BBM 201
Data structures

Trees

2015-2016 Fall

Content

‘erminology

he ADT Binary Tree
"he ADT Binary Search Tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Terminology

» Use trees to represent relationships

* Trees are hierarchical in nature

— “Parent-child” relationship exists between
nodes in tree.

— Generalized to ancestor and descendant
— Lines between the nodes are called edges

 Asubtree in a tree is any node In the tree
together with all of its descendants

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Terminology

(a) (b)
A
B C B
Q O
E F D E F
(a) Atree;

(b) a subtree of the tree in part a

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Terminology

(a) President (b)
Bart
VP VP VP
Marketing Manufacturing Personnel Homer
Director Director
Media Relations Sales Abe Mona

(a) An organization chart; (b) a family tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Kinds of Trees

e General Tree

— Set T of one or more nodes such thatT is
partitioned into disjoint subsets

— A single node r, the root

— Sets that are general trees, called
subtrees of r

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Kinds of Trees

* N -ary tree
— set T of nodes that is either empty or
partitioned into disjoint subsets:
— A single node r, the root

— n possibly empty sets that are n -ary

subtrees of r

Kinds of Trees

* Binary tree

— Set T of nodes that is either empty or
partitioned into disjoint subsets

— Single node r, the root

— Two possibly empty sets that are binary
trees, called left and right subtrees of r

/N

Example: Algebraic Expressions.

a-b a-b/c (a—b)xc

(a) (b) ()

Binary trees that represent algebraic expressions

Level of a Node

* Definition of the level of a node n:
—Ifnistherootof T, itis atlevel 1.

—If nis notthe root of T, its level is 1 greater
than the level of its parent.

@ Level=1

Bob @ Level =2
Caan) Ceten) Quaney) (end) tever -3

-ano and Henry, © 2013

Height of Trees

* Height of atree T in terms of the levels of
its nodes
— If T is empty, its heightis -1.
— The height of a node is the number of edges from
the node to the deepest leaf.

@ Height of tree =2

Crom>

The Height of Trees

(@) (b) (©) (d)

Height 2 Height 4 Height 6 Height 6

Binary trees with the same nodes but different heights

Full, Complete, and Balanced
Binary Trees

Full Binary Trees

* Definition of a full binary tree
— If T is empty, T is a full binary tree of height -1.

— If T is not empty and has heighth>-1, T is a
full binary tree if its root’ s subtrees are both full
binary trees of heighth — 1

— every node other than the
leaves has two children.

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Facts about Full Binary Trees

You cannot add nodes to a full binary tree
without increasing its height.

he number of nodes that a full binary tree
of height h can have is 2"1—-1.

The height of a full binary tree with n nodes
s [log,(n+ 1)]-1

The height of a complete binary tree with n
nodes is floor(log, n)

Complete Binary Trees

Every level, except possibly the last, is completely
filled, and all nodes are as far left as possible

A complete binary tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Full .
> not binary
Complete ‘

or Other? @ @ D
® © 600 06

Full, A

Complete
or (other?) (@) o
® 6 ©© o
oM @
T

Full, A

Complete

or (other?) @@ D
® ® 00

Full, A

Complete

or (other?) @@ D
® & 00

Full, A

Comple@
ogr()th'er? B D
® O ® O

Full, A

Complete
orother? @@ D
® O ® O

"

Complete
or Other? @

A balanced binary tree : Difference between the
height of left subtree and the height of right subtree
for every node is not more than k (mostly 1).

o7,

Balanced Binary Tree Unbalanced Binary Tree

The Maximum and Minimum
Heights of a Binary Tree

* The maximum height of an n -node binary
treeis n-1.

