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Terminology

• Use trees to represent relationships
• Trees are hierarchical in nature

– “Parent-child” relationship exists between 
nodes in tree.

– Generalized to ancestor and descendant 
– Lines between the nodes are called edges

• A subtree in a tree is any node in the tree 
together with all of its descendants
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Terminology

(a) A tree; 
(b) a subtree of the tree in part a
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Terminology

(a) An organization chart; (b) a family tree
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Kinds of Trees

• General Tree
– Set T of one or more nodes such that T is 

partitioned into disjoint subsets
– A single node r , the root
– Sets that are general trees, called 

subtrees of r
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Kinds of Trees

• n -ary tree
– set T of nodes that is either empty or 

partitioned into disjoint subsets:
– A single node r , the root
– n possibly empty sets that are n -ary 

subtrees of r

n



Kinds of Trees

• Binary tree
– Set T of nodes that is either empty or 

partitioned into disjoint subsets
– Single node r , the root
– Two possibly empty sets that are binary 

trees, called left and right subtrees of r



Example: Algebraic Expressions.

Binary trees that represent algebraic expressions



Level of a Node

• Definition of the level of a node n :
– If n is the root of T , it is at level 1.
– If n is not the root of T , its level is 1 greater 

than the level of its parent.
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Level	=	1

Level	=	2

Level	=	3



Height of Trees

• Height of a tree T in terms of the levels of 
its nodes
– If T is empty, its height is -1.
– The	height	of	a	node	is	the	number	of	edges	from	
the	node	to	the	deepest	leaf.

Height	of	tree	=	2



The Height of Trees

Binary trees with the same nodes but different heights

Height	2																					Height	4																								Height	6																							Height	6



Full, Complete, and Balanced 
Binary Trees
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Full Binary Trees

• Definition of a full binary tree
– If T is empty, T is a full binary tree of height -1.
– If T is not empty and has height h > -1, T is a 

full binary tree if its root’s subtrees are both full 
binary trees of height h – 1.

– every	node	other	than	the
leaves	has	two	children.
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Facts about Full Binary Trees

• You cannot add nodes to a full binary tree 
without increasing its height.

• The number of nodes that a full binary tree 
of height h can have is 2 h+1 – 1.

• The height of a full binary tree with n nodes 
is [log 2 ( n + 1)] -1

• The height of a complete binary tree with n 
nodes is floor(log 2 n)
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Complete Binary Trees

A complete binary tree
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Every	level,	except	possibly	the	last,	is	completely	
filled,	and	all	nodes	are	as	far	left	as	possible
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• A balanced binary tree : Difference between the
height of left subtree and the height of right subtree
for every node is not more than k (mostly 1).



The Maximum and Minimum 
Heights of a Binary Tree

• The	maximum	height	of	an	n	-node	binary	
tree	is	n-1	.

FIGURE	15-8	Binary	trees	of	height	3
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The Maximum and Minimum 
Heights of a Binary Tree

Counting the nodes in a full binary tree of height h
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Traversals of a Binary Tree

• General form of recursive traversal algorithm
1. Preorder Traversal
• Each node is processed before any node in either 

of its subtrees
2. Inorder Traversal
• Each node is processed after all nodes in its left 

subtree and before any node in its right subtree
3. Postorder Traversal
• Each node is processed after all nodes in both of 

its subtrees
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Algorithm TraversePreorder(n)

Process node n

if n is an internal node then

TraversePreorder( n -> leftChild)

TraversePreorder( n -> rightChild)
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Algorithm TraverseInorder(n)

if n is an internal node then

TraverseInorder( n -> leftChild)

Process node n

if n is an internal node then

TraverseInorder( n -> rightChild)
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Algorithm TraversePostorder(n)

if n is an internal node then

TraversePostorder( n -> leftChild)

TraversePostorder( n -> rightChild)

Process node n



Traversals of a Binary Tree

FIGURE 15-11 Three traversals of a 
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Binary Tree Operations

• Test whether a binary tree is empty.
• Get the height of a binary tree.
• Get the number of nodes in a binary tree.
• Get the data in a binary tree’s root.
• Set the data in a binary tree’s root.
• Add a new node containing a given data 

item to a binary tree.
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Binary Tree Operations

• Remove the node containing a given data 
item from a binary tree.

• Remove all nodes from a binary tree.
• Retrieve a specific entry in a binary tree.
• Test whether a binary tree contains a 

specific entry.
• Traverse the nodes in a binary tree in 

preorder, inorder, or postorder.
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Binary Tree Operations
Elements:  Any data type

Structure: A binary tree either is empty OR a node, called the root node, 
together with two binary  trees, which are disjoint from each 
other and the root  node. These are called left and right 
subtrees of the root

Domain:   Number of elements is bounded

Operations:

Operation Specification
void empty() Precondition/Requires: none.

