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Graph.  Set of vertices connected pairwise by edges.

 
Why study graph algorithms?
• Thousands of practical applications. 

• Hundreds of graph algorithms known.

• Interesting and broadly useful abstraction.

• Challenging branch of computer science and discrete math.
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Undirected graphs
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Protein-protein interaction network

Reference:  Jeong et al, Nature Review | Genetics
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The Internet as mapped by the Opte Project

http://en.wikipedia.org/wiki/Internet
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Map of science clickstreams

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0004803
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10 million Facebook friends

"Visualizing Friendships" by Paul Butler
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Framingham heart study

“The Spread of Obesity in a Large Social Network over 32 Years” by Christakis and Fowler in New England Journal of Medicine, 2007

The Spread of Obesity in a Large Social Network Over 32 Years

n engl j med 357;4 www.nejm.org july 26, 2007 373

educational level; the ego’s obesity status at the 
previous time point (t); and most pertinent, the 
alter’s obesity status at times t and t + 1.25 We 
used generalized estimating equations to account 
for multiple observations of the same ego across 
examinations and across ego–alter pairs.26 We 
assumed an independent working correlation 
structure for the clusters.26,27

The use of a time-lagged dependent variable 
(lagged to the previous examination) eliminated 
serial correlation in the errors (evaluated with a 
Lagrange multiplier test28) and also substantial-
ly controlled for the ego’s genetic endowment and 
any intrinsic, stable predisposition to obesity. The 
use of a lagged independent variable for an alter’s 
weight status controlled for homophily.25 The 
key variable of interest was an alter’s obesity at 
time t + 1. A significant coefficient for this vari-
able would suggest either that an alter’s weight 
affected an ego’s weight or that an ego and an 
alter experienced contemporaneous events affect-

ing both their weights. We estimated these mod-
els in varied ego–alter pair types.

To evaluate the possibility that omitted vari-
ables or unobserved events might explain the as-
sociations, we examined how the type or direc-
tion of the social relationship between the ego 
and the alter affected the association between the 
ego’s obesity and the alter’s obesity. For example, 
if unobserved factors drove the association be-
tween the ego’s obesity and the alter’s obesity, 
then the directionality of friendship should not 
have been relevant.

We evaluated the role of a possible spread in 
smoking-cessation behavior as a contributor to 
the spread of obesity by adding variables for the 
smoking status of egos and alters at times t and 
t + 1 to the foregoing models. We also analyzed 
the role of geographic distance between egos 
and alters by adding such a variable.

We calculated 95% confidence intervals by sim-
ulating the first difference in the alter’s contem-

Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.

Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social 
network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle 
is proportional to the person’s body-mass index. The interior color of the circles indicates the person’s obesity status: 
yellow denotes an obese person (body-mass index, ≥30) and green denotes a nonobese person. The colors of the 
ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange 
denotes a familial tie.
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Graph applications

graph vertex edge

communication telephone, computer fiber optic cable

circuit gate, register, processor wire

mechanical joint rod, beam, spring

financial stock, currency transactions

transportation street intersection, airport highway, airway route

internet class C network connection

game board position legal move

social relationship person, actor friendship, movie cast

neural network neuron synapse

protein network protein protein-protein interaction

chemical compound molecule bond

10

Graph terminology

Path.  Sequence of vertices connected by edges.

Cycle.  Path whose first and last vertices are the same.

Two vertices are connected if there is a path between them.

Anatomy of a graph

cycle of
length 5

vertex

vertex of
degree 3

edge

path of
length 4

connected
components
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Some graph-processing problems

Path.  Is there a path between s and t ?
Shortest path.  What is the shortest path between s and t ?
 
Cycle.  Is there a cycle in the graph?  
Euler tour.  Is there a cycle that uses each edge exactly once? 
Hamilton tour.  Is there a cycle that uses each vertex exactly once? 

 
Connectivity.  Is there a way to connect all of the vertices?  
MST.  What is the best way to connect all of the vertices?  
Biconnectivity.  Is there a vertex whose removal disconnects the graph?

 
Planarity.  Can you draw the graph in the plane with no crossing edges?  
Graph isomorphism.  Do two adjacency lists represent the same graph?

