Acknowledgement: The course slides are adapted from the slides prepared by R. Sedgewick and K. Wayne of Princeton University.
Quicksort

Basic plan.

• **Shuffle** the array.
• **Partition** so that, for some \(j \)
 - entry \(a[j] \) is in place
 - no larger entry to the left of \(j \)
 - no smaller entry to the right of \(j \)
• **Sort** each piece recursively.
Shuffling

• Shuffling is the process of rearranging an array of elements randomly.
• A good shuffling algorithm is unbiased, where every ordering is equally likely.
• e.g. the Fisher–Yates shuffle (aka. the Knuth shuffle)

http://bl.ocks.org/mbostock/39566aca95eb03ddd526
Quicksort partitioning

Repeat until i and j pointers cross.

- Scan i from left to right so long as $a[i] < a[lo]$.
- Scan j from right to left so long as $a[j] > a[lo]$.
- Exchange $a[i]$ with $a[j]$.

```
K R A T E L E P U I M Q C X O S
```

stop i scan because $a[i] >= a[lo]$
Quicksort partitioning

Repeat until i and j pointers cross.

- Scan i from left to right so long as $a[i] < a[lo]$.
- Scan j from right to left so long as $a[j] > a[lo]$.
- Exchange $a[i]$ with $a[j]$.
Quicksort partitioning

Repeat until i and j pointers cross.

- Scan i from left to right so long as $a[i] < a[lo]$.
- Scan j from right to left so long as $a[j] > a[lo]$.
- Exchange $a[i]$ with $a[j]$.
Quicksort partitioning

Repeat until \(i \) and \(j \) pointers cross.

- Scan \(i \) from left to right so long as \(a[i] < a[lo] \).
- Scan \(j \) from right to left so long as \(a[j] > a[lo] \).
- Exchange \(a[i] \) with \(a[j] \).

\[\begin{array}{cccccccccccccccc}
K & R & A & T & E & L & E & P & U & I & M & Q & C & X & O & S \\
\uparrow & \uparrow & i & j \\
lo &
\end{array}\]

stop \(j \) scan and exchange \(a[i] \) with \(a[j] \)
Quicksort partitioning

Repeat until i and j pointers cross.

- Scan i from left to right so long as $a[i] < a[lo]$.
- Scan j from right to left so long as $a[j] > a[lo]$.
- Exchange $a[i]$ with $a[j]$.
Quicksort partitioning

Repeat until \(i \) and \(j \) pointers cross.
- Scan \(i \) from left to right so long as \(a[i] < a[lo] \).
- Scan \(j \) from right to left so long as \(a[j] > a[lo] \).
- Exchange \(a[i] \) with \(a[j] \).
Quicksort partitioning

Repeat until \(i \) and \(j \) pointers cross.

- Scan \(i \) from left to right so long as \(a[i] < a[lo] \).
- Scan \(j \) from right to left so long as \(a[j] > a[lo] \).
- Exchange \(a[i] \) with \(a[j] \).

\[
\begin{array}{cccccccccc}
K & C & A & T & E & L & E & P & U & I & M & Q & R & X & O & S \\
\uparrow & \uparrow \\
lo & i & j
\end{array}
\]

stop \(i \) scan because \(a[i] \geq a[lo] \)
Quicksort partitioning

Repeat until \(i \) and \(j \) pointers cross.
- Scan \(i \) from left to right so long as \(a[i] < a[lo] \).
- Scan \(j \) from right to left so long as \(a[j] > a[lo] \).
- Exchange \(a[i] \) with \(a[j] \).
Quicksort partitioning

Repeat until \(i \) and \(j \) pointers cross.

- Scan \(i \) from left to right so long as \(a[i] < a[lo] \).
- Scan \(j \) from right to left so long as \(a[j] > a[lo] \).
- Exchange \(a[i] \) with \(a[j] \).
Quicksort partitioning

Repeat until i and j pointers cross.

- Scan i from left to right so long as a[i] < a[lo].
- Scan j from right to left so long as a[j] > a[lo].
- Exchange a[i] with a[j].

stop j scan and exchange a[i] with a[j]
Quicksort partitioning

Repeat until i and j pointers cross.

- Scan i from left to right so long as a[i] < a[lo].
- Scan j from right to left so long as a[j] > a[lo].
- Exchange a[i] with a[j].
Quicksort partitioning

Repeat until i and j pointers cross.

