BBM 201
DATA STRUCTURES

Lecture 8:
Introduction to the Lists
(Array-based linked lists)

S 2015-2016 Fall

Lists

Lists

- We used successive data structures up to now:

- If a; in the memory location L;, then a;,is in Lj+c (c: constant)

- In a queue, if the it" itemis in L, i+1. item is in (L,+c)%n. (i.e.
circular queue)

- In a stack, if the top item is in L 1, the below item is in L +-c.

ListType

id id id id id id

T T .1]-] Insertion and deletion:
RS O(1)

I’ 1’ \\ ‘\
» ¥ Y ' L A
(s [+] [«] [=2] [s] L[]
IntType IntType IntType IntType IntType IntType

Sequential Access

(ascending or descending)

Example 1:
- Alphabetically ordered lists:

Ape Butterfly | Cat Dog Mouse
213
- Delete ‘Ape’, what happens? s Shiftright
- Delete ‘Cat’, what happens? 2|3
- Add ‘Bear’, what happens?
- Add ‘Chicken’, what happens? T2

f

Save new
element

-
Sequential Access

(ascending or descending)

Example 2:

- The result of the multiplication of two polynomials
o (X"+5x#-3x2+4)(3x°-2x3+x%+1)

10 9

- Powers are not ordered. So either we need to sort or shift in order to
solve this problem.

Sorted items

- We want to keep the items sorted, and we want to avoid
the sorting cost.
- We may need to sort after each insertion of a new item.
- Or we need to do shifting.

What is the solution?

-
Towards the Linked List

- Each item has to have a second data field — link.
- Each item has two fields: data and link.

Example on the board.

-
Linked List

#define MAX_LIST 10
#define TRUE 1
#define FALSE 0
#define NULL -1

-
Linked List

--make empty list

-
Linked List

--get item

Returns a free item from the list:

-
Linked List

--return item

Free the item:

N o s8N = O

name link name link
1 0] Arzu 1
2 1] Ayse 2
3 2] Aziz 3
4 3] Bora 4
S 4] Kaan 9
6) Muge 6
V4 6 Ugur -1
8 7] 8
-1 -1
free_ =7

free =0 List starts at 0 (*list=0)

name link name link

0] Arzu 1 0] Eyup 4
[1/] Ayse 2 [1/] Ayse 2
2] Aziz 3 2] Aziz 3
3] Bora 4 3] Bora 0
4] Kaan ! 4] Kaan !
5] Muge 6 5] Muge 6
()] Ugur -1 ()] Ugur -1
7] Leyla S 7] Leyla S
8] 9 8] 9
-1 -1

free_ = 8 (“Leyla” added) free_ =0 (“Arzu” deleted)

*list = 0 free_ =8 ("Eyup” added)

*list = 1

-
Linked List

--insert item

Original List

first
L 2 —_P 4 e e —+—p 8

List with 5 added

first
L 2 P 4 — 6 p 8

-
Linked List

--insert item
INSERT at the Front
3
will 2 1 23 [a [dd [7a ull
B head R i

The new item is inserted before the head of the list.

IZ_L23 1 a | dd h7at

)
]
L)

-
Linked List

--insert item

-
Linked List

--delete item

current Looking to delete "14"

N}
12 -—%| 14 -—%|24 .

current

{ 1
12 14 °—9| 24
T =
delete
current

4

12 | » 24 | »

-
Linked List

--delete item

Deleting from the front:

Deleted node

data , data data next
20 next C 10 next C:lJ> 40 NULL

head

Linked list

-
Linked List

--delete item

References

- Data Structures Notes, Mustafa Ege.

- Fundamentals of Data Structures in C. Ellis Horowitz,
Sartaj Sahni, and Susan Anderson-Freed, 1993.

