Acknowledgement: The course slides are adapted from the slides prepared by R. Sedgewick and K. Wayne of Princeton University.
Mergesort

Basic plan.

- Divide array into two halves.
- **Recursively** sort each half.
- Merge two halves.

Mergesort overview
Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.
Goal. Given two sorted subarrays \(a[lo]\) to \(a[mid]\) and \(a[mid+1]\) to \(a[hi]\), replace with sorted subarray \(a[lo]\) to \(a[hi]\).
Abstract in-place merge

Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.
Abstract in-place merge

Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

```
<table>
<thead>
<tr>
<th>a[]</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
</table>
```

$$k$$

compare minimum in each subarray

```
<table>
<thead>
<tr>
<th>aux[]</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
</table>
```

$$i$$ $$j$$
Abstract in-place merge

Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

![Diagram](image)

`compare minimum in each subarray`

<table>
<thead>
<tr>
<th>a[]</th>
<th>A</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>aux[]</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td></td>
</tr>
<tr>
<td>j</td>
<td></td>
</tr>
</tbody>
</table>
Abstract in-place merge

Goal. Given two sorted subarrays `a[lo]` to `a[mid]` and `a[mid+1]` to `a[hi]`, replace with sorted subarray `a[lo]` to `a[hi].`
Abstract in-place merge

Goal. Given two sorted subarrays `a[lo]` to `a[mid]` and `a[mid+1]` to `a[hi]`, replace with sorted subarray `a[lo]` to `a[hi].`
Goal. Given two sorted subarrays \(a[lo]\) to \(a[mid]\) and \(a[mid+1]\) to \(a[hi]\), replace with sorted subarray \(a[lo]\) to \(a[hi]\).
Abstract in-place merge

Goal. Given two sorted subarrays \(a[lo]\) to \(a[mid]\) and \(a[mid+1]\) to \(a[hi]\), replace with sorted subarray \(a[lo]\) to \(a[hi]\).

compare minimum in each subarray

\[
\begin{array}{cccccccc}
\text{aux[]} & E & E & G & M & R & A & C & E & R & T \\
\text{i} & & & & & & & & & & \\
\text{j} & & & & & & & & & & \\
\end{array}
\]
Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

Abstract in-place merge

compare minimum in each subarray
Goal. Given two sorted subarrays \(a[lo] \) to \(a[mid] \) and \(a[mid+1] \) to \(a[hi] \), replace with sorted subarray \(a[lo] \) to \(a[hi] \).

Abstract in-place merge

- **a[]**:

 \[
 \begin{array}{cccccccc}
 A & C & E & E & R & A & C & E & R & T \\
 \end{array}
 \]

 - k

- **compare minimum in each subarray**

 - **aux[]**:

 \[
 \begin{array}{cccccccc}
 E & E & G & M & R & A & C & E & R & T \\
 \end{array}
 \]

 - i
 - j
Abstract in-place merge

Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

```
a[]
```

```
aux[]
```

compare minimum in each subarray
Abstract in-place merge

Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

<table>
<thead>
<tr>
<th>a[]</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>E</th>
<th>E</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td></td>
</tr>
</tbody>
</table>

compare minimum in each subarray

<table>
<thead>
<tr>
<th>aux[]</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td></td>
</tr>
<tr>
<td>j</td>
<td></td>
</tr>
</tbody>
</table>
Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

Abstract in-place merge

<table>
<thead>
<tr>
<th>$a[]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>T</td>
</tr>
</tbody>
</table>

k

compare minimum in each subarray

<table>
<thead>
<tr>
<th>$aux[]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>T</td>
</tr>
</tbody>
</table>

i j
Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

Abstract in-place merge

<table>
<thead>
<tr>
<th>$a[]$</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td></td>
</tr>
</tbody>
</table>

Compare minimum in each subarray

<table>
<thead>
<tr>
<th>$aux[]$</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td></td>
</tr>
<tr>
<td>j</td>
<td></td>
</tr>
</tbody>
</table>
Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

Abstract in-place merge

- **a[]**
 - A C E E E G C E R T
 - k

- **aux[]**
 - E E G M R A C E R T
 - i j
Abstract in-place merge

Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

compare minimum in each subarray

<table>
<thead>
<tr>
<th>a[]</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>aux[]</td>
<td>E</td>
<td>E</td>
<td>G</td>
<td>M</td>
<td>R</td>
<td>A</td>
<td>C</td>
<td>E</td>
<td>R</td>
<td>T</td>
</tr>
</tbody>
</table>

i j k
Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.
Abstract in-place merge

Goal. Given two sorted subarrays \(a[lo] \) to \(a[mid] \) and \(a[mid+1] \) to \(a[hi] \), replace with sorted subarray \(a[lo] \) to \(a[hi] \).