- Scan i from left to right so long as $a[i] < a[lo]$.
- Scan j from right to left so long as $a[j] > a[lo]$.
- Exchange $a[i]$ with $a[j]$.
Quicksort partitioning

Repeat until i and j pointers cross.

- Scan i from left to right so long as \(a[i] < a[lo]\).
- Scan j from right to left so long as \(a[j] > a[lo]\).
- Exchange \(a[i]\) with \(a[j]\).

\[\begin{array}{ccccccccccc}
K & C & A & I & E & L & E & P & U & T & M & Q & R & X & O & S \\
\uparrow & & & & & & & & & & & & & & \\
lo & & i & & j \\
\end{array}\]

stop i scan because \(a[i] \geq a[lo]\)
Quicksort partitioning

Repeat until i and j pointers cross.

- Scan i from left to right so long as $a[i] < a[lo]$.
- Scan j from right to left so long as $a[j] > a[lo]$.
- Exchange $a[i]$ with $a[j]$.

\[
\begin{array}{cccccccccccccccccc}
 K & C & A & I & E & L & E & P & U & T & M & Q & R & X & O & S \\
 \uparrow & \uparrow & \uparrow \\
 lo & i & j
\end{array}
\]
Repete until i and j pointers cross.

- Scan i from left to right so long as a[i] < a[lo].
- Scan j from right to left so long as a[j] > a[lo].
- Exchange a[i] with a[j].
Quicksort partitioning

Repeat until \(i \) and \(j \) pointers cross.

- Scan \(i \) from left to right so long as \(a[i] < a[lo] \).
- Scan \(j \) from right to left so long as \(a[j] > a[lo] \).
- Exchange \(a[i] \) with \(a[j] \).

\[K \quad C \quad A \quad I \quad E \quad L \quad E \quad P \quad U \quad T \quad M \quad Q \quad R \quad X \quad O \quad S \]

\[\uparrow \quad \uparrow \quad \uparrow \]

\[\text{lo} \quad i \quad j \]

stop \(j \) scan and exchange \(a[i] \) with \(a[j] \)
Repeat until i and j pointers cross.

- Scan i from left to right so long as $a[i] < a[lo]$.
- Scan j from right to left so long as $a[j] > a[lo]$.
- Exchange $a[i]$ with $a[j]$.
Quicksort partitioning

Repeat until i and j pointers cross.

- Scan i from left to right so long as $a[i] < a[lo]$.
- Scan j from right to left so long as $a[j] > a[lo]$.
- Exchange $a[i]$ with $a[j]$.

\[
\begin{array}{ccccccccccccccc}
K & C & A & I & E & E & L & P & U & T & M & Q & R & X & O & S \\
\uparrow & \uparrow \\
lo & i & j & lo
\end{array}
\]

\text{stop i scan because } a[i] \geq a[lo]
Quicksort partitioning

Repeat until \(i \) and \(j \) pointers cross.

- Scan \(i \) from left to right so long as \(a[i] < a[lo] \).
- Scan \(j \) from right to left so long as \(a[j] > a[lo] \).
- Exchange \(a[i] \) with \(a[j] \).

stop \(j \) scan because \(a[j] \leq a[lo] \)
Quicksort partitioning

Repeat until \(i\) and \(j\) pointers cross.
- Scan \(i\) from left to right so long as \(a[i] < a[lo]\).
- Scan \(j\) from right to left so long as \(a[j] > a[lo]\).
- Exchange \(a[i]\) with \(a[j]\).

When pointers cross.
- Exchange \(a[lo]\) with \(a[j]\).
Quicksort partitioning

Repeat until i and j pointers cross.

- Scan i from left to right so long as $a[i] < a[lo]$.
- Scan j from right to left so long as $a[j] > a[lo]$.
- Exchange $a[i]$ with $a[j]$.

When pointers cross.

partitioned!
Quicksort partitioning

Basic plan.
- Scan i from left for an item that belongs on the right.
- Scan j from right for an item that belongs on the left.
- Exchange $a[i]$ and $a[j]$.
- Repeat until pointers cross.

