BBM 202 - ALGORITHMS

HACETTEPE UNIVERSITY

DEPT. OF COMPUTER ENGINEERING

SUBSTRING SEARCH

Acknowledgement: The course slides are adapted from the slides prepared by R. Sedgewick
and K. Wayne of Princeton University.

» Substring search

4

<
<
<

Brute force
Knuth-Morris-Pratt
Boyer-Moore
Rabin-Karp

Substring search

Goal. Find pattern of length M in a text of length M.

typically N >> M

patterm—N E E D L E

text—1 N A H A Y S T A C K N E E D L E I N A

!

match

8.0.0 Find & Replace

Advanced |

Find: [search]

Replace: V

Replace All | Replace Replace & Find Previous [Next]

Substring search applications

Goal. Find pattern of length M in a text of length M.

typically N >> M

patterm—N E E D L E

text——1 N A H A Y S T A C K N E E D L E I N A

!

match

Computer forensics. Search memory or disk for signatures,
e.g., all URLs or RSA keys that the user has entered.

http:/ /citp.princeton.edu/memory

Substring search applications

Goal. Find pattern of length M in a text of length M.

typically N >> M

patterm—N E E D L E

text——1 N A H A Y S T A C K N E E D L E I N A

!

match

|dentify patterns indicative of spam.
® PROFITS V7%
® IOSE WE1GHT SPZIIIIASSQSSin

® There is no catch.

® This is a one-time mailing.

® This message is sent in compliance with spam regulations.

Substring search applications

Electronic surveillance.

Need to monitor all

internet traffic.
(security)

No way!
(privacy))
\/\ a¢))

<2

Well, we’re mainly

interested in
“ATTACK AT DAWN”

OK. Build a |
machine that just)

looks for that.

“ATTACK AT DAWN”
substring search

machine

found

Substring search applications

Screen scraping. Extract relevant data from web page.

Ex. Find string delimited by and </v> after first occurrence of

pattern Last Trade:.

<tr>

<td class= "yfnc tableheadl"
Google Inc. (NasdaqGs: GOOG) % Add to Portiolio (3] —
After Hours: 0,00 N/A (WA) 10:00PM £ST width= "48%">

Google Inc.
Last Trade: 582.93 Day's Range NIA - NIA -H(G o Last Trade:
Trade Time Nov 29 52wk Range 473.02 - 642.96 "N 2 o
Change 0.00 (0.00%) Volume 0 '(ry \"m | S VL. </ td>
Prev Close 56293 Avg Vol (3m) 3,100,480 Y. 4 PR <td class= "yfnc tabledatal">
Cpeon NA Market Cap: 188.808 ".‘H"' b‘wq - -/ . o .
e TN pre —)) - <big>452.92</big>
Ash 585.33 x %0 EPS (ttm) 20.34 ‘ N - ' </td></tr>
1y Target Est 731.10 Div & Yiekd N/A (N/A) 1d 5 3 6m 1y 2y S max <td Class= " yfnc tableheadl "
http://finance.yahoo.com/q?s=goog width= "48%">

Trade Time:
</td>
<td class= "yfnc tabledatal">

http://finance.yahoo.com/q?s=goog

Screen scraping: Java implementation

Java library. The indexof () method in Java's string library returns the
index of the first occurrence of a given string, starting at a given offset.

public class StockQuote
{

public static void main(String[] args)

{
String name = "http://finance.yahoo.com/g?s=";
In in = new In(name + args[0]);
String text = in.readAll() ;

int start = text.indexOf ("Last Trade:", 0);
int from = text.indexOf ("", start);
int to = text.indexOf ("", from);

String price = text.substring(from + 3, to);
StdOut.println (price) ;

}
% java StockQuote goog L
582.93

% java StockQuote msft
24 .84

SUBSTRING SEARCH

» Brute force

» Knuth-Morris-Pratt
» Boyer-Moore

» Rabin-Karp

Brute-force substring search

Check for pattern starting at each text position.

i 3 i+ 0 1 2 3 4 5 6 7 8 910
txt—A B A C A D A B R A C

0 2 2 A B R <~ pat

1 0 1 A entries in red are

2 1 3 A B / mismatches

3 0 3 A entries in gray are

for reference only

’ 1 > entries in black AB e

> 0 5 match the text A

6 4 10 A B R A

™ return i when j is M }

match

Brute-force substring search: Java implementation
Check for pattern starting at each text position.

1 J 1+] 0O 1 2 3 4 5 6 7 8 9 10
AAB A CADAIZBIRAUC

4 3 / A D A C
5 0 5 A

public static int search (String pat, String txt)

{
int M = pat.length();
int N = txt.length();
for (int i = 0; 1 <= N - M; i++)
{

int j;
for (j = 0; j < M; j++)
if (txt.charAt(i+j) '= pat.charAt(j))
break;
if (j == M) return i; index in text where

} pattern starts

return N, <«— not found

Brute-force substring search: worst case

Brute-force algorithm can be slow if text and pattern are repetitive.