(a) (b) (©) (d) (e)

The Maximum and Minimum
Heights of a Binary Tree

Height Number of nodes Total number of nodes at this

at this level level and all previous levels

0 1=2° 1=2"-1

! 2=2" 3=22-1

2 4=2 7=2-1

3 . i
8=2 15=2"-1

h 2h oh+1 _q

Counting the nodes in a full binary tree of height h

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Traversals of a Binary Tree

* General form of recursive traversal algorithm
1. Preorder Traversal

* Each node 1s processed before any node 1n either
of 1ts subtrees

2.Inorder Traversal

* Each node 1s processed after all nodes 1n its left
subtree and before any node 1n its right subtree

3. Postorder Traversal

* Each node 1s processed after all nodes in both of
its subtrees

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Preorder Traversals

1. Visit the root @
2. Visit Left subtree
3. Visit Right subtree
(2)
G) ®)

© &) (0
(& @

)
()

®

Algorithm TraversePreorder (n)
Process node n
if n is an internal node then
TraversePreorder(n -> leftChild)

TraversePreorder(n -> rightChild)

Inorder Traversals
1. Visit Left subtree

2. Visit the root (10)
3. Visit Right subtree v

Algorithm TraverselInorder (n)
if n is an internal node then
Traverselnorder(n -> leftChild)
Process node n
if n is an internal node then

TraverseInorder(n -> rightChild)

Postorder Traversals
1. Visit Left subtree
2. Visit Right subtree
3. Visittheroot

(®)
OO

(16)

A

(15)
(10) (14)

Algorithm TraversePostorder (n)
if n is an internal node then
TraversePostorder(n -> leftChild)
TraversePostorder(n -> rightChild)

Process node n

Traversals of a Binary Tree

(a) Preorder: 60, 20, 10, 40, 30, 50, 70 (b) Inorder: 10, 20, 30, 40, 50, 60, 70 (c) Postorder: 10, 30, 50, 40, 20, 70, 60

FIGURE 15-11 Three traversals of a

Data Structures and Problem Sollegn\AﬁtW&[gRNalls and Mirrors, Carrano and Henry, © 2013

The 3 different types of traversal

Pre-order Traversal In-order Traversal Post-order Traversal
FBADCEGIH ABCDEFGHI ACEDBHIGF

Binary Tree Operations

Test whether a binary tree is empty.
Get the height of a binary tree.

Get the number of nodes in a binary tree.
Get the data in a binary tree’ s root.
Set the data in a binary tree’ s root.

Add a new node containing a given data
item to a binary tree.

Binary Tree Operations

Remove the node containing a given data
item from a binary tree.

Remove all nodes from a binary tree.
Retrieve a specific entry in a binary tree.

Test whether a binary tree contains a
specific entry.

Traverse the nodes in a binary tree in
preorder, inorder, or postorder.

res and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Binary Tree Operations

Elements: Any data type
Structure: A binary tree either is empty OR a node, called the root node,
together with two binary trees, which are disjoint from each
other and the root node. These are called left and right
subtrees of the root

Domain: Number of elements is bounded

Operations:

Operation Specification

void empty() Precondition/Requires: none.
Processing/Results: returns true if the binary tree (BT) has no nodes.

void traverse(Order Precondition/Requires: BT is not empty.

ord) Processing/Results: Traverses the binary tree according to the value of ord
(1) ord = preOrder: traverses the tree using preorder traversal
(2) ord = inOrder: traverses the tree using inorder traversal
(3) ord = postOrder: traverses the tree using postorder traversal

Operation

Specification

void find (Relative
rel)

Precondition/Requires: BT is not empty.

Processing/Results: the current node of BT i1s determined by Relative and the
current node prior to the operation as follows (always return true unless
indicated so):

(1) rel = Root: current = root

(2) rel = Parent: if the current node has a parent then parent is the current node;
otherwise returns false

(3) rel = LeftChild: if the current node has a leftchild then it will be the current
node; otherwise returns false

(4) rel = RightChild: same as above but for rightchild.

void insert(Relative
rel, Type val)

Precondition/Requires: either (1) BT is empty and rel = Root; or (2) BT not
empty and rel @ Root.