<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
<th>$a[i]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16</td>
<td>K R A T E L E P U I M Q C X O S</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>K R A T E L E P U I M Q C X O S</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>K C A T E L E P U I M Q C X O S</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>K C A T E L E P U I M Q R X O S</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>K C A I E L E L E P U T M Q R X O S</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>K C A I E L E L E P U T M Q R X O S</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>K C A I E L E L P U T M Q R X O S</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>K C A I E L L P U T M Q R X O S</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>E C A I E K L P U T M Q R X O S</td>
</tr>
</tbody>
</table>

Partitioning trace (array contents before and after each exchange)
Quicksort: Java code for partitioning

```java
private static int partition(Comparable[] a, int lo, int hi) {
    int i = lo, j = hi+1;
    while (true) {
        while (less(a[++i], a[lo]))
            if (i == hi) break;
        while (less(a[lo], a[--j]))
            if (j == lo) break;
        if (i >= j) break;
        exch(a, i, j);
    }
    exch(a, lo, j);
    return j;
}
```

Quicksort partitioning overview

- **Before**: V
 - lo
 - hi

- **During**: V ≤ V │ □ □ □ │ ≥ V
 - i
 - j

- **After**: ≤ V │ V │ ≥ V
 - lo
 - j
 - hi
public class Quick
{
 private static int partition(Comparable[] a, int lo, int hi)
 { /* see previous slide */ }

 public static void sort(Comparable[] a)
 {
 StdRandom.shuffle(a);
 sort(a, 0, a.length - 1);
 }

 private static void sort(Comparable[] a, int lo, int hi)
 {
 if (hi <= lo) return;
 int j = partition(a, lo, hi);
 sort(a, lo, j-1);
 sort(a, j+1, hi);
 }
}

shuffle needed for performance guarantee (stay tuned)
Quicksort trace

Quicksort trace (array contents after each partition)
Quicksort animation

50 random items

http://www.sorting-algorithms.com/quick-sort
Quicksoort: implementation details

Partitioning in-place. Using an extra array makes partitioning easier (and stable), but is not worth the cost.

Terminating the loop. Testing whether the pointers cross is a bit trickier than it might seem.

Staying in bounds. The \((j == lo)\) test is redundant (why?), but the \((i == hi)\) test is not.

Preserving randomness. Shuffling is needed for performance guarantee.

Equal keys. When duplicates are present, it is (counter-intuitively) better to stop on keys equal to the partitioning item's key.
Quicksort: empirical analysis

Running time estimates:

- Home PC executes 10^8 compares/second.
- Supercomputer executes 10^{12} compares/second.

<table>
<thead>
<tr>
<th></th>
<th>insertion sort (N^2)</th>
<th>mergesort ($N \log N$)</th>
<th>quicksort ($N \log N$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>computer</td>
<td>thousand</td>
<td>million</td>
<td>billion</td>
</tr>
<tr>
<td>home</td>
<td>instant</td>
<td>2.8 hours</td>
<td>317 years</td>
</tr>
<tr>
<td>super</td>
<td>instant</td>
<td>1 second</td>
<td>1 week</td>
</tr>
</tbody>
</table>

Lesson 1. Good algorithms are better than supercomputers.
Lesson 2. Great algorithms are better than good ones.
Quicksort: best-case analysis

Best case. Number of compares is $\sim N \lg N$.

Each partitioning process splits the array exactly in half.

<table>
<thead>
<tr>
<th>lo</th>
<th>j</th>
<th>hi</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7</td>
<td>14</td>
<td>H</td>
<td>A</td>
<td>C</td>
<td>B</td>
<td>F</td>
<td>E</td>
<td>G</td>
<td>D</td>
<td>L</td>
<td>I</td>
<td>K</td>
<td>J</td>
<td>N</td>
<td>M</td>
<td>O</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>6</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>D</td>
<td>F</td>
<td>E</td>
<td>G</td>
<td>H</td>
<td>L</td>
<td>I</td>
<td>K</td>
<td>J</td>
<td>N</td>
<td>M</td>
<td>O</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>F</td>
<td>E</td>
<td>G</td>
<td>H</td>
<td>L</td>
<td>I</td>
<td>K</td>
<td>J</td>
<td>N</td>
<td>M</td>
<td>O</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>F</td>
<td>E</td>
<td>G</td>
<td>H</td>
<td>L</td>
<td>I</td>
<td>K</td>
<td>J</td>
<td>N</td>
<td>M</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>F</td>
<td>E</td>
<td>G</td>
<td>H</td>
<td>L</td>
<td>I</td>
<td>K</td>
<td>J</td>
<td>N</td>
<td>M</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>L</td>
<td>I</td>
<td>K</td>
<td>J</td>
<td>N</td>
<td>M</td>
<td>O</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>L</td>
<td>I</td>
<td>K</td>
<td>J</td>
<td>N</td>
<td>M</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>L</td>
<td>I</td>
<td>K</td>
<td>J</td>
<td>N</td>
<td>M</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>11</td>
<td>14</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>J</td>
<td>I</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>M</td>
<td>O</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>M</td>
<td>O</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>M</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>M</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>14</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>

A B C D E F G H I J K L M N O
Worst case. Number of compares is $\sim \frac{1}{2} N^2$.