Example

<table>
<thead>
<tr>
<th>(a[])</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>R</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{aux[]})</td>
<td>E</td>
<td>E</td>
<td>G</td>
<td>M</td>
<td>R</td>
<td>A</td>
<td>C</td>
<td>E</td>
<td>R</td>
<td>R</td>
<td>T</td>
</tr>
</tbody>
</table>

compare minimum in each subarray

<table>
<thead>
<tr>
<th>(a[])</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>R</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{aux[]})</td>
<td>E</td>
<td>E</td>
<td>G</td>
<td>M</td>
<td>R</td>
<td>A</td>
<td>C</td>
<td>E</td>
<td>R</td>
<td>R</td>
<td>T</td>
</tr>
</tbody>
</table>

k

i

j
Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

Abstract in-place merge

one subarray exhausted, take from other
Abstract in-place merge

Goal. Given two sorted subarrays \(a[lo]\) to \(a[mid]\) and \(a[mid+1]\) to \(a[hi]\), replace with sorted subarray \(a[lo]\) to \(a[hi]\).

![Diagram of array a[] and aux[]]

-one subarray exhausted, take from other

\[
\begin{align*}
a[] & \quad \begin{array}{cccccccc}
A & C & E & E & E & E & G & M & R & R & T \\
& & & & & & & & & k & \\
& & & & & & & & & i & \\
\end{array} \\
\text{aux[]} & \quad \begin{array}{cccccccc}
E & E & G & M & R & A & C & E & R & T \\
& & & & & & & & & j & \\
\end{array}
\end{align*}
\]
Abstract in-place merge

Goal. Given two sorted subarrays \(a[lo]\) to \(a[mid]\) and \(a[mid+1]\) to \(a[hi]\), replace with sorted subarray \(a[lo]\) to \(a[hi]\).

one subarray exhausted, take from other

\[
\begin{align*}
a[] & \quad A \quad C \quad E \quad E \quad E \quad G \quad M \quad R \quad R \quad T \\
\text{aux[]} & \quad E \quad E \quad G \quad M \quad R \quad A \quad C \quad E \quad R \quad T
\end{align*}
\]
Abstract in-place merge

Goal. Given two sorted subarrays \(a[lo]\) to \(a[mid]\) and \(a[mid+1]\) to \(a[hi]\), replace with sorted subarray \(a[lo]\) to \(a[hi]\).

<table>
<thead>
<tr>
<th>(a[])</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
</tbody>
</table>

one subarray exhausted, take from other

<table>
<thead>
<tr>
<th>(aux[])</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
</tr>
</tbody>
</table>

\(k\) \(i\) \(j\)
Goal. Given two sorted subarrays \(a[lo] \) to \(a[mid] \) and \(a[mid+1] \) to \(a[hi] \), replace with sorted subarray \(a[lo] \) to \(a[hi] \).

Abstract in-place merge

Both subarrays exhausted, done
Abstract in-place merge

Goal. Given two sorted subarrays `a[lo]` to `a[mid]` and `a[mid+1]` to `a[hi]`, replace with sorted subarray `a[lo]` to `a[hi].`
Q. How to combine two sorted subarrays into a sorted whole.
A. Use an auxiliary array.

Abstract in-place merge trace

<table>
<thead>
<tr>
<th>k</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>a[]</td>
<td>E</td>
<td>E</td>
<td>G</td>
<td>M</td>
<td>R</td>
<td>A</td>
<td>C</td>
<td>E</td>
<td>R</td>
<td>T</td>
</tr>
<tr>
<td>aux[]</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>input</th>
<th>copy</th>
<th>merged result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>A C</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>A C E</td>
<td>E</td>
</tr>
<tr>
<td>3</td>
<td>A C E E</td>
<td>E</td>
</tr>
<tr>
<td>4</td>
<td>A C E E E</td>
<td>E</td>
</tr>
<tr>
<td>5</td>
<td>A C E E E G</td>
<td>G</td>
</tr>
<tr>
<td>6</td>
<td>A C E E E G M</td>
<td>M</td>
</tr>
<tr>
<td>7</td>
<td>A C E E E G M R</td>
<td>R</td>
</tr>
<tr>
<td>8</td>
<td>A C E E E G M R R</td>
<td>R</td>
</tr>
<tr>
<td>9</td>
<td>A C E E E G M R R T</td>
<td>T</td>
</tr>
</tbody>
</table>

```python
def merge(a, aux, i, j, k):
    while i < j:
        if a[i] <= a[j]:
            aux[k] = a[i]
            i += 1
        else:
            aux[k] = a[j]
            j -= 1
        k -= 1
```
private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi) {
 assert isSorted(a, lo, mid); // precondition: a[lo..mid] sorted
 assert isSorted(a, mid+1, hi); // precondition: a[mid+1..hi] sorted

 for (int k = lo; k <= hi; k++)
 aux[k] = a[k];

 int i = lo, j = mid+1;
 for (int k = lo; k <= hi; k++)
 {
 if (i > mid) a[k] = aux[j++];
 else if (j > hi) a[k] = aux[i++];
 else if (less(aux[j], aux[i])) a[k] = aux[j++];
 else a[k] = aux[i++];
 }

 assert isSorted(a, lo, hi); // postcondition: a[lo..hi] sorted
}

assert isSorted(a, lo, hi); // postcondition: a[lo..hi] sorted
public class Merge
{
 private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)
 { /* as before */ }

 private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
 {
 if (hi <= lo) return;
 int mid = lo + (hi - lo) / 2;
 sort (a, aux, lo, mid);
 sort (a, aux, mid+1, hi);
 merge(a, aux, lo, mid, hi);
 }

 public static void sort(Comparable[] a)
 {
 aux = new Comparable[a.length];
 sort(a, aux, 0, a.length - 1);
 }
}
Mergesort: trace

