BBM 202 - ALGORITHMS

(,E) HACETTEPE UNIVERSITY

DEPT. OF COMPUTER ENGINEERING

DIRECTED GRAPHS

Mar. 31, 2016

Acknowledgement: The course slides are adapted from the slides prepared by R.

Sedgewick

Directed Graphs
Digraph API
Digraph search

Topological sort
Strong components

and K. Wayne of Princeton University.

Directed graphs

Digraph. Set of vertices connected pairwise by directed edges.

vertex of
outdegree 4
and indegree 2

{

e directed
/ cycle

directed path
from 0 f[:) 2NN @

TR
12

Road network

intersection; edge = one-way street.

Vertex =
t E s
Vesty 51 2 N
Laight s
) Laight st 7
2
£| f N
K] 1
bensy — = t
— Hubert sy f X
5 5 s
H &)
§ i g \e 4
Beach ¢ x| 2 N 1 7 &
= N
Eicsson
) Sonsi >,
1 g, e
Titagry t €3
s 2 N8
= & 3
, N Meore 5 %
3 P 7 sy
§ A R
5 Frankin g5 H 5
2 Franin s; 5’? @5 g
H EINY
e AN 3 IS
Harison 1 & H
sons Vv s/ o ' g
l 3 fl 2 3 =
3 3
H Y
= i /oy 82908 Google £ Map data ©2008 Sanbolh, NAVTEQ™ - Terms of Use

7,

Political blogosphere graph

Vertex = political blog; edge = link.

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005

Overnight interbank loan graph

Vertex = bank; edge = overnight loan.

The Topology of the Federal Funds Market, Bech and Atalay, 2008

Implication graph

Vertex = variable; edge = logical implication.

if x5 is true,
then x0 is true

Combinational circuit

Vertex = logical gate; edge = wire.

WordNet graph Digraph applications
transportation street intersection one-way street
event
web web page hyperlink
happening occurrence occurrent natural_event food web species predator-prey relationship
miracle
act human_action human_activity WordNet synset hypernym
change alteration modification miracle
scheduling task precedence constraint
\ group_actior
damage harm impairment transition increase forfeitforfeiture sacrifice action financial bank transaction
resistance opposition /[transgression cell phone person placed call
leap jump saltation jumpleap
infectious disease person infection
change
demotion Jariation game board position legal move
motion movement move citation journal article citation
locomotion travel descent obiect graph Db]ect pointer
run running jump parachuting inheritance hierarchy class inherits from
http://wordnet.princeton.edu dashsprint control flow code block jump
9 10
Some digraph problems DIRECTED GRAPHS
Path. Is there a directed path from s to ¢? b 0 010 00 A 2 00
ety » Digraph API
S SRS S S e
.) D U 0 S 2 » Digraph search
Shortest path. What is the shortest directed path BEERRN .
T » Topological sort
from s to ¢? O
e S I » Strong components
SRS SN S |
Topological sort. Can you draw the digraph so that
all edges point upwards?
Strong connectivity. Is there a directed path between all pairs of vertices?
Transitive closure. For which vertices v and w is there a path from v to w?
PageRank. What is the importance of a web page!
"

Digraph API

public class Digraph

Digraph (int V)
Digraph (In in)
void addEdge(int v, int w)
Iterable<Integer> adj(int v)
int V()
int E()
Digraph reverse()

String toString()

In in = new In(args[0]);

create an empty digraph with V vertices
create a digraph from input stream
add a directed edge v—w
vertices pointing from v
number of vertices
number of edges
reverse of this digraph

string representation

read digraph from

Digraph G = new Digraph (in); input stream
for (int v = 0; v < G.V(); vH) print out each
for (int w : G.adj(v)) <

StdOut.println(v + "->" + w);

edge (once)

Digraph API
tinyDG. txt
13 i % java Digraph tinyDG.txt
2R 0->5
4 2 0->1
2 3 -
2 =
6 0 B
01 @ G 3->5
2 0 3->2
11 12 4->3
12 9 (4) ® 4->2
9 10
s O \Q:@ 5->4
7 9 :
10 12 11->4
1 4 11->12
4 3 12-9
3 5
6 8
8 6
In in = new In(args[0]); read digraph from
Digraph G = new Digraph(in); input stream
for (int v = 0; v < G.V(); vH+) print out each
for (int w : G.adj(v)) <
) edge (once)
StdOut.println(v + "->" + w);

Adjacency-lists digraph representation

Maintain vertex-indexed array of lists.

adj[

© o N U A WN RO

Adjacency-lists graph representation: Java implementation

public class Graph
{

private final int V;
private final Bag<Integer>[] adj;

public Graph(int V)

{
this.V = V;
adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; v++)
adj[v] = new Bag<Integer>();
}

public void addEdge (int v, int w)
{

adj[v].add(w) ;

adj[w] .add(v) ;

public Iterable<Integer> adj(int v)
{ return adj[v]; }

<«—+— adjacency lists

create empty graph

—
with V vertices
add edge v-w
iterator for vertices
—

adjacent to v

Adjacency-lists digraph representation: Java implementation

public class Digraph

{
private final int V;
private final Bag<Integer>[] adj; <—+— adjacency lists

public Digraph(int V)
{ create empty digraph
this.V = V; with V vertices
adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; v++)
adj[v] = new Bag<Integer>();

}

3 5 : s add edge v—w
public void addEdge (int v, int w) —
{

adj[v].add(w) ;

}
public Iterable<Integer> adj(int v) -t iterator for vertices
{ return adj[v]; } pointing from v

DIRECTED GRAPHS

» Digraph API

» Digraph search

» Topological sort

» Strong components

Digraph representations

In practice. Use adjacency-lists representation.
® Algorithms based on iterating over vertices pointing from v.
® Real-world digraphs tend to be sparse.

\ huge number of vertices,
small average vertex degree

) insert edge edge from iterate over vertices
representation space o
fromvtow vtow? pointing from v?
E 1 E =

list of edges
adjacency matrix Ve 1t 1 v
adjacency lists E+V 1 outdegree(v) outdegree(v)

t disallows parallel edges

Reachability

Problem. Find all vertices reachable from s along a directed path.

