BBM 202 - ALGORITHMS

| HACETTEPE UNIVERSITY

DEPT. OF COMPUTER ENGINEERING

UNDIRECTED GRAPHS

Mar. 22, 2016

Acknowledgement: The course slides are adapted from the slides prepared by R.
Sedgewick
and K. Wayne of Princeton University.

» Undirected Graphs

» Graph API

» Depth-first search

» Breadth-first search

» Connected components
» Challenges

Undirected graphs

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?

® Thousands of practical applications.

® Hundreds of graph algorithms known.

® Interesting and broadly useful abstraction.

® Challenging branch of computer science and discrete math.

Protein-protein interaction network

Reference: Jeong et al, Nature Review | Genetics

The Internet as mapped by the Opte Project

http://en.wikipedia.org/wiki/Internet

Map of science clickstreams

http:/ /www.plosone.org/article/info:doi/ 10.1371/journal.pone.0004803

10 million Facebook friends

"Visualizing Friendships" by Paul Butler

Framingham heart study

Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.
Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social
network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle
is proportional to the person’s body-mass index. The interior color of the circles indicates the person’s obesity status:
yellow denotes an obese person (body-mass index, 30) and green denotes a nonobese person. The colors of the
ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange
denotes a familial tie.

“The Spread of Obesity in a Large Social Network over 32 Years” by Christakis and Fowler in New England Journal of Medicine, 2007

Graph applications Graph terminology
Path. Sequence of vertices connected by edges.
h rie d q
Cycle. Path whose irst and las vertices are the same.
communication telephone, computer fiber optic cable
circuit gate, register, processor wire Two vertices are connected if there is a path between them.
mechanical joint rod, beam, spring
vertex
financial stock, currency transactions cycle of edge
length'5 \ l
transportation street intersection, airport highway, airway route
path of
internet class C network connection < length 4
game board position legal move vertex of
degree 3 AN
social relationship person, actor friendship, movie cast
neural network neuron synapse N
connected
components
protein network protein protein-protein interaction
chemical compound molecule bond
9 10

Some graph-processing problems

UNDIRECTED GRAPHS

Path. Is there a path between s and 7?
» Graph API

» Depth-first search

» Breadth-first search

» Connected components
» Challenges

Shortest path. What is the shortest path between s and ¢ ?

Cycle. Is there a cycle in the graph?
Euler tour. Is there a cycle that uses each edge exactly once?
Hamilton tour. Is there a cycle that uses each vertex exactly once?

Connectivity. Is there a way to connect all of the vertices?
MST. What is the best way to connect all of the vertices?

Biconnectivity. Is there a vertex whose removal disconnects the graph?

Planarity. Can you draw the graph in the plane with no crossing edges?
Graph isomorphism. Do two adjacency lists represent the same graph?

Challenge. Which of these problems are easy? difficult? intractable?

Graph representation

Graph drawing. Provides intuition about the structure of the graph.

two drawings of the same graph

Caveat. Intuition can be misleading.

Graph representation
Vertex representation.

® This lecture: use integers between 0 and V' — 1.
o Applications: convert between names and integers with symbol table.

symbol table
3 arallel
self¢ loop Pt’dg&s‘

Anomalies.

Graph API

public class Graph

Graph (int V) create an empty graph with V vertices
Graph (In in) create a graph from input stream
void addEdge(int v, int w) add an edge v-w
Iterable<Integer> adj(int v) vertices adjacent to v
int v() number of vertices
int E() number of edges
String toString() string representation
In in = new In(args[0]); PR read graph from
Graph G = new Graph (in) ; input stream

for (int v = 0; v < G.V(); v++)
for (int w : G.adj(v)) —
StdOut.println(v + "-" + w);

print out each
edge (twice)

Graph API: sample client

Graph input format.

tinyG. txt

V13 % java Test tinyG.txt

13«77 0-6

05 0 0-2

43

0-1

i ®

S)0 o-s

6 4 -

54 (3) O&, 2-0

02 0 L\ 3-5

n O A=) 3-4

9 10

(73 g 12-11

8 m 12-9

53
In in = new In(args[0]); read graph from

q =
Graph G = new Graph(in) ; input stream
for (:mt.v =0; v< C.4.V(); v++) Bntoueaen
for (int w : G.adj(v)) S
. edge (twice)
StdOut.println(v + "-" + w);

Typical graph-processing code

public static int degree(Graph G, int v)
{

int degree = 0;
for (int w : G.adj(v)) degree++;
return degree;

}

compute the degree of v

public static int maxDegree(Graph G)

int max = 0;
for (int v = 0; v < G.VO; v++)
if (degree(G, v) > max)
max = degree(G, v);
return max;

compute maximum degree

B public static double averageDegree(Graph G)
compute average degree 1 return 2.0 * G.EQ / G.VO;

public static int numberOfSelfLoops(Graph G)
{

int count = 0;

for (int v = 0; v < G.VO); v++)
for (int w : G.adj(v))
if (v == w) count++;

return count/2;

}

count self-loops

each edge counted twice

Set-of-edges graph representation

Maintain a list of the edges (linked list or array).

Adjacency-matrix graph representation

Maintain a two-dimensional V-by-V boolean array;

for each edge v—w in graph: agjiviw] = adj[w][v] = true.

two entries

° for each edge

\\;3

4
0
0
0
1

/b o o k|,
H o oo ko
© oo oo o

© o0 o0 oco0okrHOOREKO

cooo oooooooor
©cooo ooooooo
©cooo ooor ko
©cooo oo wnm

ocooo ooo

oo -

o oo o o

ooooolooooooom

HHHroO OOOOSO©OOOOO|e

HoOor oOO0OO0OOOOOGOO

©oHor OO0O0OOOOOGOO

O, 0 1
0 2
OORO 2 s
3 4
Po-o L
e 4 6
5 10
° @ 911
@\@ i
18
Adjacency-list graph representation
Maintain vertex-indexed array of lists.
B 3 8 oy
":\ Bag objects
7
° adj[]
o
°L
CRONG e
Af/ ~[3
5 —
=0 .
Q :

repres
of the s

Adjacency-list graph representation: Java implementation

public class Graph
{
private final int V; 0 .
N . adjacency lists
private Bag<Integer>[] adj; e
(using Bag data type)
public Graph(int V)
{
this.V = V;
adj = (Bag<Integer>[]) new Bag[V]; < L create empty graph
for (int v = 0; v < V; v++) with v vertices
adj[v] = new Bag<Integer>();
}
public void addEdge (int v, int w)
{
adj[v].add(w) ; By cddedgevow
adj[w] .add(v) ; (parallel edges allowed)
}
public Iterable<Integer> adj(int v)
R <«—+— iterator for vertices adjacent to v
{ return adj[vl; }
}

Graph representations

In practice. Use adjacency-lists representation.
® Algorithms based on iterating over vertices adjacent to v.
® Real-world graphs tend to be sparse.

