
BBM 201
DATA STRUCTURES

Lecture 6:

EVALUATION of EXPRESSIONS

2015-2016 Fall

Evaluation of Expressions
• Compilers use stacks for the arithmetic and logical

expressions.

• Example: x=a/b-c+d*e-a*c

• If a=4, b=c=2, d=e=3 what is x?
• ((4/2)-2)+(3*3)-(4*2), (‘/’ and ‘*’ have a priority)

• There may be also parenthesis, such as:
• a/(b-c)+d*(e-a)*c

• How does the compiler solve this problem?

• Normally, we use ‘infix’ notation for the arithmetic
expressions:
• Infix notation: a+b

• However, there is also ‘prefix’ and ‘postfix’ notation:
• Prefix notation: +ab

• Postfix notation: ab+

• Infix : 2+3*4

• Postfix: 234*+

• Prefix: +2*34

• Infix: (a+b)*c-d/e

• Postfix: ???

• Prefix: ???

• Infix: (a+b)*c-d/e

• Postfix: ab+c*de/-

• Prefix: -*+abc/de

• Infix: a/b-c+d*e-a*c

• Postfix: ???

• Prefix: ???

• Infix: a/b-c+d*e-a*c

• Postfix: ab/c-de*+ac*-

• Prefix:-+-/abc*de*ac

• Infix: (a/(b-c+d))*(e-a)*c

• Postfix: abc-d+/ea-*c*

• Prefix: **/a+-bcd-eac

Why postfix?

• For the infix expressions we have two problems:
• Parenthesis

• Operation precedence

• Example: ((4/2)-2)+(3*3)-(4*2) (infix)

• 42/2-33*+42*- (postfix)

Token Stack
[0] [1] [2]

Top

4 4 0

2 4 2 1

/ 4/2 0

2 4/2 2 1

- (4/2)-2 0

3 (4/2)-2 3 1

3 ((4/2)-2) 3 3 2

* ((4/2)-2) 3*3 1

+ ((4/2)-2)+(3*3) 0

4 ((4/2)-2)+(3*3) 4 1

2 ((4/2)-2)+(3*3) 4 2 2

* ((4/2)-2)+(3*3) 4*2 1

- ((4/2)-2)+(3*3)-(4*2) 0

Expressions

Infix Postfix Prefix Notes

A * B + C / D A B * C D / + + * A B / C D

multiply A and
B,
divide C by D,
add the
results

A * (B + C) / D A B C + * D / / * A + B C D
add B and C,
multiply by A,
divide by D

A * (B + C / D) A B C D / + * * A + B / C D
divide C by D,
add B,
multiply by A

Operator PRECEDENCE

Operators Associativity Type
++ -- + - ! (type) right to left unary

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

&& left to right logical AND

|| left to right logical OR

?: right to left conditional

= += -= *= /= %= right to left assignment

, left to right comma

Fig. 4.16 Operator precedence and associativity.

Parentheses are used to override
precedence.

EVALUATION OF INFIX OPERATIONS
(fully Parenthesized)

1. Read one input character
2. Actions at end of each input

Opening brackets (2.1) Push into stack and then Go to step (1)
Number (2.2) Push into stack and then Go to step (1)
Operator (2.3) Push into stack and then Go to step (1)
Closing brackets (2.4) Pop from character stack

(2.4.1) if it is opening bracket, then
discard it, Go to step (1)

(2.4.2) Pop is used four times
The first popped element is assigned

to op2
The second popped element is

assigned to op
The third popped element is assigned

to op1
The fourth popped element is the

remaining
opening bracket, which can be discarded

Evaluate op1 op op2
Convert the result into character and
push into the stack
Go to step (2.4)

New line character (2.5) Pop from stack and print the
answer STOP

Input Symbol
Stack (from bottom to
top)

Operation

((

(((

((((

2 (((2

* (((2 *

5 (((2 * 5

) ((10 2 * 5 = 10 and push

- ((10 -

(((10 - (

1 ((10 - (1

* ((10 - (1 *

2 ((10 - (1 * 2

) ((10 - 2 1 * 2 = 2 & Push

) (8 10 - 2 = 8 & Push

/ (8 /

((8 / (

11 (8 / (11

- (8 / (11 -

9 (8 / (11 - 9

) (8 / 2 11 - 9 = 2 & Push

) 4 8 / 2 = 4 & Push

New line Empty Pop & Print

(((2 * 5) - (1 * 2)) / (11 - 9))

EVALUATION OF INFIX OPERATIONS
(Not fully Parenthesized)

1. Read an input character
2. Actions that will be performed at the end of each input

Opening parentheses (2.1) Push it into character stack and then Go to step 1
Number (2.2) Push into integer stack, Go to step 1
Operator (2.3) Do the comparative priority check

(2.3.1) if the character stack's top contains an operator
with equal or higher priority,