<table>
<thead>
<tr>
<th>lo</th>
<th>hi</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>0</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>M E R G E S O R T E X A M P L E</td>
</tr>
<tr>
<td>E M R G E S O R T E X A M P L E</td>
</tr>
<tr>
<td>E M G R E S O R T E X A M P L E</td>
</tr>
<tr>
<td>E G M R E S O R T E X A M P L E</td>
</tr>
<tr>
<td>E G M R E S O R T E X A M P L E</td>
</tr>
<tr>
<td>E G M R E S O R T E X A M P L E</td>
</tr>
<tr>
<td>E G M R E S O R T E X A M P L E</td>
</tr>
<tr>
<td>E G M R E O R S T E X A M P L E</td>
</tr>
<tr>
<td>E E G M O R R S T E X A M P L E</td>
</tr>
<tr>
<td>E E G M O R R S E T X A M P L E</td>
</tr>
<tr>
<td>E E G M O R R S E T A X M P L E</td>
</tr>
<tr>
<td>E E G M O R R S A E T X M P L E</td>
</tr>
<tr>
<td>E E G M O R R S A E T X M P E L</td>
</tr>
<tr>
<td>E E G M O R R S A E T X E L M P</td>
</tr>
<tr>
<td>E E G M O R R S A E E L M P T X</td>
</tr>
<tr>
<td>A E E E E E G L M M O P R R S T X</td>
</tr>
</tbody>
</table>

Trace of merge results for top-down mergesort

result after recursive call
Mergesort: animation

50 random items

http://www.sorting-algorithms.com/merge-sort
Mergesort: animation

50 reverse-sorted items

http://www.sorting-algorithms.com/merge-sort
Mergesort: empirical analysis

Running time estimates:
- Laptop executes 10^8 compares/second.
- Supercomputer executes 10^{12} compares/second.

<table>
<thead>
<tr>
<th>computer</th>
<th>thousand</th>
<th>million</th>
<th>billion</th>
<th>thousand</th>
<th>million</th>
<th>billion</th>
</tr>
</thead>
<tbody>
<tr>
<td>home</td>
<td>instant</td>
<td>2.8 hours</td>
<td>317 years</td>
<td>instant</td>
<td>1 second</td>
<td>18 min</td>
</tr>
<tr>
<td>super</td>
<td>instant</td>
<td>1 second</td>
<td>1 week</td>
<td>instant</td>
<td>instant</td>
<td>instant</td>
</tr>
</tbody>
</table>

Bottom line. Good algorithms are better than supercomputers.
Proposition. Mergesort uses at most $N \lg N$ compares and $6N \lg N$ array accesses to sort any array of size N.

Pf sketch. The number of compares $C(N)$ and array accesses $A(N)$ to mergesort an array of size N satisfy the recurrences:

- $C(N) \leq C(\lceil N/2 \rceil) + C(\lfloor N/2 \rfloor) + N$ for $N > 1$, with $C(1) = 0$.
- $A(N) \leq A(\lceil N/2 \rceil) + A(\lfloor N/2 \rfloor) + 6N$ for $N > 1$, with $A(1) = 0$.

We solve the recurrence when N is a power of 2.

$$D(N) = 2D(N/2) + N,$$ for $N > 1$, with $D(1) = 0.$
Proposition. If $D(N)$ satisfies $D(N) = 2 \cdot D(N/2) + N$ for $N > 1$, with $D(1) = 0$, then $D(N) = N \lg N$.

Pf 1. [assuming N is a power of 2]

```
N     = N
2 (N/2) = N
4 (N/4) = N
...
2^k (N/2^k) = N
...
N/2 (2) = N
```

$N \lg N$
Proposition. If \(D(N) \) satisfies \(D(N) = 2 D(N/2) + N \) for \(N > 1 \), with \(D(1) = 0 \), then \(D(N) = N \log N \).

Pf 2. [assuming \(N \) is a power of 2]

\[
\begin{align*}
D(N) &= 2 D(N/2) + N \\
D(N) / N &= 2 D(N/2) / N + 1 \\
 &= D(N/2) / (N/2) + 1 \\
 &= D(N/4) / (N/4) + 1 + 1 \\
 &= D(N/8) / (N/8) + 1 + 1 + 1 \\
 &\vdots \\
 &= D(N/N) / (N/N) + 1 + 1 + \ldots + 1 \\
 &= \log N
\end{align*}
\]

given
divide both sides by \(N \)
algebra
apply to first term
apply to first term again
stop applying, \(D(1) = 0 \)
Proposition. If $D(N)$ satisfies $D(N) = 2D(N/2) + N$ for $N > 1$, with $D(1) = 0$, then $D(N) = N \log N$.

Pf 3. [assuming N is a power of 2]

- Base case: $N = 1$.
- Inductive hypothesis: $D(N) = N \log N$.
- Goal: show that $D(2N) = (2N) \log (2N)$.

\[
D(2N) = 2D(N) + 2N
\]
\[
= 2N \log N + 2N
\]
\[
= 2N (\log (2N) - 1) + 2N
\]
\[
= 2N \log (2N)
\]

QED
Mergesort analysis: memory

Proposition. Mergesort uses extra space proportional to N.