\ huge number of vertices,
small average vertex degree

sparse (E=200) dense (E=1000)

Two graphs (V = 50)

Graph representations

In practice. Use adjacency-lists representation.
® Algorithms based on iterating over vertices adjacent to v.
® Real-world graphs tend to be sparse.

\ huge number of vertices,

small average vertex degree

. edge between iterate over vertices
representation space add edge '
v and w? adjacent to v?
E 1 E E

list of edges
adjacency matrix V2 1+ 1 \
adjacency lists E+V 1 degree(v) degree(v)

* disallows parallel edges

UNDIRECTED GRAPHS

» Graph API

» Depth-first search

» Breadth-first search

» Connected components
» Challenges

Maze exploration

Maze graphs.
® Vertex = intersection.
® Edge = passage.

intersection passage

Goal. Explore every intersection in the maze.

Trémaux maze exploration

Algorithm.

® Unroll a ball of string behind you.

® Mark each visited intersection and each visited passage.
® Retrace steps when no unvisited options.

A=A

M\ A [~

f],

Maze exploration

Maze exploration

Bl

Depth-first search

Goal. Systematically search through a graph.
Idea. Mimic maze exploration.

DFS (to visit a vertex v)

Mark v as visited.

Recursively visit all unmarked
vertices w adjacent to v.

Typical applications.
e Find all vertices connected to a given source vertex.
e Find a path between two vertices.

Design challenge. How to implement?

Design pattern for graph processing

Design pattern. Decouple graph data type from graph processing.
® Create a Graph object.

® Pass the Graph to a graph-processing routine, e.g., Paths.

® Query the graph-processing routine for information.

public class Paths

Paths (Graph G, int s) find paths in G from source s

boolean hasPathTo (int v) is there a path from s to v?

Iterable<Integer> pathTo(int v) path from s to v; null if no such path

Paths paths = new Paths (G, s);
for (int v = 0; v < G.V(); v++)
if (paths.hasPathTo(v))

. print all vertices
StdOut.println(v) ; —

connected to s

Depth-first search
To visit a vertex v :

e Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

°

graph G

tinyG. txt
\'\13 .
13«
05
3

~

1
1
4
4
2
112

4
0
9
6
5
0
1
9
0
7
911
5

1
6
8
1
3

Depth-first search

To visit a vertex v :
e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v.

Z

0o F

1 F

2 F

O BB O—® o
4 F

5 F

(HD—) (——2) sk
7 F

5 8 F
9 F

10 F

graph G nF
12 F

marked[] edgeTo[v]

Depth-first search
To visit a vertex v :

® Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

6

marked[] edgeTo[v]

Depth-first search
To visit a vertex v :

® Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

O—=©

v

marked[] edgeTo[v]

°© O -
1 F -
2 F -
O ©®© T —© s F -
4 F -
5 F -
()——») ()——) o P -
7 F -
5 8 F -
9 F -
10 F -
visit 0 i F -
12 F -
33
Depth-first search
To visit a vertex v :
e Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.
. . v marked[] edgeTo[v]
0 T -
1 F -
2 F -
° O (o) 3 F -
4 F -
5 F -
(D)—) (——) s ot o
7 F -
5 8 F -
9 F -
10 F -
visit 6 il s -
12 F -

=
F
2 F -
D C—® s -
4 F -
HO—0 O . @ G
s O ©
7 F -
5 8 F -
9 F -
10 F -
visit 6 il ? -
12 F -
34
Depth-first search
To visit a vertex v :
e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v.
v marked[] edgeTo[v]
0 T -
1 F -
2 F -
C—® s -
t @ @
5 F -
()——2) s 1 o
7 F -
5 8 F -
F —
10 F -
visit 4 U ? -
F

Depth-first search
To visit a vertex v :

® Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

v

marked[] edgeTo[v]

Depth-first search

To visit a vertex v :
® Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

Z

v

marked[] edgeTo[v]

visit 3

=
E
2 F -
(o —() s F -
4 T 6
o—w 2 P9
6 T 0
7 F -
8 F -
9 F -
10 F -
visit 5 n F -
12 F =
Depth-first search
To visit a vertex v :
e Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.
v marked[] edgeTolv]
0 T -
1 F -
2 F -
(o —9) s ot s
4 T 6
5 T 4
e_ ° @ 6 T 0
7 F -
8 F -
9 F -
10 F -
F
F

0 T =
1 F -
2 F -
C—® s
2 00
5 T 4
Q @ 6 T 0
7 F -
8 F -
9 F -
10 F -
visit 3 0 7 -
12 F = 4
Depth-first search
To visit a vertex v :
e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v.
v marked[] edgeTo[v]
0 T -
1 F -
2 F -
—® s L
4 T 6
{ 5 T 4
° ° @ 6 T 0
7 F -
o 8 F -
9 F -
10 F -
3 done 1 F -
12 F -

Depth-first search
To visit a vertex v :

® Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

v

marked[] edgeTo[v]

Depth-first search

To visit a vertex v :
® Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

Z

v

marked[] edgeTo[v]

T —
1 F -
2 F -
—® s o1 s
4 T 6
5 T 4
0 @ 6 T 0
7 F -
8 F -
9 F -
10 F -
visit 5 n F -
12 F = 4
Depth-first search
To visit a vertex v :
e Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.
v marked[] edgeTo[v]
0 T -
1 F -
2 F -
(— s 1 s
4 T 6
5 T 4
° ° @ 6 T 0
7 F -
° 8 F -
9 F -
10 F -
5 done 1" F -
12 F -