 
Challenge.  Which of these problems are easy? difficult? intractable?

UNDIRECTED GRAPHS

‣ Graph API
‣ Depth-first search
‣ Breadth-first search
‣ Connected components
‣ Challenges



Graph drawing.  Provides intuition about the structure of the graph.  
 
 
 
 
 
 
 
 
 
 
 
 

Caveat.  Intuition can be misleading.
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Graph representation

Two drawings of the same graph

Two drawings of the same graphtwo drawings of the same graph

Vertex representation.

• This lecture:  use integers between 0 and V – 1.

• Applications:  convert between names and integers with symbol table.

 
 
 
 
 
 
 
 
 
 
 
Anomalies.  

A

G

E

CB

F

D
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Graph representation

symbol table

0

6

4

21

5

3

Anomalies

parallel
edges

self-loop
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Graph API

       public class Graph

Graph(int V) create an empty graph with V vertices

Graph(In in) create a graph from input stream

void addEdge(int v, int w) add an edge v-w

Iterable<Integer> adj(int v) vertices adjacent to v

int V() number of vertices

int E() number of edges

String toString() string representation

In in = new In(args[0]); 
Graph G = new Graph(in); 

for (int v = 0; v < G.V(); v++)  
   for (int w : G.adj(v)) 
      StdOut.println(v + "-" + w);

read graph from 

input stream

print out each 

edge (twice)
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Graph input format.

Graph API:  sample client

13
13
0 5
4 3
0 1
9 12
6 4
5 4
0 2
11 12
9 10
0 6
7 8
9 11
5 3

tinyG.txt

Input format for Graph constructor (two examples)

250
1273
244 246
239 240
238 245
235 238
233 240
232 248
231 248
229 249
228 241
226 231
...
(1261 additional lines)

mediumG.txt
V

E
V

E
% java Test tinyG.txt 
0-6 
0-2 
0-1 
0-5 
1-0 
2-0 
3-5 
3-4 
… 
12-11 
12-9

In in = new In(args[0]); 
Graph G = new Graph(in); 

for (int v = 0; v < G.V(); v++)  
   for (int w : G.adj(v)) 
      StdOut.println(v + "-" + w);

read graph from 

input stream

print out each 

edge (twice)
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Typical graph-processing code
task                     implementation   

compute the degree of v

public static int degree(Graph G, int v) 
{ 
   int degree = 0; 
   for (int w : G.adj(v)) degree++; 
   return degree; 
}

compute maximum degree

public static int maxDegree(Graph G) 
{
   int max = 0; 
   for (int v = 0; v < G.V(); v++)
      if (degree(G, v) > max)
         max = degree(G, v); 
   return max;
}

compute average degree 
public static double averageDegree(Graph G) 
{  return 2.0 * G.E() / G.V();  }

count self-loops

public static int numberOfSelfLoops(Graph G) 
{
   int count = 0;
   for (int v = 0; v < G.V(); v++)
      for (int w : G.adj(v)) 
         if (v == w) count++; 
   return count/2;   // each edge counted twice  
}

string representation of the 
graph’s adjacency lists 

(instance method in Graph)

public String toString()
{
   String s = V + " vertices, " + E + " edges\n";
   for (int v = 0; v < V; v++)
   {
      s += v + ": ";
      for (int w : this.adj(v))
         s += w + " ";
      s += "\n";
   }
   return s;
}

Typical graph-processing code 

5234.1 n Undirected Graphs

Maintain a list of the edges (linked list or array).
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Set-of-edges graph representation

 0  1 
 0  2 
 0  5 
 0  6 
 3  4 
 3  5 
 4  5 
 4  6 
 7  8 
 9 10 
 9 11 
 9 12 
11 12

87

109

1211

0

6

4

21

5

3

Maintain a two-dimensional V-by-V boolean array; 
for each edge v–w in graph:  adj[v][w] = adj[w][v] = true.

