, growth is much more rapid than pure linear
- $O(n \log n)$ algorithms are still very valuable

Log-linear versus Quadratic

Observations
- Quadratic is often a problem, however.
- Some problems inherently quadratic but if possible always better to look for more efficient solutions
Quadratic versus Exponential

- Exponential algorithms very expensive
 - Right plot is on a log scale, since left plot almost invisible given how rapidly exponential grows
- Exponential generally not of use except for small problems