1 J 1+4] O 1 2 3 4 5 6 7 8 9
txt— A A A A A A A A A

0) 4 4 A A A A B <«—pat

1 4 A A A A B

2 4 6 A A A A B

3 4 / A A A A B

4 4 8 A A A A B

5 5 10 A A A A B

match

Worst case. ~ M N char compares.

Backup

In many applications, we want to avoid backup in text stream.

® Treat input as stream of data.
® Abstract model: standard input. “ATTACK AT DAWN”

substring search

machine o

found

Brute-force algorithm needs backup for every mismatch.

matched chars _
l mismatch

/
A°A A A A A

A A A A A B
backup

e

/

shift pattern right one position

Approach |. Maintain buffer of last M characters.
Approach 2. Stay tuned.

Brute-force substring search: alternate implementation

Same sequence of char compares as previous implementation.

® i points to end of sequence of already-matched chars in text.
® 5 stores number of already-matched chars (end of sequence in pattern).

i 3 01 2 3 4 5 6 7 8 9 10
AB A CADAIBRAUC

/3 A D A C

5 0

public static int search(String pat, String txt)
{

int i, N = txt.length();
int j, M = pat.length();
for (1 =0, J=0; i <N && j < M; i++)
{
if (txt.charAt(i) == pat.charAt(j)) j++;
else { i -= 3j; 3 =0; } <«<—71— backup
}
if (j == M) return i - M;

else return N;

Algorithmic challenges in substring search

Brute-force is not always good enough.
Theoretical challenge. Linear-time guarantee. <— fundamental algorithmic problem

Practical challenge. Avoid backup in text stream. «— often no room or time to save text

Now is the time for all people to come to the aid of their party. Now is the time for all good
people to come to the aid of their party. Now is the time for many good people to come to the aid
of their party. Now is the time for all good people to come to the aid of their party. Now is the
time for a lot of good people to come to the aid of their party. Now is the time for all of the
good people to come to the aid of their party. Now is the time for all good people to come to the
aid of their party. Now is the time for each good person to come to the aid of their party. Now is
the time for all good people to come to the aid of their party. Now is the time for all good
Republicans to come to the aid of their party. Now is the time for all good people to come to the
aid of their party. Now is the time for many or all good people to come to the aid of their party.
Now is the time for all good people to come to the aid of their party. Now is the time for all good
Democrats to come to the aid of their party. Now is the time for all people to come to the aid of
their party. Now is the time for all good people to come to the aid of their party. Now is the time
for many good people to come to the aid of their party. Now is the time for all good people to come
to the aid of their party. Now is the time for a lot of good people to come to the aid of their
party. Now is the time for all of the good people to come to the aid of their party. Now is the
time for all good people to come to the aid of their attack at dawn party. Now is the time for each
person to come to the aid of their party. Now is the time for all good people to come to the aid of
their party. Now is the time for all good Republicans to come to the aid of their party. Now is the
time for all good people to come to the aid of their party. Now is the time for many or all good
people to come to the aid of their party. Now is the time for all good people to come to the aid of
their party. Now is the time for all good Democrats to come to the aid of their party.

SUBSTRING SEARCH

» Brute force

» Knuth-Morris-Pratt
» Boyer-Moore

» Rabin-Karp

Knuth-Morris-Pratt substring search

Intuition. Suppose we are searching in text for pattern BaAAAAAAAA.
e Suppose we match 5 chars in pattern, with mismatch on 67 char.
® Ve know previous 6 chars in text are BAAAAB.

® Don't need to back up text pointer! assuming { A, B } alphabet

;
text\ l
. A B A A A A B A AAAAAA A A
after mismatch
onsixthchar —>B A A A A A <~— pattern
brute-force backs B
up to try this B
and this/ B
and this -~ /B
and this B AAAAAAAAA
and this
A A A A A A A A A
but no backup
is needed —

Knuth-Morris-Pratt algorithm. Clever method to always avoid backup. (!)

Deterministic finite state automaton (DFA)

DFA is abstract string-searching machine.