Pf. The array $\text{aux}[]$ needs to be of size N for the last merge.

Def. A sorting algorithm is in-place if it uses $\leq c \log N$ extra memory.

Ex. Insertion sort, selection sort, shellsort.

Challenge for the bored. In-place merge. [Kronrod, 1969]
Mergesort: practical improvements

Use insertion sort for small subarrays.

- Mergesort has too much overhead for tiny subarrays.
- Cutoff to insertion sort for \(\approx 7 \) items.

```java
private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi) {
    if (hi <= lo + CUTOFF - 1) Insertion.sort(a, lo, hi);
    int mid = lo + (hi - lo) / 2;
    sort (a, aux, lo, mid);
    sort (a, aux, mid+1, hi);
    merge(a, aux, lo, mid, hi);
}
```
Stop if already sorted.

- Is biggest item in first half ≤ smallest item in second half?
- Helps for partially-ordered arrays.

```java
private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi) {
    if (hi <= lo) return;
    int mid = lo + (hi - lo) / 2;
    sort(a, aux, lo, mid);
    sort(a, aux, mid+1, hi);
    if (!less(a[mid+1], a[mid])) return;
    merge(a, aux, lo, mid, hi);
}
```
Mergesort: practical improvements

Eliminate the copy to the auxiliary array. Save time (but not space) by switching the role of the input and auxiliary array in each recursive call.

```java
private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi) {
    int i = lo, j = mid+1;
    for (int k = lo; k <= hi; k++) {
        if (i > mid) aux[k] = a[j++];
        else if (j > hi) aux[k] = a[i++];
        else if (less(a[j], a[i])) aux[k] = a[j++];
        else aux[k] = a[i++];
    }
}

private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi) {
    if (hi <= lo) return;
    int mid = lo + (hi - lo) / 2;
    sort (aux, a, lo, mid);
    sort (aux, a, mid+1, hi);
    merge(aux, a, lo, mid, hi);
}
```

merge from a[] to aux[]

switch roles of aux[] and a[]
Mergesort: visualization

- first subarray
- second subarray
- first merge
- first half sorted
- second half sorted
- result
Bottom-up mergesort

Basic plan.
- Pass through array, merging subarrays of size 1.
- Repeat for subarrays of size 2, 4, 8, 16,

Bottom line. No recursion needed!
Bottom-up mergesort: Java implementation

```java
public class MergeBU {
    private static Comparable[] aux;

    private static void merge(Comparable[] a, int lo, int mid, int hi) {
        /* as before */
    }

    public static void sort(Comparable[] a) {
        int N = a.length;
        aux = new Comparable[N];
        for (int sz = 1; sz < N; sz = sz+sz) {
            for (int lo = 0; lo < N-sz; lo += sz+sz) {
                merge(a, lo, lo+sz-1, Math.min(lo+sz+sz-1, N-1));
            }
        }
    }
}
```

Bottom line. Concise industrial-strength code, if you have the space.
Bottom-up mergesort: visual trace
Bottom-up mergesort: visual trace

http://bl.ocks.org/mbostock/39566aca95eb03ddd526
Bottom-up merge sort: visual trace

http://bl.ocks.org/mbostock/e65d9895da07c57e94bd
Complexity of sorting

Computational complexity. Framework to study efficiency of algorithms for solving a particular problem \(X \).

Model of computation. Allowable operations.

Cost model. Operation count(s).

Upper bound. Cost guarantee provided by some algorithm for \(X \).

Lower bound. Proven limit on cost guarantee of all algorithms for \(X \).

Optimal algorithm. Algorithm with best possible cost guarantee for \(X \).

Example: sorting.

- Model of computation: decision tree.
- Cost model: \# compares.
- Upper bound: \(\sim N \log N \) from mergesort.
- Lower bound: ?

\(\text{lower bound} \sim \text{upper bound} \)

\(\text{can access information only through compares} \) (e.g., Java Comparable framework)
Decision tree (for 3 distinct items a, b, and c)

- a < b
 - yes
 - b < c
 - yes
 - a b c
 - yes
 - a c b
 - no
 - c a b
 - no
 - a < c
 - yes
 - b a c
 - no
 - b c a

- height of tree = worst-case number of compares

- code between compares (e.g., sequence of exchanges)

- (at least) one leaf for each possible ordering
Proposition. Any compare-based sorting algorithm must use at least \(\lg (N!) \sim N \lg N \) compares in the worst-case.

Pf.
- Assume array consists of \(N \) distinct values \(a_1 \) through \(a_N \).
- Worst case dictated by height \(h \) of decision tree.
- Binary tree of height \(h \) has at most \(2^h \) leaves.
- \(N! \) different orderings \(\Rightarrow \) at least \(N! \) leaves.
Compare-based lower bound for sorting

Proposition. Any compare-based sorting algorithm must use at least
\(\lg (N!) \sim N \lg N \) compares in the worst-case.

Pf.