Depth-first search in digraphs
Same method as for undirected graphs.

® Every undirected graph is a digraph (with edges in both directions).
® DFS is a digraph algorithm.

DFS (to visit a vertex v)

Mark v as visited.

Recursively visit all unmarked

2
& &

vertices w pointing from v.

R
75

Depth-first search

To visit a vertex v :
® Mark vertex v as visited.
o Recursively visit all unmarked vertices pointing from v.

a directed graph

Depth-first search

To visit a vertex v :
e Mark vertex v as visited.
e Recursively visit all unmarked vertices pointing from v.

0 v marked[] edgeTo[]
e a 0 F
1 F
@ a 2 F
3 F
4 F
() (0 soF
6 F
O .
5 a @ 8 F
9 F
10 F
a directed graph 1 E
12 F

Depth-first search

To visit a vertex v :
e Mark vertex v as visited.
o Recursively visit all unmarked vertices pointing from v.

visit 0

v
0

marked[] edgeTol[]

'n'n‘n'n'n'n'n'n'n'n‘n'n@

Depth-first search

To visit a vertex v :
® Mark vertex v as visited.
o Recursively visit all unmarked vertices pointing from v.

Depth-first search

To visit a vertex v :
® Mark vertex v as visited.
o Recursively visit all unmarked vertices pointing from v.

v marked[] edgeTo[]
a 0 0 T =
1 F -
OO, e F -
3 F -
4 F -
Q a @ 5 ™ 0
6 F -
(+) ;e
5 a @ 8 F -
F —
10 F -
visit 5 1 F -
12 F = 2
Depth-first search
To visit a vertex v :
e Mark vertex v as visited.
e Recursively visit all unmarked vertices pointing from v.
. v marked[] edgeTo[]
e e 0 T =
1 F -
@ 2 F -
3 Q) 4
4 T 5
e @ 5 T 0
6 F -
7 F -
O a @ 8 F -
9 F -
10 F -
visit 3 1 E _
12 F -

v marked[] edgeTol[]
(=) (D °T
1 F -
OO e F -
3 F -
4 ™ 5
a e @ 5 T 0
6 F -
4
7 F -
O (i) Li2) 8 F -
9 F -
10 F -
visit 4 11 F =
12 F - 2%
Depth-first search
To visit a vertex v :
e Mark vertex v as visited.
o Recursively visit all unmarked vertices pointing from v.
v marked[] edgeTo[]
(sf—=() (7 °T
1 F -
@ a 2 F -
3 T 4
4 T 5
3 e @ 5 T 0
6 F -
© .
O a @ 8 F -
9 F -
10 F -
visit 3 1 F =
12 F - =

Depth-first search

To visit a vertex v :
® Mark vertex v as visited.
o Recursively visit all unmarked vertices pointing from v.

Depth-first search

To visit a vertex v :
® Mark vertex v as visited.
o Recursively visit all unmarked vertices pointing from v.

v marked[] edgeTo[]
O °T
1 F -
© L o -
3 T 4
4 T 5
@ (D) s o1 o
6 F -
7 F -
O a @ 8 F -
9 F -
10 F =
visit 2 - E _
12 F - »
Depth-first search
To visit a vertex v :
e Mark vertex v as visited.
e Recursively visit all unmarked vertices pointing from v.
v marked[] edgeTo[]
0 T -
1 F -
2 T 3
3 T 4
4 T 5
5 T 0
6 F -
7 F -
8 F -
9 F -
10 F -
done 2 1 E _
12 F -

v marked[] edgeTol[]
(=) (D °T
1 F -
@ 2 T 3
3 T 4
4 T 5
O e @ 5 T 0
6 F -
O ;e
O a @ 8 F -
9 F -
10 F =
visit 2 1 = =
12 F - 30
Depth-first search
To visit a vertex v :
e Mark vertex v as visited.
o Recursively visit all unmarked vertices pointing from v.
v marked[] edgeTo[]
O==ONNN0O T
1 F =
@ 2 T 3
3 T 4
4 T 5
o e @ 5 T 0
6 F -
4
7 F -
O a @ 8 F -
9 F -
10 F -
done 3 1 F =
12 F - =

Depth-first search

To visit a vertex v :
® Mark vertex v as visited.
o Recursively visit all unmarked vertices pointing from v.

Depth-first search

To visit a vertex v :
® Mark vertex v as visited.
o Recursively visit all unmarked vertices pointing from v.

v marked[] edgeTo[]
a 0 0 T =
1 F -
@ 2 T 3
3 T 4
4 T 5
(o) (10) s T o
6 F -
4
7 F -
O a @ 8 F -
9 F -
10 F =
visit 4 1 F o
12 F = 3
Depth-first search
To visit a vertex v :
e Mark vertex v as visited.
e Recursively visit all unmarked vertices pointing from v.
g v marked[] edgeTo[]
e e 0 T =
1 F -
@ 2 T 3
3 T 4
4 T 5
a @ 5 T 0
6 F -
7 F -
e a @ 8 F -
9 F -
10 F -
done 5 1 E _
12 F - 3

v marked[] edgeTol[]
(=) (D °T
1 F -
@ 2 T 3
3 T 4
4 T 5
(o) (10) s T o
6 F -
4
7 F -
e a @ 8 F -
9 F -
10 F =
done 4 11 F =
12 F -
Depth-first search
To visit a vertex v :
e Mark vertex v as visited.
o Recursively visit all unmarked vertices pointing from v.
v marked[] edgeTo[]
O==ONNN0O T
1 F =
@ 2 T 3
3 T 4
4 T 5
e @ 5 T 0
6 F -
7 F -
a @ 8 F -
9 F -
10 F -
visit 0 1 F =
12 F - %

Depth-first search
To visit a vertex v :

® Mark vertex v as visited.
o Recursively visit all unmarked vertices pointing from v.