0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 1 1 0 0 1 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 1 1 0 0 0 0 0 0 0

4 0 0 0 1 0 1 1 0 0 0 0 0 0

5 1 0 0 1 1 0 0 0 0 0 0 0 0

6 1 0 0 0 1 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 1 0 0 0 0

8 0 0 0 0 0 0 0 1 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 1 1 1

10 0 0 0 0 0 0 0 0 0 1 0 0 0

11 0 0 0 0 0 0 0 0 0 1 0 0 1

12 0 0 0 0 0 0 0 0 0 1 0 1 0
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Adjacency-matrix graph representation

two entries

for each edge

109

1211

0

6

4

21

5

3

87

Maintain vertex-indexed array of lists.
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Adjacency-list graph representation

109

1211

0

6

4

21

5

3

adj[]
0

1

2

3

4

5

6

7

8

9

10

11

12

5 4

0 4

9 12

11 9

0

0

8

7

9

5 6 3

3 4 0

11 10 12

6 2 1 5

Adjacency-lists representation (undirected graph)

Bag objects

representations
of the same edge

87
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Adjacency-list graph representation:  Java implementation

public class Graph 
{ 
   private final int V; 
   private Bag<Integer>[] adj; 

   public Graph(int V) 
   { 
      this.V = V; 
      adj = (Bag<Integer>[]) new Bag[V]; 
      for (int v = 0; v < V; v++) 
         adj[v] = new Bag<Integer>(); 
   } 

   public void addEdge(int v, int w) 
   { 
      adj[v].add(w); 
      adj[w].add(v); 
   } 

   public Iterable<Integer> adj(int v) 
   {  return adj[v];  } 
}

adjacency lists

( using Bag data type )

create empty graph 

with V vertices

add edge v-w  

(parallel edges allowed)

iterator for vertices adjacent to v

In practice.  Use adjacency-lists representation.

• Algorithms based on iterating over vertices adjacent to v.

• Real-world graphs tend to be sparse.
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Graph representations

huge number of vertices, 

small average vertex degree

sparse  (E = 200) dense  (E = 1000)

Two graphs (V = 50)

In practice.  Use adjacency-lists representation.

• Algorithms based on iterating over vertices adjacent to v.

• Real-world graphs tend to be sparse.
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Graph representations

representation space add edge edge between
v and w?

iterate over vertices
adjacent to v?

list of edges E 1 E E

adjacency matrix V 2    1 * 1 V

adjacency lists E + V 1 degree(v) degree(v)

huge number of vertices, 

small average vertex degree

* disallows parallel edges

UNDIRECTED GRAPHS

‣ Graph API
‣ Depth-first search
‣ Breadth-first search
‣ Connected components
‣ Challenges
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Maze exploration

Maze graphs.

• Vertex = intersection.

• Edge = passage.

Goal.  Explore every intersection in the maze.

intersection passage

Algorithm.

• Unroll a ball of string behind you.

• Mark each visited intersection and each visited passage.

• Retrace steps when no unvisited options.
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Trémaux maze exploration

Tremaux exploration

27

Maze exploration

28

Maze exploration



Goal.  Systematically search through a graph.

Idea.  Mimic maze exploration.
 
 
 
 
 
 
 
Typical applications.
• Find all vertices connected to a given source vertex.

• Find a path between two vertices.  

Design challenge.  How to implement?

Depth-first search

Mark v as visited.

Recursively visit all unmarked
          vertices w adjacent to v.

DFS (to visit a vertex v)
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Design pattern.  Decouple graph data type from graph processing. 

• Create a Graph object.

• Pass the Graph to a graph-processing routine, e.g., Paths.

• Query the graph-processing routine for information.

Design pattern for graph processing

 Paths paths = new Paths(G, s); 
 for (int v = 0; v < G.V(); v++) 
    if (paths.hasPathTo(v)) 
       StdOut.println(v);

print all vertices  

connected to s

        public class Paths

Paths(Graph G, int s) find paths in G from source s 

boolean hasPathTo(int v) is there a path from s to v?