• Assume array consists of \(N \) distinct values \(a_1 \) through \(a_N \).
• Worst case dictated by height \(h \) of decision tree.
• Binary tree of height \(h \) has at most \(2^h \) leaves.
• \(N! \) different orderings \(\Rightarrow \) at least \(N! \) leaves.

\[
2^h \geq \# \text{ leaves} \geq N! \\
\Rightarrow h \geq \lg (N!) \sim N \lg N
\]

Stirling's formula
Complexity of sorting

Model of computation. Allowable operations.
Cost model. Operation count(s).
Upper bound. Cost guarantee provided by some algorithm for X.
Lower bound. Proven limit on cost guarantee of all algorithms for X.
Optimal algorithm. Algorithm with best possible cost guarantee for X.

Example: sorting.
- Model of computation: decision tree.
- Cost model: $\#$ compares.
- Upper bound: $\sim N \lg N$ from mergesort.
- Lower bound: $\sim N \lg N$.
- Optimal algorithm = mergesort.

First goal of algorithm design: optimal algorithms.
Other operations? Mergesort is optimal with respect to number of compares (e.g., but not with respect to number of array accesses).

Space?
- Mergesort is not optimal with respect to space usage.
- Insertion sort, selection sort, and shellsort are space-optimal.

Challenge. Find an algorithm that is both time- and space-optimal.
[stay tuned]

Lessons. Use theory as a guide.
Ex. Don't try to design sorting algorithm that guarantees $\frac{1}{2}N \lg N$ compares.
Lower bound may not hold if the algorithm has information about:

- The initial order of the input.
- The distribution of key values.
- The representation of the keys.

Partially-ordered arrays. Depending on the initial order of the input, we may not need $N \lg N$ compares.

Duplicate keys. Depending on the input distribution of duplicates, we may not need $N \lg N$ compares.

Digital properties of keys. We can use digit/character compares instead of key compares for numbers and strings.
Sort music library by artist name
Sort music library by song name

<table>
<thead>
<tr>
<th>Name</th>
<th>Artist</th>
<th>Time</th>
<th>Album</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alive</td>
<td>Pearl Jam</td>
<td>5:41</td>
<td>Ten</td>
</tr>
<tr>
<td>All Over The World</td>
<td>Pixies</td>
<td>5:27</td>
<td>Bossanova</td>
</tr>
<tr>
<td>All Through The Night</td>
<td>Cyndi Lauper</td>
<td>4:30</td>
<td>She's So Unusual</td>
</tr>
<tr>
<td>Allison Road</td>
<td>Gin Blossoms</td>
<td>3:19</td>
<td>New Miserable Experience</td>
</tr>
<tr>
<td>Ama, Ama, Ama Y Ensancha El</td>
<td>Extremoduro</td>
<td>2:34</td>
<td>Deltoya (1992)</td>
</tr>
<tr>
<td>And We Danced</td>
<td>Hooters</td>
<td>3:50</td>
<td>Nervous Night</td>
</tr>
<tr>
<td>As I Lay Me Down</td>
<td>Sophie B. Hawkins</td>
<td>4:09</td>
<td>Whaler</td>
</tr>
<tr>
<td>Atomic</td>
<td>Blondie</td>
<td>3:50</td>
<td>Atomic: The Very Best Of Blondie</td>
</tr>
<tr>
<td>Automatic Lover</td>
<td>Jay-Jay Johanson</td>
<td>4:19</td>
<td>Antenna</td>
</tr>
<tr>
<td>Baba O'Reiley</td>
<td>The Who</td>
<td>5:01</td>
<td>Who's Better, Who's Best</td>
</tr>
<tr>
<td>Beautiful Life</td>
<td>Ace Of Base</td>
<td>3:40</td>
<td>The Bridge</td>
</tr>
<tr>
<td>Beds Of Roses</td>
<td>Bon Jovi</td>
<td>6:35</td>
<td>Cross Road</td>
</tr>
<tr>
<td>Black</td>
<td>Pearl Jam</td>
<td>5:44</td>
<td>Ten</td>
</tr>
<tr>
<td>Bleed American</td>
<td>Jimmy Eat World</td>
<td>3:04</td>
<td>Bleed American</td>
</tr>
<tr>
<td>Borderline</td>
<td>Madonna</td>
<td>4:00</td>
<td>The Immaculate Collection</td>
</tr>
<tr>
<td>Born To Run</td>
<td>Bruce Springsteen</td>
<td>4:30</td>
<td>Born To Run</td>
</tr>
<tr>
<td>Both Sides Of The Story</td>
<td>Phil Collins</td>
<td>6:43</td>
<td>Both Sides</td>
</tr>
<tr>
<td>Bouncing Around The Room</td>
<td>Phish</td>
<td>4:09</td>
<td>A Live One (Disc 1)</td>
</tr>
<tr>
<td>Boys Don't Cry</td>
<td>The Cure</td>
<td>2:35</td>
<td>Starting At The Sea: The Singles 1979–1985</td>
</tr>
<tr>
<td>Brat</td>
<td>Green Day</td>
<td>1:43</td>
<td>Insomniac</td>
</tr>
<tr>
<td>Breakdown</td>
<td>Deerheart</td>
<td>3:40</td>
<td>Deerheart</td>
</tr>
<tr>
<td>Bring Me To Life (Kevin Roen Mix)</td>
<td>Evanescence Vs. Pa...</td>
<td>9:48</td>
<td></td>
</tr>
<tr>
<td>Californication</td>
<td>Red Hot Chili Peppers</td>
<td>1:40</td>
<td></td>
</tr>
<tr>
<td>Call Me</td>
<td>Blondie</td>
<td>3:33</td>
<td>Atomic: The Very Best Of Blondie</td>
</tr>
<tr>
<td>Can't Get You Out Of My Head</td>
<td>Kylie Minogue</td>
<td>3:50</td>
<td>Fever</td>
</tr>
<tr>
<td>Celebration</td>
<td>Kool & The Gang</td>
<td>3:45</td>
<td>Time Life Music Sounds Of The Seventies - 1977</td>
</tr>
<tr>
<td>Chairs Chairs</td>
<td>Sultanslea Effects</td>
<td>5:11</td>
<td>Bombay Dreams</td>
</tr>
</tbody>
</table>
Comparable interface: review