0 T =
1 F -
2 F -
a Q 3 T 5
4 T 6
5 T 4
0 @ 6 T 0
7 F -
e 8 F =
9 F -
10 F -
visit 5 0 7 -
12 F = 4
Depth-first search
To visit a vertex v :
e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v.
v marked[] edgeTo[v]
0 T -
1 F -
2 F -
(C— s T s
4 T 6
5 T 4
° @ 6 T 0
7 F -
8 F -
9 F -
10 F -
visit 4 U ? -
12 F -

Depth-first search
To visit a vertex v :

® Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

v

marked[] edgeTo[v]

Depth-first search

To visit a vertex v :
® Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

Z

v

marked[] edgeTo[v]

T —
1 F -
2 F -
C—® s o1 s
4 T 6
5 T 4
_o 0 @ 6 T 0
7 F -
8 F -
9 F -
10 F -
visit 4 n F -
12 F = 4
Depth-first search
To visit a vertex v :
e Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.
v marked[] edgeTo[v]
0 T -
1 F -
2 F -
O (—W s ot s
4 T 6
5 T 4
° @ 6 T 0
7 F -
8 F -
9 F -
10 F -
6 done 1" F -
12 F -

0 T =
1 F -
2 F -
o a Q 3 T 5
4 T 6
5 T 4
° Q @ 6 T 0
7 F -
8 F -
9 F -
10 F -
4 done L F -
12 F = 4
Depth-first search
To visit a vertex v :
e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v.
v marked[] edgeTo[v]
0 T -
1 F -
2 F -
(C— s T s
4 T 6
5 T 4
° @ 6 T 0
7 F -
8 F -
9 F -
10 F -
visit 0 U ? -
12 F -

Depth-first search
To visit a vertex v :

® Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

v

marked[] edgeTo[v]

Depth-first search

To visit a vertex v :
® Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

Z

v

marked[] edgeTo[v]

0 T =
1 F -
2
c—® o ¢ ¢
4 T 6
5 T 4
0 @ 6 T 0
7 F -
8 F -
9 F -
10 F -
visit 2 W B -
12 F = 4
Depth-first search
To visit a vertex v :
e Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.
v marked[] edgeTo[v]
0 T -
1 F -
2 T 0
(o — s o1 s
4 T 6
5 T 4
° @ 6 T 0
7 F -
8 F -
9 F -
10 F -
visit 0 il s -
12 F -

0 T =
1 F -
2 T 0
o a Q 3 T 5
4 T 6
5 T 4
Q @ 6 T 0
7 F -
8 F -
9 F -
10 F -
2 done L F -
12 F = 4
Depth-first search
To visit a vertex v :
e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v.
v marked[] edgeTo[v]
0 T -
1
L0
—® i
4 T 6
5 T 4
° @ 6 T 0
7 F -
8 F -
9 F -
10 F -
visit 1 U ? -
12 F -

Depth-first search
To visit a vertex v :

® Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

o

v

marked[] edgeTo[v]

Depth-first search
To visit a vertex v :

® Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

Z

0 T -

1 T 0

2 T 0

C—® s T s
4 T 6

5 T 4

a @ 6 T 0
7 F -

8 F -

9 F -

10 F -

0 done L F -
12 F -

v marked[] edgeTo[v]

T —
1 T 0
2 T 0
o —® s o1 s
4 T 6
5 T 4
0 @ 6 T 0
7 F -
8 F -
9 F -
10 F -
1 done n F -
12 F - .
Depth-first search
To visit a vertex v :
e Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.
v marked[] edgeTo[v]
0 T -
1 T 0
2 T 0
3 T 5
4 T 6
5 T 4
6 T 0
7 F =
8 F -
9 F -
10 F -
vertices reachable from 0 1" F -
12 F -

Depth-first search

Goal. Find all vertices connected to s (and a path).
Idea. Mimic maze exploration.

Algorithm.

® Use recursion (ball of string).

® Mark each visited vertex (and keep track of edge taken to visit it).
® Return (retrace steps) when no unvisited options.

Data structures.
® boolean[] marked to mark visited vertices.
® int[] edgeTo to keep tree of paths.
(edgeTo[w] == v) means that edge v-w taken to visit w for first time

Depth-first search

public class DepthFirstPaths
{
private boolean[] marked;]
private int[] edgeTo; Pa———
private int s;

public DepthFirstSearch(Graph G, int s)

{
P D—
dfs (G, s); -~
}
private void dfs(Graph G, int v) —

{
marked[v] = true;
for (int w : G.adj(v))
if ('marked[w])
{
dfs (G, w);
edgeTo[w] = v;

marked]v] = true
if v connected to s

edgeTo[v] = previous vertex
on path fromstov

initialize data structures

find vertices connected to s

recursive DFS does the work

Depth-first search properties

Proposition. DFS marks all vertices connected to s in time proportional to

the sum of their degrees.

Pf.

e Correctness:

- if w marked, then w connected to s (why?)

- if w connected to s, then w marked
(if w unmarked, then consider last edge
on a path from s to w that goes from a
marked vertex to an unmarked one)

o Running time:

Each vertex connected to s is visited once.

source set of marked
vertices

no such edge
set of «— can exist
unmarked

vertices

Depth-first search properties

Proposition. After DFS, can find vertices connected to s in constant time

and can find a path to s (if one exists) in time proportional to its length.