Iterable<Integer> pathTo(int v) path from s to v; null if no such path

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

87

109

1211

0

6

4

21

5

3

Depth-first search
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graph G

87

109

1211

0

6

4

21

5

3

87

109

1211

0

6

4

21

5

3

13
13
0 5
4 3
0 1
9 12
6 4
5 4
0 2
11 12
9 10
0 6
7 8
9 11
5 3

tinyG.txt

Input format for Graph constructor (two examples)

250
1273
244 246
239 240
238 245
235 238
233 240
232 248
231 248
229 249
228 241
226 231
...
(1261 additional lines)

mediumG.txt
V

E
V

E

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

87

109

1211

0

6

4

21

5

3

Depth-first search
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graph G

87

109

1211

0

6

4

21

5

3

87

109

1211

0

6

4

21

5

3

0 

1 

2

3

4 

5

6

7

8

9 

10

11

12

v marked[]

F

F 

F

F

F 

F

F

F

F

F 

F

F

F

edgeTo[v]

–

– 

–

–

– 

–

–

–

–

– 

–

–

–



To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

00 87

109

1211

6

4

21

5

3

Depth-first search
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visit 0

87

109

1211

6

4

21

5

3

0 

1 

2

3

4 

5

6

7

8

9 

10

11

12

v marked[]

T

F 

F

F

F 

F

F

F

F

F 

F

F

F

edgeTo[v]

–

– 

–

–

– 

–

–

–

–

– 

–

–

–

66

00

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

4

21

5

3

Depth-first search
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visit 6

4

21

5

3

87

109

1211

87

109

1211

0 

1 

2

3

4 

5

6

7

8

9 

10

11

12

v marked[]

T

F 

F

F

F 

F

T

F

F

F 

F

F

F

edgeTo[v]

–

– 

–

–

– 

–

0

–

–

– 

–

–

–

00

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

6

4

21

5

3

Depth-first search
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visit 6

6

4

21

5

3

6

87

109

1211

87

109

1211

0 

1 

2

3

4 

5

6

7

8

9 

10

11

12

v marked[]

T

F 

F

F

F 

F

T

F

F

F 

F

F

F

edgeTo[v]

–

– 

–

–

– 

–

0

–

–

– 

–

–

–

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

00

66

4

21

5

3

Depth-first search
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visit 4

4

21

5

3 4

87

109

1211

87

109

1211

0 

1 

2

3

4 

5

6

7

8

9 

10

11

12

v marked[]

T

F 

F

F

T 

F

T

F

F

F 

F

F

F

edgeTo[v]

–

– 

–

–

6 

–

0

–

–

– 

–

–

–



00

44

66

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

21

5

3

Depth-first search
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visit 5

21

5

3

5

87

109

1211

87
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1211

0 

1 

2

3

4 

5

6

7

8

9 

10

11

12

v marked[]

T

F 

F

F

T 

T

T

F

F

F 

F

F

F

edgeTo[v]

–

– 

–

–

6 

4

0

–

–

– 

–

–

–

55

00

44

66

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

21

3

Depth-first search
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visit 3

21

3

87

109

1211

87
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1211
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3
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5

6

7

8

9 

10
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12

v marked[]

T

F 

F

T

T 

T

T

F

F

F 

F

F

F

edgeTo[v]

–

– 

–

5

6 

4

0

–

–

– 

–

–

–

55

00

44

66

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

21

3

Depth-first search
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visit 3

21

3

87

109

1211

87

109

1211

0 

1 

2

3

4 

5

6

7

8

9 

10

11

12

v marked[]

T

F 

F

T

T 

T

T

F

F

F 

F

F

F

edgeTo[v]

–

– 

–

5

6 

4

0

–

–

– 

–

–

–

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

55

00

44

6621

3

Depth-first search

40

3 done

21

3

87

109

1211

87

109

1211

5

0 

1 

2

3

4 

5

6

7

8

9 

10

11

12

v marked[]

T

F 

F

T

T 

T

T

F

F

F 

F

F

F

edgeTo[v]

–

– 

–

5

6 

4

0

–

–

– 

–

–

–



To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

55

00

44

6621

3

Depth-first search

41

visit 5

21
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v marked[]

T

F 

F

T

T 

T

T

F

F

F 

F

F

F

edgeTo[v]

–

– 

–

5

6 

4

0

–
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– 

–

–

–

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

55

00

44

6621

3

Depth-first search
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visit 5
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edgeTo[v]
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

5

00

44

6621

3

Depth-first search
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5 done
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

5
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3

Depth-first search
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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00
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Depth-first search
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visit 4
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

4

5

00
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3

Depth-first search
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4 done
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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Depth-first search
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6 done
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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Depth-first search
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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Goal.  Find all vertices connected to s  (and a path).