Comparable interface: sort using a type's natural order.

```java
public class Date implements Comparable<Date> {
    private final int month, day, year;

    public Date(int m, int d, int y) {
        month = m;
        day = d;
        year = y;
    }

    public int compareTo(Date that) {
        if (this.year < that.year) return -1;
        if (this.year > that.year) return +1;
        if (this.month < that.month) return -1;
        if (this.month > that.month) return +1;
        if (this.day < that.day) return -1;
        if (this.day > that.day) return +1;
        return 0;
    }
}
```
Comparator interface: sort using an alternate order.

Required property. Must be a total order.

Ex. Sort strings by:
- Natural order. Now is the time
- Case insensitive. is Now the time
- Spanish. café cafetero cuarto churro nube ñoño
- British phone book. McKinley Mackintosh
- ...
Comparator interface: system sort

To use with Java system sort:

- Create `Comparator` object.
- Pass as second argument to `Arrays.sort()`.

Bottom line. Decouples the definition of the data type from the definition of what it means to compare two objects of that type.
 Comparator interface: using with our sorting libraries

To support comparators in our sort implementations:

• **Use** `Object` instead of `Comparable`.
• **Pass** comparator to `sort()` and `less()` and use it in `less()`.

insertion sort using a Comparator

```java
public static void sort(Object[] a, Comparator comparator)
{
    int N = a.length;
    for (int i = 0; i < N; i++)
        for (int j = i; j > 0 && less(comparator, a[j], a[j-1]); j--)
            exch(a, j, j-1);
}

private static boolean less(Comparator c, Object v, Object w)
{ return c.compare(v, w) < 0; }

private static void exch(Object[] a, int i, int j)
{ Object swap = a[i]; a[i] = a[j]; a[j] = swap; }
```
To implement a comparator:

- Define a (nested) class that implements the `Comparator` interface.
- Implement the `compare()` method.

```java
public class Student {
    public static final Comparator<Student> BY_NAME = new ByName();
    public static final Comparator<Student> BY_SECTION = new BySection();
    private final String name;
    private final int section;
    ...

    private static class ByName implements Comparator<Student> {
        public int compare(Student v, Student w) {
            return v.name.compareTo(w.name);  
        }
    }

    private static class BySection implements Comparator<Student> {
        public int compare(Student v, Student w) {
            return v.section - w.section;  
        }
    }
}
```

This technique works here since no danger of overflow.
To implement a comparator:

- Define a (nested) class that implements the `Comparator` interface.
- Implement the `compare()` method.

```java
Arrays.sort(a, Student.BY_NAME);
```

```java
Arrays.sort(a, Student.BY_SECTION);
```

<table>
<thead>
<tr>
<th>Name</th>
<th>ID</th>
<th>Grade</th>
<th>Phone</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrews</td>
<td>3</td>
<td>A</td>
<td>664-480-0023</td>
<td>097 Little</td>
</tr>
<tr>
<td>Battle</td>
<td>4</td>
<td>C</td>
<td>874-088-1212</td>
<td>121 Whitman</td>
</tr>
<tr>
<td>Chen</td>
<td>3</td>
<td>A</td>
<td>991-878-4944</td>
<td>308 Blair</td>
</tr>
<tr>
<td>Fox</td>
<td>3</td>
<td>A</td>
<td>884-232-5341</td>
<td>11 Dickinson</td>
</tr>
<tr>
<td>Furia</td>
<td>1</td>
<td>A</td>
<td>766-093-9873</td>
<td>101 Brown</td>
</tr>
<tr>
<td>Gazsi</td>
<td>4</td>
<td>B</td>
<td>766-093-9873</td>
<td>101 Brown</td>
</tr>
<tr>
<td>Kanaga</td>
<td>3</td>
<td>B</td>
<td>898-122-9643</td>
<td>22 Brown</td>
</tr>
<tr>
<td>Rohde</td>
<td>2</td>
<td>A</td>
<td>232-343-5555</td>
<td>343 Forbes</td>
</tr>
<tr>
<td>Furia</td>
<td>1</td>
<td>A</td>
<td>766-093-9873</td>
<td>101 Brown</td>
</tr>
<tr>
<td>Rohde</td>
<td>2</td>
<td>A</td>
<td>232-343-5555</td>
<td>343 Forbes</td>
</tr>
<tr>
<td>Andrews</td>
<td>3</td>
<td>A</td>
<td>664-480-0023</td>
<td>097 Little</td>
</tr>
<tr>
<td>Chen</td>
<td>3</td>
<td>A</td>
<td>991-878-4944</td>
<td>308 Blair</td>
</tr>
<tr>
<td>Fox</td>
<td>3</td>
<td>A</td>
<td>884-232-5341</td>
<td>11 Dickinson</td>
</tr>
<tr>
<td>Kanaga</td>
<td>3</td>
<td>B</td>
<td>898-122-9643</td>
<td>22 Brown</td>
</tr>
<tr>
<td>Battle</td>
<td>4</td>
<td>C</td>
<td>874-088-1212</td>
<td>121 Whitman</td>
</tr>
<tr>
<td>Gazsi</td>
<td>4</td>
<td>B</td>
<td>766-093-9873</td>
<td>101 Brown</td>
</tr>
</tbody>
</table>
Polar order. Given a point p, order points by the polar angle they make with p.