@

Depth-first search
To visit a vertex v :

® Mark vertex v as visited.
o Recursively visit all unmarked vertices pointing from v.

v marked[] edgeTo[]
=0 R
1 @ 0
o 2 T 3
3 T 4
4 T 5
(o) (10) s T o
6 F -
7 F -
a @ 8 F -
9 F -
10 F =
visit 1 1 F _
12 F = 37
Depth-first search
To visit a vertex v :
e Mark vertex v as visited.
e Recursively visit all unmarked vertices pointing from v.
g v marked[] edgeTo[]
=0 ST
1 T 0
2 T 3
3 T 4
4 T 5
a @ 5 T 0
6 F =
7 F -
a @ 8 F -
9 F -
10 F -
done 0 1 E _
12 F - 0w

v marked[] edgeTol[]
=0 T
1 T 0
o 2 T 3
3 T 4
4 T 5
(o) (10) s T o
6 F -
7 F -
a @ 8 F -
9 F -
10 F =
done 1 11 E _
12 F - 38
Depth-first search
To visit a vertex v :
e Mark vertex v as visited.
o Recursively visit all unmarked vertices pointing from v.
v marked[] edgeTo[]
e a 0 T =
1 T 0
2 T 3
3 T 4
4 T 5
e @ 5 T 0
6 F =
7 F -
(——() S
9 F -
10 F -
done 1 E _
12 F -

Depth-first search

To visit a vertex v :

® Mark vertex v as visited.
o Recursively visit all unmarked vertices pointing from v.

v marked[] edgeTol[]

Recall code for undirected graphs.

public class DepthFirstSearch
{

private boolean[] marked;

public DepthFirstSearch(Graph G, int s)
{

marked = new boolean[G.V()];

dfs (G, s);
}

private void dfs(Graph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if (!'marked[w]) dfs(G, w);
}

public boolean visited(int v)
{ return marked[v]; }

Depth-first search (in undirected graphs)

<«———+— trueifpathtos

constructor marks vertices

connected to s

<«——F— recursive DFS does the work

client can ask whether any

vertex is connected to s

0 T -
1 T 0
0 reachable 2 T 3
from vertex 0 3 T 4
4 T 5
5 T 0
o S
\ 4 7 F -
8 F -
9 F =
10 F =
reachable from 0 1 F _
12 F = 41
Depth-first search (in directed graphs)
Code for directed graphs identical to undirected one.
[substitute pigraph for Graph]
public class DirectedDFS
{
private boolean[] marked; <«—F— trueif path from s
public DirectedDFS (Digraph G, int s)
{ q
marked = new boolean[G.V()]; «——L constructor marks vertices
dfs (G, s); reachable from s
}
private void dfs(Digraph G, int v) <«——+— recursive DFS does the work
{
marked[v] = true;
for (int w : G.adj(v))
if ('marked[w]) dfs(G, w);
}
public boolean visited(int v) i client can ask whether any
{ return marked[v]; } vertex is reachable from s
}

Every program is a digraph.
® Edge = jump.

Dead-code elimination.
Find (and remove) unreachable code.

Infinite-loop detection.
Determine whether exit is unreachable.

Reachability application: program control-flow analysis

® Vertex = basic block of instructions (straight-line program).

\
el | e
T S
[o e
widas :
|t | T
s

Ziewn

e |

‘ wedsgon widen

[N |

e S winenn
~

Reachability application: mark-sweep garbage collector
Every data structure is a digraph.
® Vertex = object.

® Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program
(starting at a root and following a chain of pointers). J\’

=
]
i
e

s1004

Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]
® Mark: mark all reachable objects.
® Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses | extra mark bit per object (plus DFS stack).

2 1
re
R
‘@/J .

s1001

Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.
v ® Reachability.

® Path finding.

® Topological sort.

® Directed cycle detection.

Basis for solving difficult digraph problems.
® 2-satisfiability.

® Directed Euler path.

® Strongly-connected components.

wn

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARIANt

Breadth-first search in digraphs

Same method as for undirected graphs.
® Every undirected graph is a digraph (with edges in both directions).
® BFS is a digraph algorithm.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:

- remove the least recently added vertex v

- for each unmarked vertex pointing from v:

add to queue and mark as visited.

Proposition. BFS computes shortest paths (fewest number of edges)
from s to all other vertices n a digraph in time proportional to E+V.

Multiple-source shortest paths

Multiple-source shortest paths. Given a digraph and a set of source
vertices, find shortest path from any vertex in the set to each other vertex.

Ex. S={1,7,10}.

e Shortest path to 4 is 7—=6—4.

e Shortest path to 5 is 7—=6—>0—5.
e Shortest path to 12 is 10—12.

Q. How to implement multi-source constructor?
A. Use BFS, but initialize by enqueuing all source vertices.

Breadth-first search in digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu.
Solution. BFS with implicit graph.

BFS.
® Choose root web page as source s.
® Maintain a gueue of websites to explore.
® Maintain a st of discovered websites.
® Dequeue the next website and enqueue
websites to which it links
(provided you haven't done so before).

Q. Why not use DFS?

Bare-bones web crawler: Java implementation

Queue<String> queue = new Queue<String>(); <+ queue of websites to crawl
SET<String> discovered = new SET<String>(); set of di i
String root = "http://www.princeton.edu";

queue . enqueue (root) ; <] start crawling from root website

discovered.add (root) ;

while (!queue.isEmpty())
{
String v = queue.dequeue() ;
StdOut.println(v);
In in = new In(v);
String input = in.readAll();

<«——+—— read in raw html from next

website in queue

String regexp = "http://(\\w+\\.)* (\\w+)";
Pattern pattern = Pattern.compile(regexp); «—
(input) ; in website of form http: //xxx.yyy.zzz

use regular expression to find all URLs

while (matcher.find())
{

[crude pattern misses relative URLs]

String w = matcher.group();
if ('discovered.contains(w))

{

if i , mark it as di

discovered.add(w) ; —
queue.enqueue (W) ; and put on queue

DIRECTED GRAPHS

» Topological sort

Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints,
in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.

®
0. Algorithms é
1. Complexity Theory N @
2. Atificial Intelligence 9 ° 9} e
3. Introto CS /
4. Cryptography e ° 0
5. Scientific Computing
tasks precedence constraint graph e
©,

feasible schedule

Topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point upwards.