Idea.  Mimic maze exploration.

 
Algorithm.

• Use recursion (ball of string).

• Mark each visited vertex (and keep track of edge taken to visit it).

• Return (retrace steps) when no unvisited options.

 
Data structures.

•  boolean[] marked to mark visited vertices. 

•  int[] edgeTo to keep tree of paths.  
(edgeTo[w] == v) means that edge v-w taken to visit w for first time

Depth-first search
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Depth-first search

public class DepthFirstPaths 
{ 
   private boolean[] marked; 
   private int[] edgeTo; 
   private int s; 

   public DepthFirstSearch(Graph G, int s) 
   { 
      ... 
      dfs(G, s); 
   } 

   private void dfs(Graph G, int v) 
   { 
      marked[v] = true; 
      for (int w : G.adj(v)) 
         if (!marked[w]) 
         { 
            dfs(G, w); 
            edgeTo[w] = v; 
         } 
   } 
}

marked[v] = true
if v connected to s

find vertices connected to s

recursive DFS does the work

edgeTo[v] = previous vertex 
on path from s to v

initialize data structures

Depth-first search properties

Proposition.  DFS marks all vertices connected to s in time proportional to 
the sum of their degrees.  

Pf.

• Correctness:
- if w marked, then w connected to s (why?)

- if w connected to s, then w marked 
(if w unmarked, then consider last edge 
on a path from s to w that goes from a 
marked vertex to an unmarked one)

• Running time:  
Each vertex connected to s is visited once.

58

set of
unmarked

vertices

no such edge
can exist

source

v

s

set of marked
vertices

w

x

Proposition.  After DFS, can find vertices connected to s in constant time 

and can find a path to s (if one exists) in time proportional to its length.

 
Pf.  edgeTo[] is a parent-link representation of a tree rooted at s.
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Depth-first search properties

 public boolean hasPathTo(int v) 
 {  return marked[v];  } 

 public Iterable<Integer> pathTo(int v) 
 { 
    if (!hasPathTo(v)) return null; 
    Stack<Integer> path = new Stack<Integer>(); 
    for (int x = v; x != s; x = edgeTo[x]) 
       path.push(x); 
    path.push(s); 
    return path; 
 }

Trace of  pathTo() computation

edgeTo[]
  0    
  1  2
  2  0
  3  2
  4  3
  5  3
  

5   5
3   3 5
2   2 3 5
0   0 2 3 5

x  path

Depth-first search application:  preparing for a date
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http://xkcd.com/761/



Challenge.  Flood fill (Photoshop magic wand).

Assumptions.  Picture has millions to billions of pixels.
 
 
 
 
 

 
 
 
Solution.  Build a grid graph.
• Vertex:  pixel.

• Edge:  between two adjacent gray pixels.

• Blob:  all pixels connected to given pixel.

Depth-first search application:  flood fill
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UNDIRECTED GRAPHS

‣ Graph API
‣ Depth-first search
‣ Breadth-first search
‣ Connected components
‣ Challenges

Repeat until queue is empty:

• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search
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tinyCG.txt standard drawing
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adjacency lists

A connected undirected graph
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Repeat until queue is empty:

• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search
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Repeat until queue is empty:

• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search
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Repeat until queue is empty:

• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search
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Repeat until queue is empty:

• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search
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Repeat until queue is empty:

• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search
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Repeat until queue is empty:

• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search
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Repeat until queue is empty:

• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search
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Repeat until queue is empty:

• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search
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Repeat until queue is empty:

• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search
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Repeat until queue is empty:

• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search
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Repeat until queue is empty:

• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search
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Repeat until queue is empty:

• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search
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Repeat until queue is empty:

• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search
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Repeat until queue is empty:

• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search
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Repeat until queue is empty:

• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search
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Repeat until queue is empty:

• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search
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Repeat until queue is empty:

• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search
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Repeat until queue is empty:

• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search
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Repeat until queue is empty:

• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

82

dequeue 5

0

4

2

1

5

3

45

3

0 

1 

2

3

4 

5

v edgeTo[v]

–

0 

0

2

2 

0

queue

3

3

4
4

Repeat until queue is empty:

• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search
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Repeat until queue is empty:

• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search
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Repeat until queue is empty:

• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search
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Repeat until queue is empty:

• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

86

dequeue 3

0

4

2

1

5

3

4

0 

1 

2

3

4 

5

v edgeTo[v]

–

0 

0

2

2 

0

queue

3

4

4

Repeat until queue is empty:

• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search
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Repeat until queue is empty:

• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.
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Breadth-first search
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Repeat until queue is empty:

• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search
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Repeat until queue is empty:

• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search
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Repeat until queue is empty:

• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search
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Repeat until queue is empty:

• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search
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Repeat until queue is empty:

• Remove vertex v from queue.

• Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search
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Depth-first search.  Put unvisited vertices on a stack.

Breadth-first search.  Put unvisited vertices on a queue.

Shortest path.  Find path from s to t that uses fewest number of edges.

Intuition.  BFS examines vertices in increasing distance from s.
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Breadth-first search

Put s onto a FIFO queue, and mark s as visited.

Repeat until the queue is empty:
  - remove the least recently added vertex v

  - add each of v's unvisited neighbors to the queue,  

    and mark them as visited.

BFS (from source vertex s)

Breadth-first
maze exploration

Proposition.  BFS computes shortest path (number of edges) from s  
in a connected graph in time proportional to E + V.

 
Pf. [correctness]  Queue always consists of zero or more vertices of 
distance k from s, followed by zero or more vertices of distance k + 1.

 
Pf. [running time]  Each vertex connected to s is visited once.

Breadth-first search properties
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Breadth-first search

public class BreadthFirstPaths 
{ 
   private boolean[] marked; 
   private boolean[] edgeTo[]; 
   private final int s; 
   … 

   private void bfs(Graph G, int s) 
   { 
     Queue<Integer> q = new Queue<Integer>(); 
      q.enqueue(s); 
      marked[s] = true; 
      while (!q.isEmpty()) 
      { 
         int v = q.dequeue(); 
         for (int w : G.adj(v)) 
         { 
            if (!marked[w]) 
            { 
               q.enqueue(w); 
               marked[w] = true; 
               edgeTo[w] = v; 
            } 
         } 
      } 
   } 
}
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Breadth-first search application:  routing

Fewest number of hops in a communication network.

ARPANET, July 1977 
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Breadth-first search application:  Kevin Bacon numbers

Kevin Bacon numbers.

http://oracleofbacon.org SixDegrees iPhone App

Endless Games board game
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Kevin Bacon graph

• Include a vertex for each performer and for each movie.

• Connect a movie to all performers that appear in that movie.

• Compute shortest path from s = Kevin Bacon.

Kevin
Bacon

Kathleen
Quinlan

Meryl
Streep

Nicole
Kidman

John
Gielgud

Kate
Winslet

Bill
Paxton

Donald
Sutherland

The Stepford
Wives

Portrait
of a Lady

Dial M
for Murder

Apollo 13

To Catch
a Thief

The Eagle
Has Landed

Cold
Mountain

Murder on the
Orient Express

Vernon
Dobtcheff

An American
Haunting

Jude

Enigma

Eternal Sunshine
of the Spotless

Mind

The
Woodsman

Wild
Things

Hamlet

Titanic

Animal
House

Grace
KellyCaligola

The River
Wild

Lloyd
Bridges

High
Noon

The Da
Vinci Code

Joe Versus
the Volcano

Patrick
Allen

Tom
Hanks

Serretta
Wilson

Glenn
Close

John
Belushi

Yves
Aubert Shane

Zaza

Paul
Herbert

performer
vertex

movie
vertex

Symbol graph example (adjacency lists)