Pf. edgero(] is a parent-link representation of a tree rooted at s.

public boolean hasPathTo (int v)
{ return marked[v]; }

public Iterable<Integer> pathTo(int v)

{
if ('hasPathTo(v)) return null;
Stack<Integer> path = new Stack<Integer>();
for (int x = v; x != s; x = edgeTo[x])

path.push (x) ;

path.push(s);
return path;

edgeTo[]

VA wN RO
wwNno N

Depth-first search application:

preparing for a date

[PREPPRING FORADATE:] [~~~ v ~]
P"W"—* OKAY, WHAT KINDS OF
WHAT SITUATIONS EMERGENCIES (AN HPPEN?
PREPARE. b}

MIGHT T RR? i) A) SNAKERITE
i) MEDIAL EMERGENCY 8) LIGHTNNG STRKE
2) DANONG O FLLRIM AR
2)R0D TOBPENSVE
O,
[°) o

A
HM. WHICH SIPKS“;;_\J

DRt LT e, HERESOARIH e
DA)?O’"“‘“‘E 7 AND WOONSKTENT. TLL MAKE
&) GARTER SNAKE. 7 g
3 Pt A SPRERDSHEET To ORGRNZE IT

o
. O

xked

http://xked.com/761/

TMHEREOPRK. BY LDy, THE INAND
YOUUP. YoURE TAIPRN HAS THE DEACLIEST
Nmmso\ 7 VENOM OF AN SNAKE'

S

T REALY NEED TSP
USING DEPTH-FIRST SEARCHES.

Depth-first search application: flood fill

UNDIRECTED GRAPHS

Challenge. Flood fill (Photoshop magic wand). Graph API
» Grap

» Depth-first search

» Breadth-first search

» Connected components
» Challenges

Assumptions. Picture has millions to billions of pixels.

e 6 o o o o o
Solution. Build a grid graph. ol NE
e Vertex: pixel. olo ololo
o Edge: between two adjacent gray pixels. ° o o o o
® Blob: all pixels connected to given pixel. e 0o 0 0 0 0 o
6l
Breadth-first search Breadth-first search
Repeat until queue is empty: Repeat until queue is empty:
® Remove vertex v from queue. ® Remove vertex v from queue.
® Add to queue all unmarked vertices adjacent to v and mark them. ® Add to queue all unmarked vertices adjacent to v and mark them.
+inyCG. txt
Vs queue v edgeTol[v]
g «E 0 =
05 1 _
24
23 2 -
12
01 ¥ -
34 4 -
35
02 5 =

graph G add 0 to queue

Breadth-first search

Repeat until queue is empty:
® Remove vertex v from queue.
® Add to queue all unmarked vertices adjacent to v and mark them.

queue

dequeue 0

0

[N

v edgeTol[v]

Breadth-first search

Repeat until queue is empty:
® Remove vertex v from queue.
® Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search
Repeat until queue is empty:

® Remove vertex v from queue.
® Add to queue all unmarked vertices adjacent to v and mark them.

queue

dequeue 0

0

L N

v edgeTol[v]

0
0

queue v edgeTolv]
0 -
1 -
2 0
3 -
4 -
5 .
dequeue 0
66
Breadth-first search
Repeat until queue is empty:
® Remove vertex v from queue.
® Add to queue all unmarked vertices adjacent to v and mark them.
queue v edgeTol[v]
0 —
1 0
2 0
3 .
1 4 -
5 0
2

dequeue 0

Breadth-first search
Repeat until queue is empty:

® Remove vertex v from queue.
® Add to queue all unmarked vertices adjacent to v and mark them.

queue

0 done

v edgeTol[v]

0 -
0
0

[N
|

Breadth-first search

Repeat until queue is empty:

® Remove vertex v from queue.

® Add to queue all unmarked vertices adjacent to v and mark them.

queue

dequeue 2

v edgeTol[v]

0 -
1 0
2 0
3 -
4 -
5 0

Breadth-first search

Repeat until queue is empty:
® Remove vertex v from queue.
® Add to queue all unmarked vertices adjacent to v and mark them.

queue

dequeue 2

v edgeTol[v]

0 -
1 0
2 0
3 -
4 -
5 0

Breadth-first search

Repeat until queue is empty:

® Remove vertex v from queue.

® Add to queue all unmarked vertices adjacent to v and mark them.

queue

dequeue 2

v edgeTol[v]

0 -
1 0
2 0
3 -
4 -
5 0

Breadth-first search
Repeat until queue is empty:

® Remove vertex v from queue.
® Add to queue all unmarked vertices adjacent to v and mark them.

queue

dequeue 2

v edgeTol[v]

0 -
1 0
2 0
3 2
4 -
5 0

Breadth-first search

Repeat until queue is empty:

® Remove vertex v from queue.

® Add to queue all unmarked vertices adjacent to v and mark them.

queue

®

(® O, .

dequeue 2

v edgeTol[v]

0 -

[N R
N N O o

Breadth-first search

Repeat until queue is empty:
® Remove vertex v from queue.
® Add to queue all unmarked vertices adjacent to v and mark them.

° queue

2 done

v edgeTol[v]

0 =
1 0
2 0
3 2
4 2
5 0

Breadth-first search

Repeat until queue is empty:

® Remove vertex v from queue.

® Add to queue all unmarked vertices adjacent to v and mark them.

queue

o ¢

® ® -

dequeue 1

v edgeTol[v]

0 =
1 0
2 0
3 2
4 2
5 0

Breadth-first search

Repeat until queue is empty:

® Remove vertex v from queue.

® Add to queue all unmarked vertices adjacent to v and mark them.

dequeue 1

queue

v edgeTol[v]

0 =
1 0
2 0
3 2
4 2
5 0

Breadth-first search

Repeat until queue is empty:
® Remove vertex v from queue.
® Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

Repeat until queue is empty:

® Remove vertex v from queue.

® Add to queue all unmarked vertices adjacent to v and mark them.

1 done

queue

v edgeTol[v]

0 =
1 0
2 0
3 2
4 2
5 0

dequeue 5

queue v edgeTolv]
0 -
1 0
2 0
4 3 2
o 4 2
e ° ° 5 0
5
dequeue 1
78
Breadth-first search
Repeat until queue is empty:
® Remove vertex v from queue.
® Add to queue all unmarked vertices adjacent to v and mark them.
queue v edgeTol[v]
0 —
1 0
2 0
4 3 2
e s 4 2
5 ° 5 0

Breadth-first search

Repeat until queue is empty:

® Remove vertex v from queue.

® Add to queue all unmarked vertices adjacent to v and mark them.

queue

dequeue 5

v edgeTol[v]

0 =
1 0
2 0
3 2
4 2
5 0

Breadth-first search

Repeat until queue is empty:
® Remove vertex v from queue.
® Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

Repeat until queue is empty:

® Remove vertex v from queue.