0—5 0—2

3—5 3—4
0N ONO

directed edges DAG

Solution. DFS.What else?

&

topological order

Topological sort algorithm

e Run depth-first search.
e Return vertices in reverse postorder.

0—5
0—2
0—1
3—6

0
o
3—4
5—4
6—>4
@
3—2
1—4
6

a directed acyclic graph

Topological sort algorithm

e Run depth-first search.
e Return vertices in reverse postorder.

postorder

visit 0

Topological sort algorithm

e Run depth-first search.
e Return vertices in reverse postorder.

Topological sort algorithm

e Run depth-first search.
e Return vertices in reverse postorder.

postorder
6
visit 1
57
Topological sort algorithm

e Run depth-first search.

e Return vertices in reverse postorder.
postorder
4

4 done

<\ postorder
(3) :
6
visit 4
58
Topological sort algorithm
e Run depth-first search.
e Return vertices in reverse postorder.
postorder
4

visit 1

Topological sort algorithm Topological sort algorithm
e Run depth-first search. e Run depth-first search.
e Return vertices in reverse postorder. e Return vertices in reverse postorder.
postorder I postorder
41 41
1 done visit 0
6l 62
Topological sort algorithm Topological sort algorithm
e Run depth-first search. e Run depth-first search.
® Return vertices in reverse postorder. e Return vertices in reverse postorder.
postorder postorder
4 1 4 1 2
6 6
visit 2 2 done
6 o

Topological sort algorithm

e Run depth-first search.
e Return vertices in reverse postorder.

Topological sort algorithm

e Run depth-first search.
e Return vertices in reverse postorder.

Q

postorder
412
6
visit 0
65
Topological sort algorithm

e Run depth-first search.

e Return vertices in reverse postorder.
postorder
412

visit 5

postorder
412
6
visit 5
66
Topological sort algorithm

e Run depth-first search.

e Return vertices in reverse postorder.
postorder
4125

5 done

Topological sort algorithm

e Run depth-first search.
e Return vertices in reverse postorder.

Topological sort algorithm

e Run depth-first search.
e Return vertices in reverse postorder.

postorder
4125
6
visit 0
69
Topological sort algorithm

e Run depth-first search.

e Return vertices in reverse postorder.
postorder
41250

check 1

postorder
41250
6
0 done
70
Topological sort algorithm

e Run depth-first search.

e Return vertices in reverse postorder.
postorder
41250

check 2

Topological sort algorithm

e Run depth-first search.
e Return vertices in reverse postorder.

Topological sort algorithm

e Run depth-first search.
e Return vertices in reverse postorder.

postorder
41250
6
visit 3
73
Topological sort algorithm

e Run depth-first search.

e Return vertices in reverse postorder.
postorder
41250

visit 3

postorder
41250
6
visit 3
74
Topological sort algorithm

e Run depth-first search.

e Return vertices in reverse postorder.
postorder
41250

visit 3

Topological sort algorithm

e Run depth-first search.
e Return vertices in reverse postorder.

Topological sort algorithm

e Run depth-first search.
e Return vertices in reverse postorder.

A postorder
41250
visit 6
7
Topological sort algorithm

e Run depth-first search.

e Return vertices in reverse postorder.
postorder

6 done

412506

postorder
41250
visit 6
78
Topological sort algorithm
e Run depth-first search.
e Return vertices in reverse postorder.
postorder

visit 3

412506

Topological sort algorithm

e Run depth-first search.

e Return vertices in reverse postorder.

3 done

postorder

4125063

Topological sort algorithm

e Run depth-first search.

e Return vertices in reverse postorder.

check 4

postorder

4125063

Topological sort algorithm

e Run depth-first search.

e Return vertices in reverse postorder.

check 5

postorder

4125063

Topological sort algorithm

e Run depth-first search.

e Return vertices in reverse postorder.

check 6

postorder

4125063

Topological sort algorithm

e Run depth-first search.

e Return vertices in reverse postorder.

done

postorder

4125063

topological order

3605214

Depth-first search order

public class DepthFirstOrder

{

private boolean[] marked;
private Stack<Integer> reversePost;

public DepthFirstOrder (Digraph G)
{
reversePost = new Stack<Integer>();
marked = new boolean[G.V()];
for (int v = 0; v < G.V(); v++)
if (!'marked[v]) dfs(G, v);
}

private void dfs(Digraph G, int v)

marked[v] = true;
for (int w : G.adj(v))

if (!marked[w]) dfs(G, w);
reversePost.push(v) ;

}

public Iterable<Integer> reversePost()
{ return reversePost; }

returns all vertices in

“reverse DFS postorder”

Topological sort in a DAG:

correctness pFOOf

Proposition. Reverse DFS postorder of a DAG is a topological order.

Pf. Consider any edge v—w.When ats (v) is called:

Thus, w was done before v.

afs (w) will get called directly or indirectly
by dfs (v) and will finish before dafs (v).

Thus, w will be done before v.

but has not yet returned.

Can’t happen in a DAG: function call stack contains
path from w to v, so v—w would complete a cycle.

Case |: afs(w) has already been called and returned.

Case 2: dfs(w) has not yet been called.

Case 3: dfs (w) has already been called,

ds (0)
des (1)

dfs (4)

4 done
1 done
dfs(2)
2 done
des (5)

5 done

0 done

Ex: —> dfs(3)

case 1 <

dfs (6)

case2 << 6 done

3 done

done

all vertices pointing from 3 are done before 3 is done,

so they appear after 3 in topological order

Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle.

Pf.

o If directed cycle, topological order impossible.

e If no directed cycle, DFS-based algorithm finds a topological order.

a digraph with a directed cycle

Goal. Given a digraph, find a directed cycle.
Solution. DFS.What else? See textbook.

Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence
constraints, in what order should we schedule the tasks?

PRGE 3

DEPARTMENT COURSE DESCRIPTION PREREQS

COMPUTER CPSC 432) INTERMEDIATE COMPLER | CPSC 432

SCIENCE DESIGN, WITH A FOCUS ON
DEPENDENCY RESOLUTION.

http://xkcd.com/754

Remark. A directed cycle implies scheduling problem is infeasible.

Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

public class A extends B % javac A.java

{ A.java:1l: cyclic inheritance
involving A

} public class A extends B { }
1 error

public class B extends C
{

}

public class C extends A
{

}

Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar!)

Workbookl

< A B C D

1 "=B1+1" "=Cl+ 1" "=A1+ 1"

2

3

4

5

6

7 Microsoft Excel cannot calculate a formula.

8 u Cell references in the formula refer to the formula's

- result, creating a circular reference. Try one of the

9 following:

10 » If you accidentally created the circular reference, click
OK. This will display the Circular Reference toolbar and
11 help for using it to correct your formula.
» To continue leaving the formula as it is, click Cancel.

12 Cancel) (C 0K)
13 -
14
15
16
17
18

T Sheetl | Sheet2 | Sheet3 J

Directed cycle detection applications

Causalities.

Email loops.

Compilation units.

Class inheritance.

Course prerequisites.
Deadlocking detection.

Precedence scheduling.

Temporal dependencies.
Pipeline of computing jobs.

Check for symbolic link loop.

Evaluate formula in spreadsheet.

DIRECTED GRAPHS

» Strong components

Strongly-connected components

Def. Vertices v and w are strongly connected if there is a directed path
from v to w and a directed path from w to v.

Key property. Strong connectivity is an equivalence relation:

e v is strongly connected to v.

® If v is strongly connected to w, then w is strongly connected to v.

® If v is strongly connected to w and w to x, then v is strongly connected to x.

Def. A strong component is a maximal subset of strongly-connected
vertices.

Examples of strongly-connected digraphs

O

o

(PR

Connected components vs. strongly-connected components

v and w are connected if there is v and w are strongly connected if there is a directed path

a path between v and w from v to w and a directed path from w to v

N 0-0

N 9‘: @-

- 3 connected components * 5 strongly-connected components
connected component id (easy to compute with DFS) strongly-connected component id (how to compute?)
0 1 2 3 4 5 6 7 8 91011 12 0 1 2 3 4 5 6 7 8 91011 12

ce[] O O O OO 0O 1 1 1 2 2 2 2 see[]1 0 1 1 1 1 3 4 3 2 2 2 2

public int connected(int v, int w) public int stronglyConnected(int v, int w)
{ return cc[v] == cc[w]; } { return scc[v] == scc[w]; }
4

I I
time client cor ivity query cor time client strong-col ivity query

Strong component application: ecological food webs

Food web graph.Vertex = species; edge = from producer to consumer.

’
&4 L vole) greateget
~

3
Blue-gillfish

N\ R

mosquito f

algae (magnified)

cattals

hitp:// i district96.k12.il.us/Wetland i ©

Strong component. Subset of species with common energy flow.

Strong component application: software modules

Software module dependency graph. o
® Vertex = software module.
® Edge: from module to dependency.

N
'\ G
\)

Firefox Internet Explorer

Strong component. Subset of mutually interacting modules.
Approach |. Package strong components together.
Approach 2. Use to improve design!

Strong components algorithms: brief history

1960s: Core OR problem.
® Widely studied; some practical algorithms.
® Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).

® Classic algorithm.

® Level of difficulty: Algs4++.

® Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju-Sharir).
® Forgot notes for lecture; developed algorithm in order to teach it!
® Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.
® Gabow: fixed old OR algorithm.
® Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

Kosaraju's algorithm: intuition

Reverse graph. Strong components in G are same as in GX.

Kernel DAG. Contract each strong component into a single vertex.
Idea, / how to compute?

® Compute topological order (reverse postorder) in kernel DAG.
o Run DFS, considering vertices in reverse topological order.

first vertex is a sink
(has no edges pointing from it)

digraph G and its strong components kernel DAG of G (in reverse topological order)
100

KOSARAJU'S ALGORITHM

» DFS in reverse graph

Kosaraju-Sharir

Phase |. Compute reverse postorder in G-.

digraph G

102

Kosaraju-Sharir

Phase |. Compute reverse postorder in GX.

reverse digraph GR

marked[v]

103

Kosaraju-Sharir

Phase |. Compute reverse postorder in GX.

visit 0

marked[v]
T

M M M MM M M MM M M

104

Kosaraju-Sharir

Phase |. Compute reverse postorder in GX.

Kosaraju-Sharir

Phase |. Compute reverse postorder in G-.

8 done

v marked[v]
0 T
1 F
2 F
3 F
4 F
5 F
6 T
7 F
8 F
9 F
10 F
visit 6 11 E
12 F 105
Kosaraju-Sharir
Phase |. Compute reverse postorder in GR.
v marked[v]
0 T
1 F
2 F
3 F
4 F
5 F
6 T
7 F
8 T
9 F
10 F
F
E

107

v marked[v]

0 T

1 F

2 F

3 F

4 F

5 F

6 T

7 F

8 T

9 F

10 F
visit 8 1 F

12 F 106

Kosaraju-Sharir
Phase |. Compute reverse postorder in GX.
8

v marked[v]

0 T

1 F

2 F

3 F

4 F

5 F

6 T

7 F

8 T

9 F

10 F
visit 6 1 E

12 F 108

Kosaraju-Sharir

Phase |. Compute reverse postorder in GX.

8

Kosaraju-Sharir

Phase |. Compute reverse postorder in G-.

(7)s

6 done

v marked[v]
0 T
1 F
2 F
3 F
4 F
5 F
6 T
7 T
5 8 T
9 F
10 F
visit 7 11 F
12 F 109
Kosaraju-Sharir
Phase |. Compute reverse postorder in GR.
(6)7 8
v marked[v]
0 T
1 F
2 F
3 F
4 F
5 F
6 T
7 T
8 T
9 F
10 F
F
E

v marked[v]
0 T
1 F
2 F
3 F
4 F
5 F
6 T
7 T
8 T
9 F
10 F
7 done 1 E
12 F 1o
Kosaraju-Sharir
Phase |. Compute reverse postorder in GX.
6 7 8
v marked[v]
0 T
1 F
2 F
3 F
4 F
5 F
6 T
7 T
8 T
9 F
10 F
visit 0 1 E
12 F 1

Kosaraju-Sharir

Phase |. Compute reverse postorder in GX.

