
BBM 201
Data structures

Trees

2015-2016 Fall

Content

• Terminology
• The ADT Binary Tree
• The ADT Binary Search Tree

Data	Structures	 and	Problem	 Solving	with	C++:	Walls	and	Mirrors,	 Carrano	 and	Henry,	 ©		2013

Terminology

• Use trees to represent relationships
• Trees are hierarchical in nature

– “Parent-child” relationship exists between
nodes in tree.

– Generalized to ancestor and descendant
– Lines between the nodes are called edges

• A subtree in a tree is any node in the tree
together with all of its descendants

Data	Structures	 and	Problem	 Solving	with	C++:	Walls	and	Mirrors,	 Carrano	 and	Henry,	 ©		2013

Terminology

(a) A tree;
(b) a subtree of the tree in part a

Data	Structures	 and	Problem	 Solving	with	C++:	Walls	and	Mirrors,	 Carrano and	Henry,	 ©		2013

Terminology

(a) An organization chart; (b) a family tree
Data	Structures	 and	Problem	 Solving	with	C++:	Walls	and	Mirrors,	 Carrano	 and	Henry,	 ©		2013

Kinds of Trees

• General Tree
– Set T of one or more nodes such that T is

partitioned into disjoint subsets
– A single node r , the root
– Sets that are general trees, called

subtrees of r

Data	Structures	 and	Problem	 Solving	with	C++:	Walls	and	Mirrors,	 Carrano and	Henry,	 ©		2013

Kinds of Trees

• n -ary tree
– set T of nodes that is either empty or

partitioned into disjoint subsets:
– A single node r , the root
– n possibly empty sets that are n -ary

subtrees of r

n

Kinds of Trees

• Binary tree
– Set T of nodes that is either empty or

partitioned into disjoint subsets
– Single node r , the root
– Two possibly empty sets that are binary

trees, called left and right subtrees of r

Example: Algebraic Expressions.

Binary trees that represent algebraic expressions

Level of a Node

• Definition of the level of a node n :
– If n is the root of T , it is at level 1.
– If n is not the root of T , its level is 1 greater

than the level of its parent.

Data	Structures	 and	Problem	 Solving	with	C++:	Walls	and	Mirrors,	 Carrano	 and	Henry,	 ©		2013

Level	=	1

Level	=	2

Level	=	3

Height of Trees

• Height of a tree T in terms of the levels of
its nodes
– If T is empty, its height is -1.
– The	height	of	a	node	is	the	number	of	edges	from	
the	node	to	the	deepest	leaf.

Height	of	tree	=	2

The Height of Trees

Binary trees with the same nodes but different heights

Height	2																					Height	4																								Height	6																							Height	6

Full, Complete, and Balanced
Binary Trees

Data	Structures	 and	Problem	 Solving	with	C++:	Walls	and	Mirrors,	 Carrano	 and	Henry,	 ©		2013

Full Binary Trees

• Definition of a full binary tree
– If T is empty, T is a full binary tree of height -1.
– If T is not empty and has height h > -1, T is a

full binary tree if its root’s subtrees are both full
binary trees of height h – 1.

– every	node	other	than	the
leaves	has	two	children.

Data	Structures	 and	Problem	 Solving	with	C++:	Walls	and	Mirrors,	 Carrano and	Henry,	 ©		2013

Facts about Full Binary Trees

• You cannot add nodes to a full binary tree
without increasing its height.

• The number of nodes that a full binary tree
of height h can have is 2 h+1 – 1.

• The height of a full binary tree with n nodes
is [log 2 (n + 1)] -1

• The height of a complete binary tree with n
nodes is floor(log 2 n)

Data	Structures	 and	Problem	 Solving	with	C++:	Walls	and	Mirrors,	 Carrano	 and	Henry,	 ©		2013

Complete Binary Trees

A complete binary tree

Data	Structures	 and	Problem	 Solving	with	C++:	Walls	and	Mirrors,	 Carrano	 and	Henry,	 ©		2013

Every	level,	except	possibly	the	last,	is	completely	
filled,	and	all	nodes	are	as	far	left	as	possible

Full,
Complete
or Other?

A

C D

FI E

B

RS P

GH

T

ML OKJ

Q

N

not binary

Full,
Complete
or other?

A

D

FI

B

RS P

GH

T

ML OK N

Full,
Complete
or other?

A

D

FI

B

RS P

GH

T

ML OK N

Full,
Complete
or other?

A

D

FI

B

RS P

GH

T

ML OK N

Full,
Complete
or other?

A

D

FI

B

R

S

P

GH

T

ML OK N

Full,
Complete
or Other?

A

D

FI

B

Q

S

R

GH

T

ML PK N O

Full,
Complete
or other?

A

D

FI

B

Q

S

R

GH

T

ML PK N O

Full,
Complete
or Other?

A

D

FI

B

Q R

GH

ML PK N O

• A balanced binary tree : Difference between the
height of left subtree and the height of right subtree
for every node is not more than k (mostly 1).

The Maximum and Minimum
Heights of a Binary Tree

• The	maximum	height	of	an	n	-node	binary	
tree	is	n-1	.