...
Tin Men (1987)/DeBoy, David/Blumenfeld, Alan/... /Geppi, Cindy/Hershey, Barbara...
Tirez sur le pianiste (1960)/Heymann, Claude/.../Berger, Nicole (I)...
Titanic (1997)/Mazin, Stan/...DiCaprio, Leonardo/.../Winslet, Kate/...
Titus (1999)/Weisskopf, Hermann/Rhys, Matthew/.../McEwan, Geraldine
To Be or Not to Be (1942)/Verebes, Ernö (I)/.../Lombard, Carole (I)...
To Be or Not to Be (1983)/.../Brooks, Mel (I)/.../Bancroft, Anne/...
To Catch a Thief (1955)/París, Manuel/.../Grant, Cary/.../Kelly, Grace/...
To Die For (1995)/Smith, Kurtwood/.../Kidman, Nicole/.../ Tucci, Maria...
...
  

movies.txt

V and E 
not explicitly

specified

"/"
delimiter
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Breadth-first search application:  Erdös numbers

hand-drawing of part of the Erdös graph by Ron Graham



UNDIRECTED GRAPHS

‣ Graph API
‣ Depth-first search
‣ Breadth-first search
‣ Connected components
‣ Challenges

Def.  Vertices v and w are connected if there is a path between them.

 
Goal.  Preprocess graph to answer queries:  is v connected to w ?  
in constant time.
 
 
 
 
 
 
 
 
 
 
Depth-first search.  [next few slides]
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Connectivity queries

  public class CC

CC(Graph G) find connected components in G    

boolean connected(int v, int w) are v and w connected?

int count() number of connected components

int id(int v) component identifier for v  

The relation "is connected to" is an equivalence relation:

• Reflexive:  v is connected to v.

• Symmetric:  if v is connected to w, then w is connected to v.

• Transitive: if v connected to w and w connected to x, then v connected to x.

 
Def.  A connected component is a maximal set of connected vertices.

 
 
 
 
 
 
 
 
Remark.  Given connected components, can answer queries in constant time.
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Connected components

  v    id[v] 
  0 0 
  1 0 
  2 0 
  3 0 
  4 0 
  5 0 
  6 0 
  7 1 
  8 1 
  9 2 
 10 2 
 11 2 
 12 2
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21

5

3

3 connected components

Def.  A connected component is a maximal set of connected vertices.
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Connected components

63 connected components



Goal.  Partition vertices into connected components.
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Connected components

Initialize all vertices v as unmarked.

For each unmarked vertex v, run DFS to identify all 
vertices discovered as part of the same component.

Connected components

13
13
0 5
4 3
0 1
9 12
6 4
5 4
0 2
11 12
9 10
0 6
7 8
9 11
5 3

tinyG.txt

Input format for Graph constructor (two examples)

250
1273
244 246
239 240
238 245
235 238
233 240
232 248
231 248
229 249
228 241
226 231
...
(1261 additional lines)

mediumG.txt
V

E
V

E

13
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0 5
4 3
0 1
9 12
6 4
5 4
0 2
11 12
9 10
0 6
7 8
9 11
5 3

tinyG.txt

Input format for Graph constructor (two examples)

250
1273
244 246
239 240
238 245
235 238
233 240
232 248
231 248
229 249
228 241
226 231
...
(1261 additional lines)

mediumG.txt
V

E
V

E

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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Connected components
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graph G
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.

6

4

5

00

21

3

Connected components

121

6 done

21

87

109

1211

87

109

1211

0

6

0

– 

–

0

0 

0

0

–

–

– 

–

–

–

0 

1 

2

3

4 

5

6

7

8

9 

10

11

12

marked[]v

T

F 

F

T

T 

T

T

F

F

F 

F

F

F

cc[]

To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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To visit a vertex v :
• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent to v.
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Finding connected components with DFS

public class CC 
{ 
   private boolean marked[]; 
   private int[] id; 
   private int count; 

   public CC(Graph G) 
   { 
      marked = new boolean[G.V()]; 
      id = new int[G.V()]; 
      for (int v = 0; v < G.V(); v++) 
      { 
         if (!marked[v]) 
         { 
            dfs(G, v); 
            count++; 
         } 
      } 
   } 

   public int count() 
   public int id(int v) 
   private void dfs(Graph G, int v) 

}

run DFS from one vertex in 

each component

id[v] = id of component containing v
number of components

see next slide
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Finding connected components with DFS (continued)

   public int count() 
   {  return count;  } 

   public int id(int v) 
   {  return id[v];  } 

   private void dfs(Graph G, int v) 
   { 
      marked[v] = true; 
      id[v] = count; 
      for (int w : G.adj(v)) 
         if (!marked[w]) 
            dfs(G, w); 
   }

all vertices discovered in same 

call of dfs have same id

number of components

id of component containing v



UNDIRECTED GRAPHS

‣ Graph API
‣ Depth-first search
‣ Breadth-first search
‣ Connected components
‣ Challenges

Graph-processing challenge 1

Problem.  Is a graph bipartite?