One of the subarrays is empty for every partition.

<table>
<thead>
<tr>
<th>a[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo j hi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14</td>
</tr>
<tr>
<td>initial values</td>
</tr>
<tr>
<td>random shuffle</td>
</tr>
<tr>
<td>0 0 14</td>
</tr>
<tr>
<td>1 1 14</td>
</tr>
<tr>
<td>2 2 14</td>
</tr>
<tr>
<td>3 3 14</td>
</tr>
<tr>
<td>4 4 14</td>
</tr>
<tr>
<td>5 5 14</td>
</tr>
<tr>
<td>6 6 14</td>
</tr>
<tr>
<td>7 7 14</td>
</tr>
<tr>
<td>8 8 14</td>
</tr>
<tr>
<td>9 9 14</td>
</tr>
<tr>
<td>10 10 14</td>
</tr>
<tr>
<td>11 11 14</td>
</tr>
<tr>
<td>12 12 14</td>
</tr>
<tr>
<td>13 13 14</td>
</tr>
<tr>
<td>14 14</td>
</tr>
</tbody>
</table>
Proposition. The average number of compares C_N to quicksort an array of N distinct keys is $\sim 2N \ln N$ (and the number of exchanges is $\sim \frac{1}{3} N \ln N$).

Pf. C_N satisfies the recurrence $C_0 = C_1 = 0$ and for $N \geq 2$:

$$C_N = (N + 1) + \left(\frac{C_0 + C_{N-1}}{N} \right) + \left(\frac{C_1 + C_{N-2}}{N} \right) + \ldots + \left(\frac{C_{N-1} + C_0}{N} \right)$$

- Multiply both sides by N and collect terms:

$$NC_N = N(N + 1) + 2(C_0 + C_1 + \ldots + C_{N-1})$$

- Subtract this from the same equation for $N - 1$:

$$NC_N - (N - 1)C_{N-1} = 2N + 2C_{N-1}$$

- Rearrange terms and divide by $N(N + 1)$:

$$\frac{C_N}{N + 1} = \frac{C_{N-1}}{N} + \frac{2}{N + 1}$$
Quicksort: average-case analysis

- Repeatedly apply above equation:

\[
\frac{C_N}{N+1} = \frac{C_{N-1}}{N} + \frac{2}{N+1}
\]

\[
= \frac{C_{N-2}}{N-1} + \frac{2}{N} + \frac{2}{N+1}
\]

\[
= \frac{C_{N-3}}{N-2} + \frac{2}{N-1} + \frac{2}{N} + \frac{2}{N+1}
\]

\[
= \frac{2}{3} + \frac{2}{4} + \frac{2}{5} + \ldots + \frac{2}{N+1}
\]

- Approximate sum by an integral:

\[
C_N = 2(N+1) \left(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \ldots + \frac{1}{N+1} \right)
\]

\[
\sim 2(N+1) \int_3^{N+1} \frac{1}{x} \, dx
\]

- Finally, the desired result:

\[
C_N \sim 2(N+1) \ln N \approx 1.39N \lg N
\]
Quicksort: summary of performance characteristics

Worst case. Number of compares is quadratic.
- \(N + (N - 1) + (N - 2) + \ldots + 1 \sim \frac{1}{2} N^2. \)
- More likely that your computer is struck by lightning bolt.

Average case. Number of compares is \(\sim 1.39 \ N \lg \ N. \)
- 39% more compares than mergesort.
- **But** faster than mergesort in practice because of less data movement.

Random shuffle.
- Probabilistic guarantee against worst case.
- Basis for math model that can be validated with experiments.

Caveat emptor. Many textbook implementations go quadratic if array
- Is sorted or reverse sorted.
- Has many duplicates (even if randomized!)
Proposition. Quicksort is an in-place sorting algorithm.