® Add to queue all unmarked vertices adjacent to v and mark them.

queue

(- “

5 done

v edgeTol[v]

0 =
1 0
2 0
3 2
4 2
5 0

queue v edgeTolv]
0 -
1 0
2 0
3 2
° 5 0
3
dequeue 5
82
Breadth-first search
Repeat until queue is empty:
® Remove vertex v from queue.
® Add to queue all unmarked vertices adjacent to v and mark them.
queue v edgeTol[v]
0 —
1 0
2 0
3 2
°\® B 4 2
5 0

dequeue 3

Breadth-first search

Repeat until queue is empty:
® Remove vertex v from queue.
® Add to queue all unmarked vertices adjacent to v and mark them.

queue

/0\@

dequeue 3

0

[N

v edgeTol[v]

o nM M o o

Breadth-first search

Repeat until queue is empty:

® Remove vertex v from queue.

® Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

Repeat until queue is empty:
® Remove vertex v from queue.
® Add to queue all unmarked vertices adjacent to v and mark them.

queue

dequeue 3

0

L N

v edgeTol[v]

o M M o o

queue v edgeTolv]
0 -
1 0
2 0
3 2
4 2
5 0
4
dequeue 3
86
Breadth-first search
Repeat until queue is empty:
® Remove vertex v from queue.
® Add to queue all unmarked vertices adjacent to v and mark them.
queue v edgeTol[v]
0 —
1 0
2 0
3 2
e 4 2
@ 5 0
4

3 done

Breadth-first search

Repeat until queue is empty:
® Remove vertex v from queue.
® Add to queue all unmarked vertices adjacent to v and mark them.

queue

dequeue 4

v edgeTol[v]

0 =
1 0
2 0
3 2
4 2
5 0

Breadth-first search

Repeat until queue is empty:

® Remove vertex v from queue.

® Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search

Repeat until queue is empty:
® Remove vertex v from queue.
® Add to queue all unmarked vertices adjacent to v and mark them.

queue

dequeue 4

v edgeTol[v]

0 =
1 0
2 0
3 2
4 2
5 0

queue v edgeTolv]
0 -
1 0
2 0
3 2
4 2
N s 0
dequeue 4
90
Breadth-first search
Repeat until queue is empty:
® Remove vertex v from queue.
® Add to queue all unmarked vertices adjacent to v and mark them.
queue v edgeTol[v]
0 —
1 0
2 0
3 2
4 2
° 5 0

4 done

Breadth-first search

Repeat until queue is empty:
® Remove vertex v from queue.
® Add to queue all unmarked vertices adjacent to v and mark them.

0 -

[N
o nM M o o

done

v edgeTol[v]

Breadth-first search

Depth-first search. Put unvisited vertices on a stack.
Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from s to ¢ that uses fewest number of edges.

BFS (from source vertex s)

N

Put s onto a FIFO queue, and mark s as visited.

Repeat until the queue is empty:
- remove the least recently added vertex v

i

- add each of v's unvisited neighbors to the queue,

and mark them as visited.

q

Intuition. BFS examines vertices in increasing distance from s.

Breadth-first search properties

Proposition. BFS computes shortest path (number of edges) from s
in a connected graph in time proportional to £ + V.

Pf. [correctness] Queue always consists of zero or more vertices of
distance k from s, followed by zero or more vertices of distance k + 1.

Pf. [running time] Each vertex connected to s is visited once.

standard drawing dist = 0 dist =1 dist =2

Breadth-first search

public class BreadthFirstPaths
{
private boolean[] marked;
private boolean[] edgeTol[];
private final int s;

private void bfs(Graph G, int s)

Queue<Integer> q = new Queue<Integer>() ;
q.enqueue (s) ;
marked[s] = true;
while ('q.isEmpty())
{
int v = g.dequeue();
for (int w : G.adj(v))
{
if (!'marked[w])
{
gq.enqueue (W) ;
marked[w] = true;
edgeTo[w] = v;

Breadth-first search application: routing

Fewest number of hops in a communication network.

e SATELLITE CIRCUIT
o we

o w

& PLUmBUS WP

(NOTE THIS MAP DOES NOT SHOW ARPA'S EXPERIMENTAL
SATELLITE CONNECTIONS)

NAMES SHOWN ARE 1MP NAMCS, NOT (NECESSARILY) HOST NAMES.

ARPANET, July 1977

Breadth-first search application: Kevin Bacon numbers

Kevin Bacon numbers.

THE ORACLE
OF BACON

Endless Games board game

Uma Thurman
actod n

Be Cool (2005)

Carita's Secret (2004) | Scott Adsit
> o actec n

Paua Lemes () ‘The Informant! (2009)

FrostNbon (2008) Matt Damon
Kevin Bacon
= 10 s i) (s

http:/ /oracleofbacon.org SixDegrees iPhone App

Kevin Bacon graph

® Include a vertex for each performer and for each movie.
e Connect 2 movie to all performers that appear in that movie.
e Compute shortest path from s = Kevin Bacon.

performer

/ vertex

movie

Breadth-first search application: Erdés numbers

hand-drawing of part of the Erdos graph by Ron Graham

100

UNDIRECTED GRAPHS

» Connected components

Connectivity queries

Def. Vertices v and w are connected if there is a path between them.

Goal. Preprocess graph to answer queries: is v connected to w !
in constant time.

public class CC

CC(Graph G) find connected components in G
boolean connected(int v, int w) are v and w connected?
int count() number of connected components
int id(int v) component identifier for v

Depth-first search. [next few slides]

102

Connected components

The relation "is connected to" is an equivalence relation:

® Reflexive: v is connected to v.

e Symmetric: if v is connected to w, then w is connected to v.

o Transitive: if v connected to w and w connected to x, then v connected to x.

Def. A connected component is a maximal set of connected vertices.

v id[v]
0 0
-
0 2 0
3 0
® © s o
o @ 5 0
6 0
a e 7 1
/ ‘ 8 1
e 0 @ 9 2
10 2
3 connected components a2 2
12 2

Remark. Given connected components, can answer queries in constant time.