6 7 8

Kosaraju-Sharir

Phase |. Compute reverse postorder in G-.
6 7 8

visit 11

= o

v marked[v]
0 T
1 F
2 T
3 F
4 F
5 F
6 T
7 T
5 8 T
9 F
10 F
visit 2 11 E
12 F 13
Kosaraju-Sharir
Phase |. Compute reverse postorder in GR.
6 7 8
v marked[v]
0 T
1 F
2 T
/ 3 F
4 T
@ 5 F
6 T
7 T
5 8 T
@ 9 F
E
=
E

)

v marked[v]
0 T
1 F
2 T
3 F
4 T
(o] () s
6 T
4
7 T
5 G @ 8 T
9 F
10 F
visit 4 11 F
12 F 14
Kosaraju-Sharir
Phase |. Compute reverse postorder in GX.
6 7 8
v marked[v]
0 T
1 F
2 T
3 F
4 T
9 @ 5 F
6 T
/ 7 T
5 > @ 8 T
9 T
10 F
visit 9 1 T
12 F e

Kosaraju-Sharir

Phase |. Compute reverse postorder in GX.
6 7 8

Kosaraju-Sharir

Phase |. Compute reverse postorder in G-.
6 7 8

visit 10

v marked[v]
0 T
1 F
2 T
/ 3 F
4 T
@ 5 F
6 T
7 T
5 1 8 T
9 T
10 F
visit 12 11 T
12 T "
Kosaraju-Sharir
Phase |. Compute reverse postorder in GR.
6 7 8
v marked[v]
0 T
1 F
2 T
/ 3 F
4 T
4—0 5 F
6 T
7 T
5 . . 8 T
9 T
T
-
T

19

v marked[v]

0 T

1 F

2 T

3 F

4 T

@ 5 F

6 T

/ 7 T

5 - 8 T

9 T

10 F

visit 12 1 T
12 T 18

Kosaraju-Sharir
Phase |. Compute reverse postorder in GX.
6 7 8
v marked[v]

0 T

1 F

2 T

3 F

4 T

@ 5 F

6 T

/ 7 T

5 > e 8 T

9 T

10 T

10 done 1 T
12 T 120

Kosaraju-Sharir

Phase |. Compute reverse postorder in GX.

@10678

Kosaraju-Sharir

Phase |. Compute reverse postorder in G-.
12 10 6 7 8

visit 9

= o

v marked[v]
0 T
1 F
2 T
/ 3 F
4 T
5 F
6 T
7 T
5 8 T
@ 9 T
10 T
12 done 11 T
12 T 121
Kosaraju-Sharir
Phase |. Compute reverse postorder in GR.
12 10 6 7 8
v marked[v]
0 T
1 F
2 T
/ 3 F
4 T
5 F
6 T
7 T
5 . 8 T
9 T
T
-
T

)

123

v marked[v]
0 T
1 F
2 T
3 F
4 T
5 F
6 T
/ 7 T
5 8 T
9 T
10 T
visit 9 1 T
12 T 12
Kosaraju-Sharir
Phase |. Compute reverse postorder in GX.
(9)12 10 6 7 8
v marked[v]
0 T
1 F
2 T
3 F
4 T
5 F
6 T
/ 7 T
5 8 T
9 T
10 T
9 done 1 T
12 T 124

Kosaraju-Sharir

Phase |. Compute reverse postorder in GX.

@91210678

Kosaraju-Sharir

Phase |. Compute reverse postorder in G-.
11 9 12 10 6 7 8

visit 4

v marked[v]
0 T
1 F
2 T
/ 3 F
4 T
5 F
6 T
° 7 T
5 ° 8 T
9 T
10 T
11 done 11 T
12 T 125
Kosaraju-Sharir
Phase |. Compute reverse postorder in GR.
11 9 12 10 6 7 8
v marked[v]
0 T
1 F
2 T
/ 3 F
4 T
5 F
6 T
7 T
5 8 T
9 T
10 T
-
T

)

127

v marked[v]
0 T
1 F
2 T
3 F
4 T
5 F
6 T
7 T
5 8 T
9 T
10 T
visit 4 1 T
12 T 126
Kosaraju-Sharir
Phase |. Compute reverse postorder in GX.
11 9 12 10 6 7 8
v marked[v]
0 T
1 F
2 T
3 F
4 T
5 T
6 T
7 T
8 T
9 T
10 T
visit 5 1 T
12 T 128

Kosaraju-Sharir

Phase |. Compute reverse postorder in GX.

11 9 12 10 6 7 8

Kosaraju-Sharir

Phase |. Compute reverse postorder in G-.

11 9 12 10 6 7 8

3 done

= o

v marked[v]
0 T
1 F
2 T
/ 3 T
4 T
5 T
6 T
7 T
8 T
9 T
10 T
visit 3 X T
12 T 29
Kosaraju-Sharir
Phase |. Compute reverse postorder in GR.
(3)11 9 12 10 6 7 8
v marked[v]
0 T
1 F
2 T
3 T
4 T
5 T
6 T
7 T
e 8 T
9 T
T
T
:

)

v marked[v]
0 T
1 F
2 T
3 T
4 T
5 T
6 T
7 T
8 T
9 T
10 T
visit 3 1 T
12 T 130
Kosaraju-Sharir
Phase |. Compute reverse postorder in GX.
3 11 9 12 10 6 7 8
v marked[v]
4 0 T
1 F
2 T
3 T
4 T
5 T
6 T
7 T
e 8 T
9 T
10 T
visit 5 1 T
12 T 132

Kosaraju-Sharir

Phase |. Compute reverse postorder in GX.

@31191210678

Kosaraju-Sharir

Phase |. Compute reverse postorder in G-.