Arrays.sort(points, p.POLAR_ORDER);

Application. Graham scan algorithm for convex hull. [see previous lecture]
Polar order. Given a point p, order points by the polar angle θ they make with p.

A ccw-based solution.
- If q_1 is above p and q_2 is below p, then q_1 makes smaller polar angle.
Comparator interface: polar order

```java
public class Point2D {
    public final Comparator<Point2D> POLAR_ORDER = new PolarOrder();
    private final double x, y;
    ...

    private static int ccw(Point2D a, Point2D b, Point2D c) {
        /* as in previous lecture */
    }

    private class PolarOrder implements Comparator<Point2D> {
        public int compare(Point2D q1, Point2D q2) {
            double dx1 = q1.x - x;
            double dy1 = q1.y - y;

            if      (dy1 == 0 && dy2 == 0) { ... }  // p, q1, q2 horizontal
            else if (dy1 >= 0 && dy2 < 0) return -1;  // q1 above p; q2 below p
            else if (dy2 >= 0 && dy1 < 0) return +1;  // q1 below p; q2 above p
            else return -ccw(Point2D.this, q1, q2);  // both above or below p
            return -ccw(Point2D.this, q1, q2); // to access invoking point from within inner class
        }
    }
}
```
A typical application. First, sort by name; then sort by section.

```java
Selection.sort(a, Student.BY_NAME);

<table>
<thead>
<tr>
<th>Name</th>
<th>Section</th>
<th>Phone</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrews</td>
<td>3</td>
<td>664-480-0023</td>
<td>097 Little</td>
</tr>
<tr>
<td>Battle</td>
<td>4</td>
<td>874-088-1212</td>
<td>121 Whitman</td>
</tr>
<tr>
<td>Chen</td>
<td>3</td>
<td>991-878-4944</td>
<td>308 Blair</td>
</tr>
<tr>
<td>Fox</td>
<td>3</td>
<td>884-232-5341</td>
<td>11 Dickinson</td>
</tr>
<tr>
<td>Furia</td>
<td>1</td>
<td>766-093-9873</td>
<td>101 Brown</td>
</tr>
<tr>
<td>Gazsi</td>
<td>4</td>
<td>766-093-9873</td>
<td>101 Brown</td>
</tr>
<tr>
<td>Kanaga</td>
<td>3</td>
<td>898-122-9643</td>
<td>22 Brown</td>
</tr>
<tr>
<td>Rohde</td>
<td>2</td>
<td>232-343-5555</td>
<td>343 Forbes</td>
</tr>
</tbody>
</table>

Selection.sort(a, Student.BY_SECTION);

<table>
<thead>
<tr>
<th>Name</th>
<th>Section</th>
<th>Phone</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Furia</td>
<td>1</td>
<td>766-093-9873</td>
<td>101 Brown</td>
</tr>
<tr>
<td>Rohde</td>
<td>2</td>
<td>232-343-5555</td>
<td>343 Forbes</td>
</tr>
<tr>
<td>Chen</td>
<td>3</td>
<td>991-878-4944</td>
<td>308 Blair</td>
</tr>
<tr>
<td>Fox</td>
<td>3</td>
<td>884-232-5341</td>
<td>11 Dickinson</td>
</tr>
<tr>
<td>Andrews</td>
<td>3</td>
<td>664-480-0023</td>
<td>097 Little</td>
</tr>
<tr>
<td>Kanaga</td>
<td>3</td>
<td>898-122-9643</td>
<td>22 Brown</td>
</tr>
<tr>
<td>Gazsi</td>
<td>4</td>
<td>766-093-9873</td>
<td>101 Brown</td>
</tr>
<tr>
<td>Battle</td>
<td>4</td>
<td>874-088-1212</td>
<td>121 Whitman</td>
</tr>
</tbody>
</table>

@#%&@! Students in section 3 no longer sorted by name.
**Q. Which sorts are stable?**

**A. Insertion sort and mergesort (but not selection sort or shellsort).**

<table>
<thead>
<tr>
<th>sorted by time</th>
<th>sorted by location (not stable)</th>
<th>sorted by location (stable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicago 09:00:00</td>
<td>Chicago 09:25:52</td>
<td>Chicago 09:00:00</td>
</tr>
<tr>
<td>Phoenix 09:00:03</td>
<td>Chicago 09:03:13</td>
<td>Chicago 09:00:59</td>
</tr>
<tr>
<td>Houston 09:00:13</td>
<td>Chicago 09:21:05</td>
<td>Chicago 09:03:13</td>
</tr>
<tr>
<td>Chicago 09:00:59</td>
<td>Chicago 09:19:46</td>
<td>Chicago 09:19:32</td>
</tr>
<tr>
<td>Houston 09:01:10</td>
<td>Chicago 09:19:32</td>
<td>Chicago 09:19:46</td>
</tr>
<tr>
<td>Chicago 09:03:13</td>
<td>Chicago 09:00:00</td>
<td>Chicago 09:21:05</td>
</tr>
<tr>
<td>Seattle 09:10:11</td>
<td>Chicago 09:35:21</td>
<td>Chicago 09:01:10</td>
</tr>
<tr>
<td>Seattle 09:10:25</td>
<td>Chicago 09:00:59</td>
<td>Phoenix 09:00:03</td>
</tr>
<tr>
<td>Phoenix 09:14:25</td>
<td>Houston 09:01:10</td>
<td>Phoenix 09:14:25</td>
</tr>
<tr>
<td>Chicago 09:19:32</td>
<td>Houston 09:00:13</td>
<td>Phoenix 09:01:10</td>
</tr>
<tr>
<td>Chicago 09:19:46</td>
<td>Phoenix 09:37:44</td>
<td>Phoenix 09:00:03</td>
</tr>
<tr>
<td>Chicago 09:21:05</td>
<td>Phoenix 09:00:03</td>
<td>Phoenix 09:14:25</td>
</tr>
<tr>
<td>Seattle 09:22:54</td>
<td>Seattle 09:10:25</td>
<td>Seattle 09:10:11</td>
</tr>
<tr>
<td>Chicago 09:25:52</td>
<td>Seattle 09:36:14</td>
<td>Seattle 09:10:25</td>
</tr>
<tr>
<td>Seattle 09:36:14</td>
<td>Seattle 09:10:11</td>
<td>Seattle 09:22:54</td>
</tr>
<tr>
<td>Phoenix 09:37:44</td>
<td>Seattle 09:22:54</td>
<td>Seattle 09:36:14</td>
</tr>
</tbody>
</table>

- **sorted by time**
- **sorted by location (not stable)**
- **sorted by location (stable)**

- **no longer sorted by time**
- **still sorted by time**

**Stability when sorting on a second key**
Proposition. Insertion sort is stable.