103

Connected components

Def. A connected component is a maximal set of connected vertices.

L

63 connected components

104

Connected components

Goal. Partition vertices into connected components.

Connected components

Initialize all vertices v as unmarked.

For each unmarked vertex v, run DFS to identify all

Connected components

To visit a vertex v :
® Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

tinyG. txt
vertices discovered as part of the same component. ' 13
05
43
01
9 12
6 4
(0 54
() 02
)0, 1 12
9 10
(3) 9 be
0 (N re
© Da®) 23
5 3
105
Connected components
To visit a vertex v :
e Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.
0 v marked[] ccl]
0

visit 0

© ©® N o o & N

e

M M M M M MM M M AWM

107

0 . . v marked[] cc[]
0 F -
1 F -
2 F -
O W W G—® i
4 F -
5 F -
(90— (—2) s e
7 F -
5 8 F -
9 F -
10 F -
graph G l F -
12 F -
106
Connected components
To visit a vertex v :
e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v.
v markedl] ccl]
0 T 0
1 F -
2 F =
° (2} (10) s F -
4 F -
5 F -
(H—1) ()—2) s @ ©
7 F =
5 8 F -
9 F -
10 F -
visit 6 1 P -
12 F -

108

Connected components

To visit a vertex v :
® Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

Connected components

To visit a vertex v :
® Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

v marked[] cc[]
0 T 0
1 F
2 F -
D C—® a r
4 F -
5 F -
(O—+) ()——) s T o
7 F -
5 8 F -
9 F
10 F -
visit 6 il >
12 F -
109
Connected components
To visit a vertex v :
e Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.
v marked[] ccl]
0 T 0
1 F -
2 F
—®@ s F -
4 T 0
° @ s @O @
6 T 0
7 F -
8 F -
9 F -
10 F
visit 5 l F -
12 F -

v marked[] cc[]
0 T 0
1 F -
2 F -
O— s F -
« 0O 0O
5 F -
()—2) s T o
7 F -
5 8 F -
9 F -
10 F -
visit 4 & P -
12 F -
o
Connected components
To visit a vertex v :
e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v.
v markedl] ccl]
0 T 0
1 F -
O—® . o a
3
o O
4 T 0
5 T 0
()——2) s T o
7 F -
8 F -
9 F -
10 F -
visit 3 1 P -
12 F -

n

Connected components

To visit a vertex v :
® Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

Connected components

To visit a vertex v :
® Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

v marked[] cc[]
T 0
1 F -
2 F -
C—® s T o
4 T 0
5 T 0
o_- 0 @ 6 T 0
7 F -
8 F -
9 F -
10 F -
visit 3 il 5 -
12 F =
Connected components
To visit a vertex v :
e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v.
v marked[] ccl]
0 T 0
1 F -
2 F -
e Q 3 T 0
4 T 0
5 T 0
° @ 6 T 0
7 F -
8 F -
9 F -
10 F -
visit 5 i F -
12 F -

v marked[] ccl]
0 T 0
1 F -
2 F -
a Q 3 T 0
4 T 0
5 T 0
° 0 @ 6 T 0
7 F -
e 8 F -
9 F -
10 F -
3 done l P -
12 F =
Connected components
To visit a vertex v :
e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v.
v markedl] ccll
0 T 0
1 F -
2 F -
e Q 3 T 0
4 T 0
5 T 0
° @ 6 T 0
7 F
e 8 F -
9 F -
10 F -
visit 5 1 P -
12 F -

16

Connected components

To visit a vertex v :
® Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

Connected components

To visit a vertex v :
® Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

v marked[] cc[]
T 0
1 F -
2 F -
C—® s T o
4 T 0
5 T 0
° 0 @ 6 T 0
7 F -
e 8 F -
9 F -
10 F -
5 done gl F -
12 F = W
Connected components
To visit a vertex v :
e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v.
marked[] cc[]
0 T 0
1 F -
2 F -
e @ 3 T 0
4 T 0
5 T 0
_o ° @ 6 T 0
7 F -
8 F -
9 F -
10 F -
visit 4 i F -
12 F -

19

v marked[] ccl]
0 T 0
1 F -
2 F -
a Q 3 T 0
4 T 0
5 T 0
0 @ 6 T 0
7 F -
8 F -
9 F -
10 F -
visit 4 & P -
12 F =
Connected components
To visit a vertex v :
e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v.
v markedl] ccll
0 T 0
1 F -
2 F -
0 G G 3 T 0
4 T 0
5 T 0
° ° @ 6 T 0
7 F
8 F -
9 F -
10 F -
4 done i F -
12 F -

120

Connected components

To visit a vertex v :
® Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

Connected components

To visit a vertex v :
® Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

v marked[] cc[]
T 0
1 F -
2 F -
0O C—® s 1 o
4 T 0
5 T 0
0 @ 6 T 0
7 F -
8 F -
9 F -
10 F -
6 done gl F -
12 F = =
Connected components
To visit a vertex v :
e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v.
v marked[] ccl]
0 T 0
1 F -
2
—® . 99
4 T 0
5 T 0
° @ 6 T 0
7 F -
8 F -
9 F -
10 F -
visit 2 i F -
12 F -

123

v marked[] ccl]
0 T 0
1 F -
2 F -
a Q 3 T 0
4 T 0
5 T 0
Q @ 6 T 0
7 F -
8 F -
9 F -
10 F -
visit 0 & P -
12 F = =
Connected components
To visit a vertex v :
e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v.
v markedl] ccll
0 T 0
1 F -
2 T 0
G G G 3 T 0
4 T 0
5 T 0
° @ 6 T 0
7 F
8 F -
9 F -
10 F -
2 done i F -
12 F -

124

Connected components

To visit a vertex v :
® Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

Connected components

To visit a vertex v :
® Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

v marked[] cc[]
T 0
1 F -
2 T 0
C—® s T o
4 T 0
5 T 0
0 @ 6 T 0
7 F -
8 F -
9 F -
10 F -
visit 0 il 5 -
12 F = =
Connected components
To visit a vertex v :
e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v.
o marked[] cc[]
0 T 0
1 T 0
2 T 0
° 9 @ 3 T 0
4 T 0
5 T 0
° @ 6 T 0
7 F -
8 F -
9 F -
10 F -
1 done n F -
12 F -