® Finite number of states (including start and halt).
® Exactly one transition for each char in alphabet.
® Accept if sequence of transitions leads to halt state.

internal representation

J 0 1 2 3 4 5
pat.charAt(j) A B A B A C If in state j reading char c:
Al 1 3 1 5 1 if § is 6 halt and accept
dfal]l3] E 8 (2) 8 g 8 g . else move to state dfa[c] []]

graphical representation \

B,C
A

&

—

DFA simulation

A ABACAABABACAA

© >
©O O — » O

O N — ™ —

O o w >N

O » — W W

© O v > b~

SO h — N U

DFA simulation

A ABACAABABACAA

1

0
A
A |1
0
0

20

DFA simulation

AAABACAABABACAA

1

1
B
1
2
0

21

DFA simulation

A BACAABABACAA

1

O N — 8 —

22

DFA simulation

A B ACAABABACAA

1

2
A
3
0
0

23

DFA simulation

A BACAABABACAA

1

3
B
]
4
0

24

DFA simulation

A ABABACAA

1

0
A
A |1
0
0

e Aﬁ//\

Q— é%@ B >@ A—>

DFA simulation

A ABABACAA

1

O N — 8 —

26

A B ABACAA

DFA simulation

— oM — (NN O

\

C

27

DFA simulation

A°B ABACAA

1

O o w P> N

28

DFA simulation

A°B ABACAA

1

3
B
]
4
0

29

DFA simulation

A B ABACAA

1

4
A
5
0
0

30

DFA simulation

A B ABACAA

1

S = N U

31

DFA simulation

A B ABACAA

1

A—> B >@ A >
substring found

Interpretation of Knuth-Morris-Pratt DFA

Q. What is interpretation of DFA state after reading in txt[i]?

A. State = number of characters in pattern that have been matched.
™~

length of longest prefix of pat[]
that is a suffix of txt[O..i]

Ex. DFA is in state 3 after reading in txt[o..6].

012 3 4 5 6 0 1 2 3 4 5
o B C B A A B A SE A B A B A C
suffix of text[0..6] prefix of pat[]
A

33

Knuth-Morris-Pratt substring search: Java implementation

Key differences from brute-force implementation.

® Need to precompute dfa[][] from pattern.
® Jext pointer i never decrements.

public int search(String txt)
{

int i, j, N = txt.length();
for (i =0, j=0; i <N && j < M; i++)

j = dfa[txt.charAt(i)][]j]’ no backup
if (j == M) return i - M;
else return N;

Running time.
e Simulate DFA on text: at most N character accesses.
e Build DFA: how to do efficiently? [warning: tricky algorithm ahead]

34

Knuth-Morris-Pratt substring search: Java implementation

Key differences from brute-force implementation.
® Need to precompute dfa[][] from pattern.

® Jext pointer i never decrements.

® Could use input stream.

public int search(In in)

{

int i, j;
for (i =0, J =0; '"in.isEmpty() && jJ < M; i++)

J = dfa[in.readChar()][]j]’ < no backup
if (j == M) return i - M;

else return NOT FOUND;

35

Knuth-Morris-Pratt construction

Include one state for each character in pattern (plus accept state).

Constructing the DFA for KMP substring search for ABABAC

o o & 66 “w 6 6

36

Knuth-Morris-Pratt construction

Match transition. If in state j and next char ¢ == pat.charat(j), g0 to j

+1. ! | !

first j characters of pattern next char matches now first j+1 characters of

have already been matched pattern have been matched

A B A B C
A | 3 5
B 2 4
C 6

Constructing the DFA for KMP substring search for ABABAC

O > (D 3> A 1D A= >

37

Knuth-Morris-Pratt construction

Mismatch transition: back up if ¢ 1= pat.charat(j).

o

(v 9)
o

Constructing the DFA for KMP substring search for ABABAC

38

Knuth-Morris-Pratt construction

Mismatch transition: back up if ¢ 1= pat.charat(j).

Constructing the DFA for KMP substring search for ABABAC

39

Knuth-Morris-Pratt construction

Mismatch transition: back up if ¢ 1= pat.charat(j).

ve)

Constructing the DFA for KMP substring search for ABABAC

B, C A j

4
@\é\B,CB/Q A—(3)— 2 —(9)

N

40

Knuth-Morris-Pratt construction

Mismatch transition: back up if ¢ 1= pat.charat(j).

Constructing the DFA for KMP substring search for ABABAC

@A@‘B/@A /B@

C
B, C
C

41

Knuth-Morris-Pratt construction

Mismatch transition: back up if ¢ 1= pat.charat(j).

ve)

Constructing the DFA for KMP substring search for ABABAC

QA2 ()= —=(2)—a—(3)—¢

C

B, C

AN

42

Knuth-Morris-Pratt construction

Mismatch transition: back up if ¢ 1= pat.charat(j).

5

C
A 1
B 4

Constructing the DFA for KMP substring search for ABABAC
A
B, C A A 5 J
V's "4
(O A== 8—=()—A—()—8—(a)— A c—(6)
C
B, C

B, C 43

Knuth-Morris-Pratt construction

Constructing the DFA for KMP substring search for ABABAC

© O — » |O

O NN — W |—

o o w >IN

O »~ — W |W

S O uv1 > |bd

A 4

S b — N |1

44

How to build DFA from pattern?