```java
class Insertion {
 public static void sort(Comparable[] a) {
 int N = a.length;
 for (int i = 0; i < N; i++)
 for (int j = i; j > 0 && less(a[j], a[j-1]); j--)
 exch(a, j, j-1);
 }
}
```

<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>B1</td>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>B2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>A1</td>
<td>B1</td>
<td>A2</td>
<td>A3</td>
<td>B2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>A1</td>
<td>A2</td>
<td>B1</td>
<td>A3</td>
<td>B2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>B1</td>
<td>B2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>B1</td>
<td>B2</td>
</tr>
</tbody>
</table>

A1 A2 A3 B1 B2
Proposition. Selection sort is not stable.

Pf by counterexample. Long-distance exchange might move an item past some equal item.
Stability: shellsort

Proposition. Shellsort sort is not stable.

```java
public class Shell {
 public static void sort(Comparable[] a) {
 int N = a.length;
 int h = 1;
 while (h < N/3) h = 3*h + 1;
 while (h >= 1) {
 for (int i = h; i < N; i++) {
 for (int j = i; j > h && less(a[j], a[j-h]); j -= h)
 exch(a, j, j-h);
 }
 h = h/3;
 }
 }
}
```

<table>
<thead>
<tr>
<th>h</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B1</td>
<td>B2</td>
<td>B3</td>
<td>B4</td>
<td>A1</td>
</tr>
<tr>
<td>4</td>
<td>A1</td>
<td>B2</td>
<td>B3</td>
<td>B4</td>
<td>B1</td>
</tr>
<tr>
<td>1</td>
<td>A1</td>
<td>B2</td>
<td>B3</td>
<td>B4</td>
<td>B1</td>
</tr>
<tr>
<td></td>
<td>A1</td>
<td>B2</td>
<td>B3</td>
<td>B4</td>
<td>B1</td>
</tr>
</tbody>
</table>
**Proposition.** Mergesort is **stable**.

```java
public class Merge {
 private static Comparable[] aux;
 private static void merge(Comparable[] a, int lo, int mid, int hi) {
 /* as before */
 }

 private static void sort(Comparable[] a, int lo, int hi) {
 if (hi <= lo) return;
 int mid = lo + (hi - lo) / 2;
 sort(a, lo, mid);
 sort(a, mid+1, hi);
 merge(a, lo, mid, hi);
 }

 public static void sort(Comparable[] a) {
 /* as before */
 }
}
```

**Pf.** Suffices to verify that merge operation is stable.
Proposition. Merge operation is stable.

Pf. Takes from left subarray if equal keys.