Pf.

• Partitioning: constant extra space.
• Depth of recursion: logarithmic extra space (with high probability).

Proposition. Quicksort is not stable.

Pf.

<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>B₁</td>
<td>C₁</td>
<td>C₂</td>
<td>A₁</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>B₁</td>
<td>C₁</td>
<td>C₂</td>
<td>A₁</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>B₁</td>
<td>A₁</td>
<td>C₂</td>
<td>C₁</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>A₁</td>
<td>B₁</td>
<td>C₂</td>
<td>C₁</td>
</tr>
</tbody>
</table>

can guarantee logarithmic depth by recurring on smaller subarray before larger subarray
Quicksort: practical improvements

Insertion sort small subarrays.
• Even quicksort has too much overhead for tiny subarrays.
• Cutoff to insertion sort for ≈ 10 items.
• Note: could delay insertion sort until one pass at end.

```java
private static void sort(Comparable[] a, int lo, int hi) {
    if (hi <= lo + CUTOFF - 1) {
        Insertion.sort(a, lo, hi);
        return;
    }
    int j = partition(a, lo, hi);
    sort(a, lo, j-1);
    sort(a, j+1, hi);
}
```
Quicksort: practical improvements

Median of sample.

- Best choice of pivot item = median.
- Estimate true median by taking median of sample.
- Median-of-3 (random) items.

```java
private static void sort(Comparable[] a, int lo, int hi)
{
    if (hi <= lo) return;

    int m = medianOf3(a, lo, lo + (hi - lo)/2, hi);
    swap(a, lo, m);

    int j = partition(a, lo, hi);
    sort(a, lo, j-1);
    sort(a, j+1, hi);
}
```

~ 12/7 N ln N compares (slightly fewer)
~ 12/35 N ln N exchanges (slightly more)
Quicksort with median-of-3 and cutoff to insertion sort: visualization
Selection

Goal. Given an array of N items, find the k^{th} largest.

Ex. Min ($k = 0$), max ($k = N - 1$), median ($k = N / 2$).

Applications.
- Order statistics.
- Find the "top k."

Use theory as a guide.
- Easy $N \log N$ upper bound. How?
- Easy N upper bound for $k = 1, 2, 3$. How?
- Easy N lower bound. Why?

Which is true?
- $N \log N$ lower bound? is selection as hard as sorting?
- N upper bound? is there a linear-time algorithm for each k?
Quick-select

Partition array so that:
- Entry $a[j]$ is in place.
- No larger entry to the left of j.
- No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.

```java
public static Comparable select(Comparable[] a, int k)
{
    StdRandom.shuffle(a);
    int lo = 0, hi = a.length - 1;
    while (hi > lo)
    {
        int j = partition(a, lo, hi);
        if (j < k) lo = j + 1;
        else if (j > k) hi = j - 1;
        else return a[k];
    }
    return a[k];
}
```
Quick-select: mathematical analysis

Proposition. Quick-select takes linear time on average.

Pf sketch.

• Intuitively, each partitioning step splits array approximately in half:
 $N + N/2 + N/4 + \ldots + 1 \sim 2N$ compares.

• Formal analysis similar to quicksort analysis yields:

$$C_N = 2N + k \ln (N/k) + (N - k) \ln (N/(N-k))$$

$(2 + 2 \ln 2)N$ to find the median

Remark. Quick-select uses $\sim \frac{1}{2}N^2$ compares in the worst case, but (as with quicksort) the random shuffle provides a probabilistic guarantee.
Theoretical context for selection

Time Bounds for Selection

by .

Manuel Blum, Robert W. Floyd, Vaughan Pratt,
Ronald L. Rivest, and Robert E. Tarjan

Abstract
The number of comparisons required to select the i-th smallest of n numbers is shown to be at most a linear function of n by analysis of a new selection algorithm -- PICK. Specifically, no more than 5.4305n comparisons are ever required. This bound is improved for

Remark. But, constants are too high ⇒ not used in practice.

Use theory as a guide.
• Still worthwhile to seek practical linear-time (worst-case) algorithm.
• Until one is discovered, use quick-select if you don’t need a full sort.
Duplicate keys

Often, purpose of sort is to bring items with equal keys together.

- Sort population by age.
- Find collinear points.
- Remove duplicates from mailing list.
- Sort job applicants by college attended.