127

v marked[] cc[]
0 T 0
1
. 29
C—® s T o
4 T 0
5 T 0
0 @ 6 T 0
7 F -
8 F -
9 F -
10 F -
visit 1 & P -
12 F =
Connected components
To visit a vertex v :
e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v.
o v markedl] ccl]
0 T 0
1 T 0
2 T 0
e Q 3 T 0
4 T 0
5 T 0
° @ 6 T 0
7 F
8 F -
9 F -
10 F -
0 done i F -
12 F -

128

Connected components

To visit a vertex v :
® Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

Connected components

To visit a vertex v :
® Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

v marked[] cc[]
0 T 0
connected 1 T 0
component 2 T 0
a 3 T 0
4 T 0
5 T 0
— 0 @ 6 T 0
7 F -
8 F -
9 F -
10 F -
connected component: 0 1 2 3 4 56 " F -
12 F = =
Connected components
To visit a vertex v :
e Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.
v marked[] ccl]
0
1
2
Q—® s
4
5
()—) 6
A GENO)
8 F -
9 F -
10 F -
visit 7 " F -
12 F -

v marked[] cc[]
0
1
2
O— s
4
5
()——2) ‘
7 F -
8 F -
9 F -
10 F -
check1 23456 i P -
12 F = o
Connected components
To visit a vertex v :
e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v.
° v markedl] cc[]
0
1
2
C—®)
4
5
()——2) ’
7 T 1
s @ @
9 F -
10 F -
visit 8 1 P -
12 F -

132

Connected components Connected components

To visit a vertex v : To visit a vertex v :
® Mark vertex v as visited. ® Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v. o Recursively visit all unmarked vertices adjacent to v.

<

marked[] cc[]

° o v marked[] cc[] e

o
S}

2 2
C—® s C—® s
4 4
5 5
(——2) 6 ()——2) ‘
7 T 1 7 T 1
8 T 1 8 T 1
9 F - 9 F -
10 F - 10 F -
8 done n F - 7 done i F -
12 F - 12 F -
133
Connected components Connected components
To visit a vertex v : To visit a vertex v :
e Mark vertex v as visited. e Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v. e Recursively visit all unmarked vertices adjacent to v.

<

marked[] cc[]

<

marked[] cc[]

o—0

- o
- o

2 2
C—® a C—®)
4 4
5 5
(——2) . ()——2) .
7 T 1 7
8 T 1 8
9 F - 9 F -
10 F - 10 F -
connected component: 7 8 1 F - check 8 " F -
12 F - 12 F -

135

Connected components

To visit a vertex v :
® Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

Connected components

To visit a vertex v :
® Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

v marked[] cc[]
0
1
2
9 (10) .
4
5
(——))
7
8
s @ ©@
10 F -
visit 9 il 7 -
12 F = @
Connected components
To visit a vertex v :
e Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.
v marked[] ccl]
0
1
2
3
4
5
6
7
8
9 T 2
10 F -
visit 11 i v 2
12 F -

139

v marked[] cc[]
0
1
2
>
\ .
5
6
7
8
9 T 2
10 F -
visit 11 n @ @
12 F = o
Connected components
To visit a vertex v :
e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v.
v markedl] cc[]
0
1
2
3
4
1 5
6
7
8
9 T 2
10 F -
visit 12 1 1 2
e @ ©Q

Connected components

To visit a vertex v :
® Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

Connected components

To visit a vertex v :
® Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

v marked[] cc[]
0
1
2
3
4
5
o a
7
8
9 T 2
10 F -
visit 12 il v 2
12 T 2
Connected components
To visit a vertex v :
e Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.
v marked[] ccl]
0
1
2
3
4
5
o '
7
8
9 T 2
10 F -
11 done n T 2
12 T 2

143

v marked[] cc[]
0
1
2
3
4
5
o O 5
7
8
9 T 2
10 F -
12 done i T 2
12 T 2 .
Connected components
To visit a vertex v :
e Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.
v marked[] cc[]
0
1
2
3
4
5
6
7
8
9 T 2
10 F -
visit 9 i v 2
12 T 2

144

Connected components

To visit a vertex v :
® Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

Connected components

To visit a vertex v :
® Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

v marked[] cc[]
0
1
2
_0 3
4
5
6
7
8
9 T 2
v @ @
visit 10 il v 2
12 T 2
Connected components
To visit a vertex v :
e Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.
v marked[] ccl]
0
1
2
(<) 3
4
5
6
7
8
9 T 2
10 T 2
9 done n T 2
12 T 2

147

v marked[] cc[]
0
1
2
o O s
4
5
6
7
8
9 T 2
10 T 2
10 done n T 2
12 T 2.
Connected components
To visit a vertex v :
e Mark vertex v as visited.
e Recursively visit all unmarked vertices adjacent to v.
v marked[] cc[]
0
1
2
e O 2
4
5
o O ‘
7
8
9 T 2
10 T 2
connected component: 9 10 11 12 1 T 2
12 T 2

148

Connected components
To visit a vertex v :

® Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

check 10 11 12

v marked[] cc[]

Connected components

To visit a vertex v :
® Mark vertex v as visited.
o Recursively visit all unmarked vertices adjacent to v.

v marked[]
0 T
1 T
2 T
3 T
4 T
5 T
6 T
7 T
8 T
9 T
10 T
done l U
12 T

cc[]

0

© o o o o o

SIS S

150

Finding connected components with DFS

public class CC

{
private boolean marked[];
private int[] id; A =
private int count; “—

public CC(Graph G)
{
marked = new boolean[G.V()];
id = new int[G.V()];
for (int v = 0; v < G.V(); v++)
{
if (!marked[v])
{
dfs (G, v);
count++;

public int count()
public int id(int v) T
private void dfs(Graph G, int v)

id[v] = id of component containing v
number of components

run DFS from one vertex in

each component

see next slide

151

Finding connected components with DFS (continued)

public int count()

{ return count; } number of components

public int id(int v)

id of
{ return id[v]; }

private void dfs(Graph G, int v)
{
marked[v] = true;
id[v] = count;
for (int w : G.adj(v))
if (!'marked[w])
dfs (G, w);

call of dfs have same id

all vertices discovered in same

152

UNDIRECTED GRAPHS Graph-processing challenge |

Problem. Is a graph bipartite?