Processing/Results: returns true if the binary tree (BT) has no nodes.
void traverse(Order 
ord)

Precondition/Requires: BT is not empty.
Processing/Results: Traverses the binary tree according to the value of ord
(1) ord = preOrder: traverses the tree using preorder traversal
(2) ord = inOrder:   traverses the tree using inorder traversal
(3) ord = postOrder: traverses the tree using postorder traversal



Operation Specification
void find (Relative 
rel)

Precondition/Requires: BT is not empty.
Processing/Results: the current node of BT is determined by Relative and the 

current node prior to the operation as follows (always return true unless 
indicated so):

(1) rel = Root: current = root
(2) rel = Parent: if the current node has a parent then parent is the current node; 

otherwise returns false
(3) rel = LeftChild: if the current node has a leftchild then it will be the current 

node; otherwise returns false
(4) rel = RightChild: same as above but for rightchild.

void insert(Relative 
rel, Type val)

Precondition/Requires: either (1) BT is empty and rel = Root; or (2) BT not 
empty and rel � Root .

Processing/Results: as follows:
(1) rel = Root: create a root node with data = val.
(2) rel = Parent: nonsense case.
(3) rel = LeftChild: if current node does not have a leftchild then make one with 

data = val.
(4) rel = RightChild: same as above but for rightchild.

In all the above cases if the insertion was successful then it will be designated 
as current node and returns true, otherwise current remains unchanged and 
returns false.



Operation Specification
void update(Type) Precondition/Requires: BT is not empty.

Processing/Results: update the value of data of the current node.
Type retrieve() Precondition/Requires: BT is not empty.

Processing/Results: returns data of the current node.
void delete_sub() Precondition: BT is not empty.

Process: the subtree whose root node was the current node before this 
operation is deleted from the tree. In case the resulting tree is not empty then 
current = root.

Note:	Relative	is	enumerated	type	and	is	confined	to	the	values	{Root,	Parent,	LeftChild,	RightChild}



Represention of Binary Tree ADT

A binary tree can represented using  
- Linked List
- Array

Note : Array is suitable only for full and complete  
binary trees



struct node
{
int key_value;
struct node	*left;
struct node	*right;
};

struct node	*root	=	0;



void	inorder(node	 *p)
{
if	(p	!=	NULL)
{
inorder(p->left);
printf(p->key_value);
inorder(p->right);

}
}

void	preorder(node	 *p)
{
if	(p	!=	NULL)
{
printf(p->key_value);
preorder(p->left);
preorder(p->right);

}
}

void	postorder(node	 *p)
{
if	(p	!=	NULL)
{
postorder(p->left);
postorder(p->right);
printf(p->key_value);

}
}



void	destroy_tree(struct node	*leaf)
{
if(	leaf	!=	0	)
{
destroy_tree(leaf->left);
destroy_tree(leaf->right);
free(	leaf	);

}
}



The ADT Binary Search Tree

• ADT binary tree suited for search for specific 
item

• Binary search tree solves problem
• Properties of each node, n

– n ’s value greater than all values in left subtree TL

– n ’s value less than all values in right subtree TR

– Both TR  and TL  are binary search trees.
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The ADT Binary Search Tree

A binary search tree of names
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The ADT Binary Search Tree

Binary search trees with the same data 
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The ADT Binary Search Tree

Binary search trees with the same data
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The ADT Binary Search Tree

Binary search trees with the same data
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Binary Search Tree Operations

• Test whether binary search tree is empty.
• Get height of binary search tree.
• Get number of nodes in binary search tree.
• Get data in binary search tree’s root.
• Insert new item into binary search tree.
• Remove given item from binary search tree.
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Binary Search Tree Operations

• Remove all entries from binary search tree.
• Retrieve given item from binary search tree.
• Test whether binary search tree contains 

specific entry.
• Traverse items in binary search tree in 

– Preorder
– Inorder
– Postorder.
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Searching a Binary Search Tree

• Search algorithm for binary search tree
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struct node	*search(int key,	struct node	*leaf)
{
if(	leaf	!=	0	)
{
if(key==leaf->key_value)
{
return	leaf;

}
else	if(key<leaf->key_value)
{
return	search(key,	leaf->left);

}
else
{
return	search(key,	leaf->right);

}
}
else	return	0;
}



Creating a Binary Search Tree

Empty subtree where the search algorithm terminates when looking for Frank

Data	Structures	 and	Problem	 Solving	with	C++:	Walls	and	Mirrors,	 Carrano	 and	Henry,	 ©		2013



void	insert(int key,	struct node	**leaf)
{
if(	*leaf	==	0	)
{
*leaf	=	(struct node*)	malloc(	sizeof(	struct node	)	);
(*leaf)->key_value =	key;
/*	initialize	the	children	to	null	*/
(*leaf)->left	=	0;				
(*leaf)->right	=	0;		

}
else	if(key	<	(*leaf)->key_value)
{
insert(	key,	&(*leaf)->left	);

}
else	if(key	>	(*leaf)->key_value)
{
insert(	key,	&(*leaf)->right	);

}
}



Efficiency of Binary Search Tree 
Operations

The Big O for the retrieval, insertion, removal, and traversal operations of 
the ADT binary search tree
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