@531191210678

visit 2

= o

v marked[v]
0 T
1 F
2 T
3 T
4 T
5 T
6 T
° 7 T
e 8 T
9 T
10 T
5 done 11 T
12 T 133
Kosaraju-Sharir
Phase |. Compute reverse postorder in GR.
45311 9 12 10 6 7 8
v marked[v]
0 T
1 F
2 T
3 T
4 T
5 T
6 T
7 T
8 T
9 T
T
-
T

)

135

v marked[v]
0 T
1 F
2 T
3 T
4 T
5 T
6 T
° 7 T

8 T
9 T
10 T

4 done 1 T
12 T 134

Kosaraju-Sharir
Phase |. Compute reverse postorder in GX.
(2)4 5311912106738
v marked[v]
0 T
1 F
e 2 T

3 T
4 T
5 T
6 T
7 T
8 T
9 T
10 T

2 done 1 T
12 T 136

Kosaraju-Sharir

Phase |. Compute reverse postorder in GX.

@24531191210678

Kosaraju-Sharir

Phase |. Compute reverse postorder in G-.

02 45 3 11 9 12 10 6 7 8

1 done

= o

v marked[v]
0 T
1 F
2 T
3 T
4 T
5 T
6 T
7 T
8 T
9 T
10 T
0 done 11 T
12 T 57
Kosaraju-Sharir
Phase |. Compute reverse postorder in GR.
@024531191210678
v marked[v]
0 T
1
° 2 T
3 T
4 T
5 T
6 T
7 T
8 T
9 T
T
T
:

)

139

v marked[v]

0 T

1 T

2 T

3 T

4 T

5 T

6 T

7 T

8 T

9 T

10 T
visit 1 1 T

12 T 138

Kosaraju-Sharir
Phase |. Compute reverse postorder in GX.
102453 119 12 10 6 7 8

v marked[v]

0 T

1 T

2 T

3 T

4 T

5 T

6 T

7 T

8 T

9 T

10 T
check23456789101112 - T

12 T 140

Kosaraju-Sharir

Phase |. Compute reverse postorder in GX.
102453119 12 10 6 7 8

reverse digraph GR

141

Kosaraju's algorithm

Simple (but mysterious) algorithm for computing strong components.
® Run DFS on G to compute reverse postorder.

® Run DFS on G, considering vertices in order given by first DFS.

DFS i reverse digraph G'

check unmarked vertices in the order reverse postorder for use in second dfs ()
0123456789101112 102453119121067 8

(o)

)

7%

dfs(0)

check 6

142

KOSARAJU'S ALGORITHM

» DFS in original graph

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR. 102 453119 12 106 7 8

scclv]

of <

© ® N O o A~ 0 N =
|

5}
|

original digraph G

o~ o
| I

144

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of G (1)0 2 4 5311912106738

v scc[v]
0 -
1 ©
2 -
3 -
4 -
5 _
6 -
7 —
8 _
9 —
10 =
visit 1 11 _

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR. 10 2 453 11 9 12 10 6 7 8

scclv]

o| <
|

© ©® N O O A w N =
|

o
|

1 done

o =
[

146

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR. 102 453119 12 10 6 7 8

strong component: 1 1

v scc[v]
e 0 ;
9@
()——2)

147

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GX. 1(0)2 4531191210678

v scclv]
0O
1 0
2 -
3 -
4 -
5 —
6 -
7 -
8 —
9 -
10 =

visit 0

o
(I

148

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GX. 1(0)2 4 5311912106738

scc[v]

visit 5 1 _

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR. 1(0)2 4 531191210678

v scclv]
0 1

1 0
2 -
3 -
« O
5 1

6 -
7 -
8 _
9 -

visit 4 1

150

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of G 1(0)2 4 5311912106738

. scclv]

visit 3 1

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GX. 1(0)2 4531191210678

v scclv]
O==ONN0 o
1 0
[2) .
/ 3 1
4 1
3 a @ 5 1
6 -
O .
© (——2) C
9 _

5}
|

visit 3

o
(I

152

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GX. 1(0)2 4 5311912106738

<l

© o

© ©® N O O A~ N =

visit 2 11

153

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR. 1(0)2 4 531191210678

o| <

® 0
© (D

visit 2

N2 3 0o N o s N2
[-

154

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of G 1(0)2 4 5311912106738

. scc[v]

v
(s f—() o

2 done 1

155

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GX. 1(0)2 4531191210678

© ® N o o~ W N = o<

5}
|

3 done

o
(I

156

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GX. 1(0)2 4 5311912106738

v
O °

© o

visit 4 1

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR. 1(0)2 4 531191210678

o| <

© ©® N O O A w N =

o
|

4 done

o =
[

158

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of G 1(0)2 4 5311912106738

v
(s f—() o

5 done 1

159

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GX. 1(0)2 4531191210678

of <

© ® N O o A~ 0 N =

5}
|

visit 0

o
(I

160

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @24531191210678

0 done

161

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @24531191210678

strong component: 02345

S © ® N o g s w N = o<

o =

162

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @4531191210678

check 2

163

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @531191210678

check 4

S © ® N o o s ®w N =+ o<

o

164

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR. (5)3 11 912 10 6 7 8

v
O==C) °

check 5 11 _

165

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR. (3)11 9 12 10 6 7 8

o| <

© ©® N O O A w N =

o
|

check 3

o =
[

166

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @91210678

v
O==0) ° !

1

© ® N O O~ N =

visit 11 - ®)

167

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @91210678

of <

© ® N O o A~ 0 N =

5}
|

visit 11

o
(BN

168

Kosaraju-Sharir Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR. (1) 9 12 10 6 7 8 of GR. (1) 9 12 106 7 8

o| <

v
O== OO O==ONNO

© ©® N O O A~ N =
©
© ©® N O O A w N =

o
|
o
|

visit 12 11 > visit 9

[N

N
N
N

Kosaraju-Sharir Kosaraju-Sharir
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR. (1) 9 12 10 6 7 8 of GR. (1) 9 12 106 7 8
v scclv] v scclv]
0 1 0 1
O==0 o] OO0 o]
2 1 2 1
3 1 3 1
4 1 4 1
9 @ 5] 1 5 1
6 - 6 -
7 = 7 =
8 = 8
O—0 . O ;

visit 9 11 2 visit 10

o
I
o
o e

)
(N
(Y]

Kosaraju-Sharir Kosaraju-Sharir
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR. (1) 9 12 10 6 7 8 of GR. (1) 9 12 106 7 8

v scclv] v scclv]

0 1 0 1

(ef—=) (7 (sf—=() (7

1 0 1 0

2 1 2 1

3 1 3 1

4 1 4 1

9 5 1 9 5 1

6 = 6 =

7 = 7 =

8 - 8 -

O . Oo—0 .