» Graph API
» Depth-first search
» Breadth-first search O,

» Connected components
» Challenges

How difficult?

® Any programmer could do it.

® Typical diligent algorithms student could do it.
® Hire an expert.

® Intractable.

¢ No one knows.

® |Impossible.

Graph-processing challenge | High-school dating graph
Problem. Is a graph bipartite? Problem. Is a graph bipartite?
a
a3, P Lo
3
©) i olF "
. o oo
0-5 <5 : Q\O/%gg
(e
QW & TR g
1-3 ¢ o o pead
= of °
e o ;—: % Ooi Qe Q‘D.O?OO‘;OQ P QC:O’O:
P €0y %e p%0,
e 45 o, bgﬁoﬁ doﬂao%o o
. = 4 4
How difficult? a6 ooooi, Pe Jes8
oo 0 TP ‘
® Any programmer could do it. %%d‘& Df(og\zzc Joos cfggo
V' Typical diligent algorithms stud Id do'i S I R &
ypical diligent algorithms student could do it. o % ST A 8
. S d Qo Q R
® Hire an expert. \ 0-2 OO"’OQ ’ oo (H,QZ 9o %%%a
0-5 o) Q
® 5 °
® Intractable. simple DFS-based solution 0-6 S :/‘:%Q
® No one knows. (see textbook) ;‘; %i/’ &Q%Q
. - °
® Impossible. o oo &%
4-5
4-6 Image created by Mark Newman.

Data drawn from Peter S. Bearman, James Moody, and Katherine Stove,
Chains of affection: The structure of adolescent romantic and sexual networks,
s American Journal of Sociology 110, 44-91 (2004)

Graph-processing challenge 2 Graph-processing challenge 2

Problem. Find a cycle. Problem. Find a cycle.

How difficult? (3) (4 _ How difficult? (3)
® Any programmer could do it. &) - y ® Any programmer could do it. &)

® Typical diligent algorithms student could do it. - ® Typical diligent algorithms student could do it.

® Hire an expert. ® Hire an expert.

® |ntractable. o ® |ntractable. simple DFS-based solution °

e No one knows. o No one knows. (see textbook)

e Impossible. ° ° ° e Impossible.

Bridges of Konigsberg Graph-processing challenge 3

The Seven Bridges of Konigsberg. [Leonhard Euler 1736] Problem. Find a cycle that uses every edge.

Assumption. Need to use each edge exactly once.
“...in Konigsberg in Prussia, there is an island A, called the
Kneiphof; the river which surrounds it is divided into two branches ...
and these branches are crossed by seven bridges. Concerning these
bridges, it was asked whether anyone could arrange a route in such a

way that he could cross each bridge once and only once.” How difficult?

® Any programmer could do it.

® Typical diligent algorithms student could do it.
¥ ® Hire an EXpert. 0-1-2-3-4-2-0-6-4-5-0
a 0 ® Intractable.

® No one knows.

e Impossible.

Euler tour. Is there a (general) cycle that uses each edge exactly once?
Answer. Yes iff connected and all vertices have even degree.
To find path. DFS-based algorithm (see textbook).

159

Graph-processing challenge 3 Graph-processing challenge 4
Problem. Find a cycle that uses every edge. Problem. Find a cycle that visits every vertex exactly once.
Assumption. Need to use each edge exactly once.
0-1 0-1
0-2 0-2
0-5 0-5
0-6 0-6
. 1-2 1=
How difficult? g G
, ® Any programmer could do it. 2:: How difficult? 2:;
® Typical diligent algorithms student could do it. 4-5 o Any programmer could do it. 4-5
¢ Hire an expert. 0717273-4-270-6-4-5-0 4-6 o Typical diligent algorithms student could do it. 0737374-6-2-1-0 4-6
® |ntractable. Eulerian tour e Hire an expert.
o No one knows. (classic graph-processing problem) o Intractable
e Impossible. ® No one knows.
® Impossible.
161
Graph-processing challenge 4 Graph-processing challenge 5
Problem. Find a cycle that visits every vertex. Problem. Are two graphs identical except for vertex names?
Assumption. Need to visit each vertex exactly once.
0-1 O, 0-1
0-2 0-2
0-5 0-5
0-6 0-6
. 1-2 . 3-
How difficule? b How difficult? -
® Any programmer could do it. ::: ® Any programmer could do it. :::
® Typical diligent algorithms student could do it. 4-5 ® Typical diligent algorithms student could do it.
® Hire an expert. 075-3-4-6-2-1-0 4-6 ® Hire an expert.
V' e Intractable. ® Intractable. o1
® No one knows. A ® No one knows. 0-5
R (classical NP-complete problem) . 0-6
e Impossible. e Impossible. 14
1-5
2-4
3-4
5-6
6<1
163

Graph-processing challenge 5 Graph-processing challenge 6

Problem. Are two graphs identical except for vertex names? Problem. Lay out a graph in the plane without crossing edges?

How difficult?

® Any programmer could do it.

(o)
How difficult? e'“

® Any programmer could do it.
® Typical diligent algorithms student could do it. e
® Hire an expert.

® Typical diligent algorithms student could do it.
® Hire an expert.

® Intractable. ® Intractable. o
v e No one knows. e No one knows.
e Impossible. \ e Impossible. o
graph isomorphism is

longstanding open problem

165

Graph-processing challenge 6

Problem. Lay out a graph in the plane without crossing edges?

(9)
How difficult? a'ﬂ

® Any programmer could do it.
® Typical diligent algorithms student could do it.

v e Hire an expert.
® Intractable. o
® No one knows. linear-time DFS-based planarity algorithm
° Impossible. discovered by Tarjan in 1970s o ° °

(too complicated for practitioners)

167