Processing/Results: as follows:

(1) rel = Root: create a root node with data = val.

(2) rel = Parent: nonsense case.

(3) rel = LeftChild: if current node does not have a leftchild then make one with
data = val.

(4) rel = RightChild: same as above but for rightchild.
In all the above cases if the insertion was successful then it will be designated
as current node and returns true, otherwise current remains unchanged and
returns false.

Operation Specification

void update(Type) Precondition/Requires: BT is not empty.
Processing/Results: update the value of data of the current node.

Type retrieve() Precondition/Requires: BT is not empty.
Processing/Results: returns data of the current node.

void delete sub() Precondition: BT is not empty.

Process: the subtree whose root node was the current node before this
operation is deleted from the tree. In case the resulting tree is not empty then
current = root.

Note: Relative is enumerated type and is confined to the values {Root, Parent, LeftChild, RightChild}

Represention of Binary Tree ADT

A binary tree can represented using
- Linked List
- Array

Note : Array 1s suitable only for full and complete
binary trees

struct node

{.

void inorder(node *p)
{
if (o != NULL)
{
inorder(p->left);
printf(p->key_value);
inorder(p->right);
!
}

void preorder(node *p)
{
if (p != NULL)
{
printf(p->key_value);
preorder(p->left);
preorder(p->right);

}
}

void postorder(node *p)
{
if (p != NULL)
{
postorder(p->left);
postorder(p->right);
printf(p->key_value);

}
}

void destroy_tree(struct node *leaf)
{
if(leaf 1=0)
{
destroy tree(leaf->left);
destroy_tree(leaf->right);
free(leaf);

}
}

The ADT Binary Search Tree

» ADT binary tree suited for search for specific
item
* Binary search tree solves problem

* Properties of each node, n
— n’ s value greater than all values in left subtree T,
—n s value less than all values in right subtree T
— Both T and 7, are binary search trees.

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

The ADT Binary Search Tree

A binary search tree of names

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

The ADT Binary Search Tree

(a)

DERC

Binary search trees with the same data

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

The ADT Binary Search Tree

(b)

Binary search trees with the same data

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

The ADT Binary Search Tree

Binary search trees with the same data

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Binary Search Tree Operations

Test whether binary search tree is empty.
Get height of binary search tree.

Get number of nodes in binary search tree.
Get data in binary search tree’ s root.
Insert new item into binary search tree.
Remove given item from binary search tree.

Binary Search Tree Operations

Remove all entries from binary search tree.
Retrieve given item from binary search tree.
Test whether binary search tree contains
specific entry.

Traverse items in binary search tree Iin

— Preorder
— Inorder
— Postorder.

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Searching a Binary Search Tree

» Search algorithm for binary search tree

struct node *search(int key, struct node *|eaf)
{
if(leaf 1=0)
{
if(key==Ileaf->key value)
{

return leaf;

}

else if(key<leaf->key value)

{

return search(key, leaf->left);

}

else

{

return search(key, leaf->right);

}
}

else return O;

}

Creating a Binary Search Tree

Empty subtree where the search algorithm terminates when looking for Frank

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

void insert(int key, struct node **|eaf)
{
if(*leaf==0)
{
*leaf = (struct node™) malloc(sizeof(struct node));
(*leaf)->key_value = key;
/* initialize the children to null */
(*leaf)->left = 0;
(*leaf)->right = O;
}
else if(key < (*leaf)->key_value)
{
insert(key, &(*leaf)->left);
}
else if(key > (*leaf)->key_value)
{
insert(key, &(*leaf)->right);
}
}

Efficiency of Binary Search Tree

Operations
Operation Average case Worst case
Retrieval O(log n) O(n)
Insertion O(log n) O(n)
Removal O(log n) O(n)
Traversal O(n) O(n)

The Big O for the retrieval, insertion, removal, and traversal operations of
the ADT binary search tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