10 2 10 2

10 done 11 2 9 done 1 2

12 2 173 12 2

Kosaraju-Sharir Kosaraju-Sharir
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR. (1) 9 12 10 6 7 8 of GR. (1) 9 12 106 7 8

v scclv] v scclv]

0 1 0 1

O==0 o] OO0 o]

2 1 2 1

3 1 3 1

4 1 4 1

5 1 5 1

6 = 6 =

7 = 7 _

8 = 8 =

o—©0 .) .

10 2 10 2

12 done 1 2 11 done 1 2

12 2 175 12 2

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR. (1) 9 12 10 6 7 8

v
O==C) °

strong component: 9 10 11 12 11

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR. (9)12 10 6 7 8

v scclv]
0==0 S
1 0
2 1
3 1
4 1
5 1
6 -
7 -
8 _
9 2
10 2
check 9 1 2
12 2

178

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @10678

v
O==0) ° !

check 12 1

[N VR SR N

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. 678

v scclv]
=0 .
1 0
2 1
3 1
4 1
5 1
6 -
7 -
8 —
9 2
10 2
check 10 1 2
12 2

180

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @7 8

v
—0 o

1 0
2 1
3 1
4 1
5 1
: ©®
7 —
8 _
9 2
10 2
visit 6 11 5
12 2

181

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of G-, @7 8

v scclv]
5 a 0 1
1 0
2 1
3 1
4 1
5 1
6 3
7 -
8 _
9 2
10 2
visit 6 1 5
12 2

182

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @7 8

v scc[v]
D—0) e

1 0
2 1
3 1
4 1
5 1
6 3
7 -
8 —
9 2
10 2
visit 6 11 2
2

183

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @78

v scclv]
o0 o
1 0
2 1
3 1
4 1
5 1
6 3
7 -
s (@
9 2
10 2
visit 8 1 2
12 2

184

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @7 8

v scc[v]
o T

1 0
2 1
3 1
4 1
5 1
6 3
7 —
8 3
9 2
10 2
8 done 11 2
12 2

185

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of G-, @7 8

\0

o| <

© ©® N O O A w N =

visit 6

= 3
LIRS VR SR

N

186

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @7 8

v scc[v]
o 0 1
1 0
2 1
3 1
4 1
5 1
6 3
7 -
8
9

6 done 1

o
[U SR CR)

187

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @78

v scclv]
0=0 o
1 0
2 1
3 1
4 1
5 1
NG
7 -
s @
9 2
10 2
strong component: 6 8 1 2
12 2

188

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @8

v scc[v]
0 1
1 0
2 1
3 1
4 1
5 1
6 3
7 @
8 3
9 2
10 2
visit 7 11 2
12 2

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of G-, @8

v scclv]
0 1
1 0
2 1
3 1
4 1
5 1
6 3
7 4
8 3
9 2
10 2
visit 7 1 2
12 2

190

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @8

v
o -

1 0
2 1
3 1
4 1
5 1
6 3
7 4
8 3
9 2
10 2
7 done 1 2
2

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR. @s

v scclv]
6 0 1
1 0
2 1
3 1
4 1
5 1
6 3
7 @
8 3
9 2
10 2
strong component: 7 1 2
12 2

192

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder

of GR.

v scc[v]

0 1

1 0

2 1

3 1

4 1

5 1

6 3

7 4

8 3

9 2

10 2
check 8 11 2

12 2 193

Kosaraju-Sharir

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder
of GR.

v scclv]
0 1
1 0
2 1
3 1
4 1
5 1
6 3
7 4
8 3
9 2
10 2
done 1 2
12 2

194

Kosaraju's algorithm

Simple (but mysterious) algorithm for computing strong components.
® Run DFS on G% to compute reverse postorder.
® Run DFS on G, considering vertices in order given by first DFS.

DFS in original digraph G

@)
-
@
Eaa

dfs(1) dfs(0) dfs(11) dfs(6) dfs(7)

1 done dfs(5) check 4 check 9 check 6
dfs(4) dfs(12) check 4 check 9
dfs(3) dfs(9) dfs(8) 7 done
check 5 check 11 check 6
dfs(2) dfs(10) 8 done
check 0 check 12 check 0
check 3 10 done 6 done
2 done 9 done
3 done 12 done
check 2 11 done
4 done
5 done
check 1
0 done

Proposition. Second DFS gives strong components. (!!)

195

Connected components in an undirected graph (with DFS)

public class CC

{
private boolean marked[] ;
private int[] id;
private int count;

public CC(Graph G)
{

marked = new boolean[G.V()];
id = new int[G.V()];

for (int v = 0; v < G.V(); v++)
if (!marked[v])
{

dfs (G, v);
count++;

}
}

private void dfs(Graph G, int v)
{

marked[v] = true;
id[v] = count;
for (int w : G.adj(v))
if (!marked[w])
dfs (G, w);
}

public boolean connected(int v, int w)
{ return id[v] == id[w]; }

}

19

Strong components in a digraph (with two DFSs)

public class KosarajuSCC
{

private boolean marked[] ;
private int[] id;
private int count;

7ublic KosarajuSCC (Digraph G)

marked = new boolean[G.V()];
id = new int[G.V()];
DepthFirstOrder dfs = new DepthFirstOrder (G.reverse());
for (int v : dfs.reversePost())
{
if (!'marked[v])

dfs (G, v);
count++;

1

private void dfs(Digraph G, int v)
{

marked[v] = true;

id[v] = count;

for (int w : G.adj(v))

if ('marked[w])
dfs (G, w);

}

public boolean stronglyConnected(int v, int w)
{ return id[v] == id[w]; }

197

Digraph-processing summary: algorithms of the day

single-source
reachability

topological sort
(DAG)

DFS

DFS

Kosaraju

strong ©)
components ®§i/6< DFS (twice)

198