FIGURE	15-8	Binary	trees	of	height	3

Data	Structures	 and	Problem	 Solving	with	C++:	Walls	and	Mirrors,	 Carrano	 and	Henry,	 ©		2013

The Maximum and Minimum
Heights of a Binary Tree

Counting the nodes in a full binary tree of height h

Data	Structures	 and	Problem	 Solving	with	C++:	Walls	and	Mirrors,	 Carrano	 and	Henry,	 ©		2013

0

1

2

3

Height

2h 2h+1	-1

Traversals of a Binary Tree

• General form of recursive traversal algorithm
1. Preorder Traversal
• Each node is processed before any node in either

of its subtrees
2. Inorder Traversal
• Each node is processed after all nodes in its left

subtree and before any node in its right subtree
3. Postorder Traversal
• Each node is processed after all nodes in both of

its subtrees

Data	Structures	 and	Problem	 Solving	with	C++:	Walls	and	Mirrors,	 Carrano	 and	Henry,	 ©		2013

A

D

FI

B

RS P

GH

T

ML OK N

Preorder Traversals
1. Visit the root
2. Visit Left subtree
3. Visit Right subtree

1

2

3

4 5

6 7

8

9 10

11

12 13

14

15 16

Algorithm TraversePreorder(n)

Process node n

if n is an internal node then

TraversePreorder(n -> leftChild)

TraversePreorder(n -> rightChild)

A

D

FI

B

RS P

GH

T

ML OK N

1

Inorder Traversals
1. Visit Left subtree
2. Visit the root
3. Visit Right subtree

1

3

4

5

7

8

9

10

11

12

13

14

15

16

1

1

6

2

Algorithm TraverseInorder(n)

if n is an internal node then

TraverseInorder(n -> leftChild)

Process node n

if n is an internal node then

TraverseInorder(n -> rightChild)

A

D

FI

B

RS P

GH

T

ML OK N

Postorder Traversals
1. Visit Left subtree
2. Visit Right subtree
3. Visit the root

1

2 3

4

5

6 7

8

9

10

11 12

13

14

15

16

2

23

Algorithm TraversePostorder(n)

if n is an internal node then

TraversePostorder(n -> leftChild)

TraversePostorder(n -> rightChild)

Process node n

Traversals of a Binary Tree

FIGURE 15-11 Three traversals of a
binary treeData	Structures	 and	Problem	 Solving	with	C++:	Walls	and	Mirrors,	 Carrano	 and	Henry,	 ©		2013

Binary Tree Operations

• Test whether a binary tree is empty.
• Get the height of a binary tree.
• Get the number of nodes in a binary tree.
• Get the data in a binary tree’s root.
• Set the data in a binary tree’s root.
• Add a new node containing a given data

item to a binary tree.

Data	Structures	 and	Problem	 Solving	with	C++:	Walls	and	Mirrors,	 Carrano	 and	Henry,	 ©		2013

Binary Tree Operations

• Remove the node containing a given data
item from a binary tree.

• Remove all nodes from a binary tree.
• Retrieve a specific entry in a binary tree.
• Test whether a binary tree contains a

specific entry.
• Traverse the nodes in a binary tree in

preorder, inorder, or postorder.
Data	Structures	 and	Problem	 Solving	with	C++:	Walls	and	Mirrors,	 Carrano	 and	Henry,	 ©		2013

Binary Tree Operations
Elements: Any data type

Structure: A binary tree either is empty OR a node, called the root node,
together with two binary trees, which are disjoint from each
other and the root node. These are called left and right
subtrees of the root

Domain: Number of elements is bounded

Operations:

Operation Specification
void empty() Precondition/Requires: none.

Processing/Results: returns true if the binary tree (BT) has no nodes.
void traverse(Order
ord)

Precondition/Requires: BT is not empty.
Processing/Results: Traverses the binary tree according to the value of ord
(1) ord = preOrder: traverses the tree using preorder traversal
(2) ord = inOrder: traverses the tree using inorder traversal
(3) ord = postOrder: traverses the tree using postorder traversal

Operation Specification
void find (Relative
rel)

Precondition/Requires: BT is not empty.
Processing/Results: the current node of BT is determined by Relative and the

current node prior to the operation as follows (always return true unless
indicated so):

(1) rel = Root: current = root
(2) rel = Parent: if the current node has a parent then parent is the current node;

otherwise returns false
(3) rel = LeftChild: if the current node has a leftchild then it will be the current

node; otherwise returns false
(4) rel = RightChild: same as above but for rightchild.

void insert(Relative
rel, Type val)

Precondition/Requires: either (1) BT is empty and rel = Root; or (2) BT not
empty and rel � Root .

Processing/Results: as follows:
(1) rel = Root: create a root node with data = val.
(2) rel = Parent: nonsense case.
(3) rel = LeftChild: if current node does not have a leftchild then make one with

data = val.
(4) rel = RightChild: same as above but for rightchild.

In all the above cases if the insertion was successful then it will be designated
as current node and returns true, otherwise current remains unchanged and
returns false.