Typical characteristics of such applications.

- Huge array.
- Small number of key values.
Duplicate keys

Mergesort with duplicate keys.
Always between \(\frac{1}{2} N \log N \) and \(N \log N \) compares.

Quicksort with duplicate keys.
• Algorithm goes \textit{quadratic} unless partitioning stops on equal keys!
• 1990s C user found this defect in \texttt{qsort()}.

\begin{center}
\begin{tabular}{c c c}
\texttt{S} & \texttt{T} & \texttt{O} \texttt{P} \texttt{O} \texttt{N} \texttt{E} \texttt{Q} \texttt{U} \texttt{A} \texttt{L} \texttt{K} \texttt{E} \texttt{Y} \texttt{S} \\
\uparrow & \uparrow & \uparrow \\
\text{swap} & \text{if we don't stop on equal keys} & \text{if we stop on equal keys}
\end{tabular}
\end{center}

several textbook and system implementation also have this defect
Duplicate keys: the problem

Mistake. Put all items equal to the partitioning item on one side.

Consequence. \(\sim \frac{1}{2} N^2 \) compares when all keys equal.

- B A A B A B B B C C C C
- A A A A A A A A A A A A A

Recommended. Stop scans on items equal to the partitioning item.

Consequence. \(\sim N \lg N \) compares when all keys equal.

- B A A B A B C C B C B
- A A A A A A A A A A A A A

Desirable. Put all items equal to the partitioning item in place.

- A A A B B B B B B C C C
- A A A A A A A A A A A A A A A
3-way partitioning

Goal. Partition array into 3 parts so that:
- Entries between \(\lt \) and \(\gt \) equal to partition item \(v \).
- No larger entries to left of \(\lt \).
- No smaller entries to right of \(\gt \).

Dutch national flag problem. [Edsger Dijkstra]
- Conventional wisdom until mid 1990s: not worth doing.
- New approach discovered when fixing mistake in C library `qsort()`.
- Now incorporated into `qsort()` and Java system sort.
Dijkstra 3-way partitioning

- Let v be partitioning item $a[lo]$.
- Scan i from left to right.
 - $(a[i] < v)$: exchange $a[lt]$ with $a[i]$ and increment both lt and i
 - $(a[i] > v)$: exchange $a[gt]$ with $a[i]$ and decrement gt
 - $(a[i] == v)$: increment i
Dijkstra 3-way partitioning

- Let v be partitioning item $a[10]$.
- Scan i from left to right.
 - $(a[i] < v)$: exchange $a[lt]$ with $a[i]$ and increment both lt and i
 - $(a[i] > v)$: exchange $a[gt]$ with $a[i]$ and decrement gt
 - $(a[i] == v)$: increment i

![Diagram of 3-way partitioning with variables and conditions]
• Let v be partitioning item $a[10]$.
• Scan i from left to right.
 - $(a[i] < v)$: exchange $a[lt]$ with $a[i]$ and increment both lt and i
 - $(a[i] > v)$: exchange $a[gt]$ with $a[i]$ and decrement gt
 - $(a[i] == v)$: increment i
Dijkstra 3-way partitioning

- Let v be partitioning item $a[lo]$.
- Scan i from left to right.
 - $(a[i] < v)$: exchange $a[lt]$ with $a[i]$ and increment both lt and i
 - $(a[i] > v)$: exchange $a[gt]$ with $a[i]$ and decrement gt
 - $(a[i] == v)$: increment i
• Let \(v \) be partitioning item \(a[10] \).
• Scan \(i \) from left to right.
 - \((a[i] < v)\): exchange \(a[lt] \) with \(a[i] \) and increment both \(lt \) and \(i \)
 - \((a[i] > v)\): exchange \(a[gt] \) with \(a[i] \) and decrement \(gt \)
 - \((a[i] == v)\): increment \(i \)

Dijkstra 3-way partitioning

- **\(lt \)**
- **\(i \)**
- **\(gt \)**

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>P</th>
<th>Z</th>
<th>W</th>
<th>P</th>
<th>P</th>
<th>V</th>
<th>P</th>
<th>D</th>
<th>P</th>
<th>C</th>
<th>Y</th>
<th>X</th>
</tr>
</thead>
</table>

Invariant

\[
\begin{array}{c|c|c|c}
< v & = v & \text{grey} & > v \\
\uparrow & \uparrow & \uparrow & \uparrow \\
lt & i & gt & \\
\end{array}
\]
Dijkstra 3-way partitioning