 
 
 
 
 
 
How difficult?

• Any programmer could do it.

• Typical diligent algorithms student could do it.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.
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Graph-processing challenge 1

Problem.  Is a graph bipartite?

 
 
 
 
 
 
How difficult?
• Any programmer could do it.

• Typical diligent algorithms student could do it.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.
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simple DFS-based solution 

(see textbook)

✓

High-school dating graph

Problem.  Is a graph bipartite?

156

Image created by Mark Newman.
Data drawn from  Peter S. Bearman, James Moody, and Katherine Stove, 

Chains of affection: The structure of adolescent romantic and sexual networks, 

American Journal of Sociology 110, 44-91 (2004)



Graph-processing challenge 2

Problem.  Find a cycle.

 
 
 
 
How difficult?

• Any programmer could do it.

• Typical diligent algorithms student could do it.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.
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Graph-processing challenge 2

Problem.  Find a cycle.

How difficult?

• Any programmer could do it.

• Typical diligent algorithms student could do it.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.
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The Seven Bridges of Königsberg.  [Leonhard Euler 1736]

Euler tour.  Is there a (general) cycle that uses each edge exactly once?

Answer.  Yes iff connected and all vertices have even degree.
To find path.  DFS-based algorithm (see textbook).

159

Bridges of Königsberg 

“ … in Königsberg in Prussia, there is an island A, called the 
Kneiphof; the river which surrounds it is divided into two branches ... 
and these branches are crossed by seven bridges.  Concerning these 
bridges, it was asked whether anyone could arrange a route in such a 
way that he could cross each bridge once and only once. ”

Graph-processing challenge 3

Problem.  Find a cycle that uses every edge.

Assumption.  Need to use each edge exactly once.

How difficult?

• Any programmer could do it.

• Typical diligent algorithms student could do it.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.
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Graph-processing challenge 3

Problem.  Find a cycle that uses every edge.

Assumption.  Need to use each edge exactly once.

How difficult?

• Any programmer could do it.

• Typical diligent algorithms student could do it.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.
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Eulerian tour  
(classic graph-processing problem)
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Graph-processing challenge 4

Problem.  Find a cycle that visits every vertex exactly once.

 

 
 
 
How difficult?
• Any programmer could do it.

• Typical diligent algorithms student could do it.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.
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Graph-processing challenge 4

Problem.  Find a cycle that visits every vertex.

Assumption.  Need to visit each vertex exactly once.

How difficult?

• Any programmer could do it.

• Typical diligent algorithms student could do it.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.
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Hamiltonian cycle  

(classical NP-complete problem)
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Graph-processing challenge 5

Problem.  Are two graphs identical except for vertex names?

 
 
 
 
How difficult?

• Any programmer could do it.

• Typical diligent algorithms student could do it.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.
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Graph-processing challenge 5

Problem.  Are two graphs identical except for vertex names?

How difficult?

• Any programmer could do it.

• Typical diligent algorithms student could do it.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.
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graph isomorphism is  

longstanding open problem
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Graph-processing challenge 6

Problem.  Lay out a graph in the plane without crossing edges?

 
 
 
 
How difficult?

• Any programmer could do it.

• Typical diligent algorithms student could do it.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.
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Graph-processing challenge 6

Problem.  Lay out a graph in the plane without crossing edges?

How difficult?

• Any programmer could do it.

• Typical diligent algorithms student could do it.

• Hire an expert.

• Intractable.

• No one knows.

• Impossible.
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linear-time DFS-based planarity algorithm  

discovered by Tarjan in 1970s 

(too complicated for practitioners)
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