Operation Specification
void update(Type) Precondition/Requires: BT is not empty.

Processing/Results: update the value of data of the current node.
Type retrieve() Precondition/Requires: BT is not empty.

Processing/Results: returns data of the current node.
void delete_sub() Precondition: BT is not empty.

Process: the subtree whose root node was the current node before this
operation is deleted from the tree. In case the resulting tree is not empty then
current = root.

Note:	Relative	is	enumerated	type	and	is	confined	to	the	values	{Root,	Parent,	LeftChild,	RightChild}

Represention of Binary Tree ADT

A binary tree can represented using
- Linked List
- Array

Note : Array is suitable only for full and complete
binary trees

struct node
{
int key_value;
struct node	*left;
struct node	*right;
};

struct node	*root	=	0;

void	inorder(node	 *p)
{
if	(p	!=	NULL)
{
inorder(p->left);
printf(p->key_value);
inorder(p->right);

}
}

void	preorder(node	 *p)
{
if	(p	!=	NULL)
{
printf(p->key_value);
preorder(p->left);
preorder(p->right);

}
}

void	postorder(node	 *p)
{
if	(p	!=	NULL)
{
postorder(p->left);
postorder(p->right);
printf(p->key_value);

}
}

void	destroy_tree(struct node	*leaf)
{
if(leaf	!=	0)
{
destroy_tree(leaf->left);
destroy_tree(leaf->right);
free(leaf);

}
}

The ADT Binary Search Tree

• ADT binary tree suited for search for specific
item

• Binary search tree solves problem
• Properties of each node, n

– n ’s value greater than all values in left subtree TL

– n ’s value less than all values in right subtree TR

– Both TR and TL are binary search trees.

Data	Structures	 and	Problem	 Solving	with	C++:	Walls	and	Mirrors,	 Carrano	 and	Henry,	 ©		2013

The ADT Binary Search Tree

A binary search tree of names

Data	Structures	 and	Problem	 Solving	with	C++:	Walls	and	Mirrors,	 Carrano	 and	Henry,	 ©		2013

The ADT Binary Search Tree

Binary search trees with the same data

Data	Structures	 and	Problem	 Solving	with	C++:	Walls	and	Mirrors,	 Carrano	 and	Henry,	 ©		2013

The ADT Binary Search Tree

Binary search trees with the same data

Data	Structures	 and	Problem	 Solving	with	C++:	Walls	and	Mirrors,	 Carrano	 and	Henry,	 ©		2013

The ADT Binary Search Tree

Binary search trees with the same data

Data	Structures	 and	Problem	 Solving	with	C++:	Walls	and	Mirrors,	 Carrano	 and	Henry,	 ©		2013

Binary Search Tree Operations

• Test whether binary search tree is empty.
• Get height of binary search tree.
• Get number of nodes in binary search tree.
• Get data in binary search tree’s root.
• Insert new item into binary search tree.
• Remove given item from binary search tree.

Data	Structures	 and	Problem	 Solving	with	C++:	Walls	and	Mirrors,	 Carrano	 and	Henry,	 ©		2013

Binary Search Tree Operations

• Remove all entries from binary search tree.
• Retrieve given item from binary search tree.
• Test whether binary search tree contains

specific entry.
• Traverse items in binary search tree in

– Preorder
– Inorder
– Postorder.

Data	Structures	 and	Problem	 Solving	with	C++:	Walls	and	Mirrors,	 Carrano	 and	Henry,	 ©		2013

Searching a Binary Search Tree

• Search algorithm for binary search tree

Data	Structures	 and	Problem	 Solving	with	C++:	Walls	and	Mirrors,	 Carrano	 and	Henry,	 ©		2013

struct node	*search(int key,	struct node	*leaf)
{
if(leaf	!=	0)
{
if(key==leaf->key_value)
{
return	leaf;

}
else	if(key<leaf->key_value)
{
return	search(key,	leaf->left);

}
else
{
return	search(key,	leaf->right);

}
}
else	return	0;
}

Creating a Binary Search Tree

Empty subtree where the search algorithm terminates when looking for Frank

Data	Structures	 and	Problem	 Solving	with	C++:	Walls	and	Mirrors,	 Carrano	 and	Henry,	 ©		2013

void	insert(int key,	struct node	**leaf)
{
if(*leaf	==	0)
{
leaf	=	(struct node)	malloc(sizeof(struct node));
(*leaf)->key_value =	key;
/*	initialize	the	children	to	null	*/
(*leaf)->left	=	0;				
(*leaf)->right	=	0;		

}
else	if(key	<	(*leaf)->key_value)
{
insert(key,	&(*leaf)->left);

}
else	if(key	>	(*leaf)->key_value)
{
insert(key,	&(*leaf)->right);

}
}

Efficiency of Binary Search Tree
Operations

The Big O for the retrieval, insertion, removal, and traversal operations of
the ADT binary search tree

Data	Structures	 and	Problem	 Solving	with	C++:	Walls	and	Mirrors,	 Carrano	 and	Henry,	 ©		2013