- Let v be partitioning item $a[10]$.
- Scan i from left to right.
 - $(a[i] < v)$: exchange $a[lt]$ with $a[i]$ and increment both lt and i
 - $(a[i] > v)$: exchange $a[gt]$ with $a[i]$ and decrement gt
 - $(a[i] == v)$: increment i

invariant

<table>
<thead>
<tr>
<th>$<$v</th>
<th>=v</th>
<th></th>
<th>$>$v</th>
</tr>
</thead>
<tbody>
<tr>
<td>lt</td>
<td></td>
<td>i</td>
<td>gt</td>
</tr>
</tbody>
</table>
Dijkstra 3-way partitioning

- Let v be partitioning item $a[lo]$.
- Scan i from left to right.
 - $(a[i] < v)$: exchange $a[lt]$ with $a[i]$ and increment both lt and i
 - $(a[i] > v)$: exchange $a[gt]$ with $a[i]$ and decrement gt
 - $(a[i] == v)$: increment i

\[\begin{array}{cccccccccccc}
\downarrow & \downarrow \\
\end{array} \]

\[\begin{array}{cccc}
< V & = V & > V \\
\downarrow & \downarrow & \downarrow \\
lt & i & gt \\
\end{array} \]

invariant
Dijkstra 3-way partitioning

- Let \(v \) be partitioning item \(a[lo] \).
- Scan \(i \) from left to right.
 - \((a[i] < v) \): exchange \(a[lt] \) with \(a[i] \) and increment both \(lt \) and \(i \)
 - \((a[i] > v) \): exchange \(a[gt] \) with \(a[i] \) and decrement \(gt \)
 - \((a[i] == v) \): increment \(i \)
• Let \(v \) be partitioning item \(a[10] \).
• Scan \(i \) from left to right.
 - (\(a[i] \ < v \)): exchange \(a[lt] \) with \(a[i] \) and increment both \(lt \) and \(i \)
 - (\(a[i] \ > v \)): exchange \(a[gt] \) with \(a[i] \) and decrement \(gt \)
 - (\(a[i] \ == v \)): increment \(i \)

Dijkstra 3-way partitioning

\[
\begin{array}{cccccccccccc}
\text{lt} & \text{i} & \text{gt} \\
\downarrow & \downarrow & \downarrow \\
\end{array}
\]

\[\text{invariant}\]

\[
\begin{array}{cccc}
< v & = v & \text{boxed} & > v \\
\uparrow & \uparrow & \uparrow & \uparrow \\
\text{lt} & \text{i} & \text{gt}
\end{array}
\]
Dijkstra 3-way partitioning

- Let v be partitioning item $a[lo]$.
- Scan i from left to right.
 - $(a[i] < v)$: exchange $a[lt]$ with $a[i]$ and increment both lt and i
 - $(a[i] > v)$: exchange $a[gt]$ with $a[i]$ and decrement gt
 - $(a[i] == v)$: increment i

\[
\begin{array}{cccccccccccc}
& & & & & & & & & & & \\
& & & & & & & & & & & \\
\text{lt} & i & gt & \\
\downarrow & \downarrow & \downarrow & \\
\end{array}
\]
Dijkstra 3-way partitioning

- Let v be partitioning item $a[lo]$.
- Scan i from left to right.
 - $(a[i] < v)$: exchange $a[lt]$ with $a[i]$ and increment both lt and i
 - $(a[i] > v)$: exchange $a[gt]$ with $a[i]$ and decrement gt
 - $(a[i] == v)$: increment i

![Diagram showing 3-way partitioning](image)

Invariant

<table>
<thead>
<tr>
<th><v</th>
<th>=v</th>
<th>...</th>
<th>>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>lt</td>
<td>i</td>
<td>gt</td>
<td></td>
</tr>
</tbody>
</table>
Let v be partitioning item $a[10]$.

Scan i from left to right.