Then pop it into op Pop a number from integer stack
into op2

Pop another number from integer stack into op1

Calculate op1 op op2 and
Push the result into the integer stack

Closing par. (2.4) Pop from the character stack
(2.4.1) if it is an opening parentheses, then discard it
and Go to step 1
(2.4.2) To op, assign the popped element
Pop a number from integer stack and assign it op2
Pop another number from integer stack and assign it to

op1
Calculate op1 op op2 and push the result into the

integer stack
Convert into character and push into stack
Go to the step (2.4)

New line character (2.5) Print the result after popping from the stack STOP

Input Symbol
Character
Stack (from
bottom to top)

Integer Stack
(from bottom to
top)

Operation performed

((
2 (2
* (* Push as * has higher priority

5 (* 2 5

- (* Since '-' has less priority, we do 2 * 5 = 10

(- 10 We push 10 and then push '-'

1 (- 10 1
* (- * 10 1 Push * as it has higher priority

2 (- * 10 1 2

) (- 10 2 Perform 1 * 2 = 2 and push it

(8 Pop - and 10 - 2 = 8 and push, Pop (

/ / 8

(/ (8

11 / (8 11

- / (- 8 11

9 / (- 8 11 9

) / 8 2 Perform 11 - 9 = 2 and push it

4 Perform 8 / 2 = 4 and push it

New line 4 Print the output, which is 4

(2*5-1*2)/(11-9)

PREFIX

Input: / - * 2 5 * 1 2 - 11 9
Output: 4

Data structure requirement: a character stack and an integer stack
1. Read one character input at a time and keep pushing it into the

character stack until the new line character is reached
2. Perform pop from the character stack. If the stack is empty, go

to step (3)
Number (2.1) Push in to the integer stack and then go to

step (1)
Operator (2.2) Assign the operator to op

Pop a number from integer stack and
assign it to op1

Pop another number from integer stack
and assign it to op2

Calculate op1 op op2 and push the output
into the integer stack.

Go to step (2)
3. Pop the result from the integer stack and display the result

/ /

- /-

* / - *

2 / - * 2

5 / - * 2 5

* / - * 2 5 *

1 / - * 2 5 * 1

2 / - * 2 5 * 1 2

- / - * 2 5 * 1 2 -

11 / - * 2 5 * 1 2 - 11

9
/ - * 2 5 * 1 2 - 11
9

\n / - * 2 5 * 1 2 - 11 9

/ - * 2 5 * 1 2 - 9 11

/ - * 2 5 * 1 2 2 11 - 9 = 2

/ - * 2 5 * 1 2 2

/ - * 2 5 * 2 2 1

/ - * 2 5 2 2 1 * 2 = 2

/ - * 2 2 2 5

/ - * 2 2 5 2

/ - 2 2 10 5 * 2 = 10

/ 2 8 10 - 2 = 8

Stack is empty 4 8 / 2 = 4

Stack is empty Print 4

/ - * 2 5 * 1 2 -11 9

POSTFIX

Compilers typically use a parenthesis-free notation (postfix
expression).

The expression is evaluated from the left to right using a
stack:

• when encountering an operand: push it

• when encountering an operator: pop two operands,
evaluate the result and push it.

62/3-42*+

How to evaluate a postfix evaluation?

typedef enum {left_parent,right_parent,add,subtract,multiply,divide,eos,operand}
precedence;

char expr[]= "422-3+/34-*2*";

precedence get_token(char* symbol, int* n){

*symbol=expr[(*n)++];
switch(*symbol){

case ‘(’: return left_parent;
case ‘)’: return right_parent;
case ‘+’: return add;
case ‘-’: return subtract;
case ‘/’: return divide;
case ‘*’: return multiply;
case ‘\0’: return eos;
default: return operand;

}
}

How to evaluate a postfix evaluation?
float eval(void){

char symbol;
precedence token;
float op1, op2;
int n=0;
int top=-1;

token = get_token(&symbol, &n); //take a token

while(token=eos){ //end of string?
if(token==operand)

push(&top,symbol-’0’);
else{

op2=pop(&top);
op1=pop(&top);
switch(token){

case add: push(&top,op1+op2);
case subtract(&top,op1-op2);
case multiply&top,op1*op2);
case divide(&top,op1-/2op2);

}
}

token=get_token(&symbol,&n);
}
return pop(&top);

}

How to convert infix to postfix?
char expr[]=" (4/(2-2+3))*(3-4)*2";

void postfix(void){
char symbol;
precedence token;
int n=0;
int top=0;
stack[0]=eos;

for(token=get_token(&symbol,&n);token!=eos;token=get_token(&symbol,&n)){
if(token==operand)

printf("%c", symbol);
else if(token==right_parent)

while(stack[top]!=left_parent)
print_token(pop(&top));

pop(&top);
}
else{

while(stack_pre[stack[top]]>=pre[token])
print_token(pop(&top));

push(&top, token);
}

}
while((token=pop(&top))!=eos)

print_token(token)
}

CONVERT an INFIX to POSTFIX

a+b*c
a*(b+c)*d