- $(a[i] < v)$: exchange $a[lt]$ with $a[i]$ and increment both lt and i
- $(a[i] > v)$: exchange $a[gt]$ with $a[i]$ and decrement gt
- $(a[i] == v)$: increment i

Dijkstra 3-way partitioning

<table>
<thead>
<tr>
<th>lt</th>
<th>i</th>
<th>gt</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
</tbody>
</table>

invariant

```
< V   = V       > V
    lt  i        gt
```
Dijkstra 3-way partitioning

- Let v be partitioning item $a[lo]$.
- Scan i from left to right.
 - $(a[i] < v)$: exchange $a[lt]$ with $a[i]$ and increment both lt and i
 - $(a[i] > v)$: exchange $a[gt]$ with $a[i]$ and decrement gt
 - $(a[i] == v)$: increment i

Diagram

```
lt  ↓  i  ↓  gt  ↓
A  B  C  P  P  P  P  P  D  P  V  W  Y  Z  X
```

Invariant

```
< v  = v  [ ]  > v
```

- lt i gt
Dijkstra 3-way partitioning

- Let v be partitioning item $a[lo]$.
- Scan i from left to right.
 - $(a[i] < v)$: exchange $a[lt]$ with $a[i]$ and increment both lt and i
 - $(a[i] > v)$: exchange $a[gt]$ with $a[i]$ and decrement gt
 - $(a[i] == v)$: increment i
Dijkstra 3-way partitioning

- Let \(v \) be partitioning item \(a[lo] \).
- Scan \(i \) from left to right.
 - \((a[i] < v)\): exchange \(a[lt] \) with \(a[i] \) and increment both \(lt \) and \(i \)
 - \((a[i] > v)\): exchange \(a[gt] \) with \(a[i] \) and decrement \(gt \)
 - \((a[i] == v)\): increment \(i \)

![Diagram showing the 3-way partitioning process](diagram.png)
Dijkstra 3-way partitioning algorithm

3-way partitioning.

- Let v be partitioning item $a[lo]$.
- Scan i from left to right.
 - $a[i]$ less than v: exchange $a[lt]$ with $a[i]$ and increment both lt and i
 - $a[i]$ greater than v: exchange $a[gt]$ with $a[i]$ and decrement gt
 - $a[i]$ equal to v: increment i

Most of the right properties.

- In-place.
- Not much code.
- Linear time if keys are all equal.

![Diagram of 3-way partitioning algorithm](image)
Dijkstra's 3-way partitioning: trace

3-way partitioning trace (array contents after each loop iteration)
private static void sort(Comparable[] a, int lo, int hi) {
 if (hi <= lo) return;
 int lt = lo, gt = hi;
 Comparable v = a[lo];
 int i = lo;
 while (i <= gt) {
 int cmp = a[i].compareTo(v);
 if (cmp < 0) exch(a, lt++, i++);
 else if (cmp > 0) exch(a, i, gt--);
 else i++;
 }
 sort(a, lo, lt - 1);
 sort(a, gt + 1, hi);
}

3-way quicksort: Java implementation
3-way quicksort: visual trace
Sorting summary

<table>
<thead>
<tr>
<th>inplace?</th>
<th>stable?</th>
<th>worst</th>
<th>average</th>
<th>best</th>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>selection</td>
<td>✔</td>
<td>$N^2/2$</td>
<td>$N^2/2$</td>
<td>$N^2/2$</td>
<td>N exchanges</td>
</tr>
<tr>
<td>insertion</td>
<td>✔</td>
<td>✔</td>
<td>$N^2/2$</td>
<td>$N^2/4$</td>
<td>N use for small N or partially ordered</td>
</tr>
<tr>
<td>shell</td>
<td>✔</td>
<td>?</td>
<td>?</td>
<td>N</td>
<td>tight code, subquadratic</td>
</tr>
<tr>
<td>merge</td>
<td>✔</td>
<td></td>
<td>$N \lg N$</td>
<td>$N \lg N$</td>
<td>$N \log N$ guarantee, stable</td>
</tr>
<tr>
<td>quick</td>
<td>✔</td>
<td></td>
<td>$N^2/2$</td>
<td>$2N \ln N$</td>
<td>$N \lg N$ $N \log N$ probabilistic guarantee fastest in practice</td>
</tr>
<tr>
<td>3-way quick</td>
<td>✔</td>
<td></td>
<td>$N^2/2$</td>
<td>$2N \ln N$</td>
<td>N improves quicksort in presence of duplicate keys</td>
</tr>
<tr>
<td>???</td>
<td>✔</td>
<td>✔</td>
<td>$N \lg N$</td>
<td>$N \lg N$</td>
<td>holy sorting grail</td>
</tr>
</tbody>
</table>