Include one state for each character in pattern (plus accept state).

45

How to build DFA from pattern?

Match transition. If in state j and next char ¢ == pat.charat(j), g0 tO j+1.

1 1 1

first j characters of pattern next char matches now first j+1 characters of

have already been matched pattern have been matched

A R A A C
A 1 3 5
B 2 4
C 6

Ot (D 3D 4> B 3> A G <>

How to build DFA from pattern?

Mismatch transition. If in state 5 and next char ¢ '= pat.charat(j),

then the last j-1 characters of input are pat[1..j-11, followed by <.

To compute dfa[c][j]: Simulate pat[1..5-11 on DFA and take transition c.

Running time. Seems to require j steps. \ still under construction (!

EX. dfa['A']1[5] = 1; dfa['B'][5] = 4

simulate BABA; simulate BABA; o 1 2 3 4 5
take transition 'A’ take transition 'B' A R A A
= dfa['A"][3] = dfa['B'][3]
A

simulation

/A\ yBABA s
B

A

How to build DFA from pattern?

Mismatch transition. If in state 5 and next char ¢ '= pat.charat(j),

then the last j-1 characters of input are pat[1..j-11, followed by <.

/ state X

To compute dfa[c][j]: Simulate pat[1..5-11 on DFA and take transition c.

Running time. Takes only constant time if we maintain state X.

Ex. afa['a'][5] = 1; dfa['B'][5] = 4; X'= 0
from state X,

from state X, from state X, 0 1) 3 4 5

. - take transition 'C'
take transition 'A’ take transition 'B' A R A R A

= dfa['C'][X]
= dfa['A"][X] = dfa['B'][X]

X :
/ / KB /J

T
'

48

Knuth-Morris-Pratt construction (in linear time)

Include one state for each character in pattern (plus accept state).

Constructing the DFA for KMP substring search for ABABAC

o o & 66 “w 6 6

49

Knuth-Morris-Pratt construction (in linear time)

Match transition. For each state j, dfa[pat.charAt(j)]1[3j] = j+1.

1 1

first j characters of pattern now first j+1 characters of
have already been matched pattern have been matched
0 1 2 3 4 5
A B A B C
A 3 5
B 2 4
C 6

Constructing the DFA for KMP substring search for ABABAC

@— A—)@— B—)@— A—)@— B—)@— A—>@— c—>@

50

Knuth-Morris-Pratt construction (in linear time)

Mismatch transition. For state o and char ¢ '= pat.charat (j),

set dfa[c][0] = O.

0
A
A
B O
cCl 0

Constructing the DFA for KMP substring search for ABABAC

Cgc/]

51

Knuth-Morris-Pratt construction (in linear time)

Mismatch transition. For each state 5 and char ¢ '= pat.charat(j), set

dfa[c][j] = dfa]c] [x1;then update X = dfa[pat.charAt(j)]I[X].

X = simulation of empty string
0

1

B
A
B O
cCl O

Constructing the DFA for KMP substring search for ABABAC

52

Knuth-Morris-Pratt construction (in linear time)

Mismatch transition. For each state 5 and char ¢ '= pat.charat(j), set

dfa[c][j] = dfa]c] [x1;then update X = dfa[pat.charAt(j)]I[X].

= simulation of B

I
0

2
A
A |
B O
cCl O

Constructing the DFA for KMP substring search for ABABAC

53

Knuth-Morris-Pratt construction (in linear time)

Mismatch transition. For each state 5 and char ¢ '= pat.charat(j), set

dfa[c][j] = dfa]c] [x1;then update X = dfa[pat.charAt(j)]I[X].

simulation of B A

i:

3
B
A 1
B 2
C 0

Constructing the DFA for KMP substring search for ABABAC

54

Knuth-Morris-Pratt construction (in linear time)

Mismatch transition. For each state 5 and char ¢ '= pat.charat(j), set

dfa[c][j] = dfa]c] [x1;then update X = dfa[pat.charAt(j)]I[X].

simulation of B A B

1(:
2

4
A

A 3

B 0

C 0

Constructing the DFA for KMP substring search for ABABAC

55

Knuth-Morris-Pratt construction (in linear time)

Mismatch transition. For each state 5 and char ¢ '= pat.charat(j), set

dfa[c][j] = dfa]c] [x1;then update X = dfa[pat.charAt(j)]I[X].

I
3

A 1
B 4
C 0

Constructing the DFA for KMP substring search for ABABAC

S

—

= simulation of BABA

U1

56

Knuth-Morris-Pratt construction (in linear time)

Mismatch transition. For each state 5 and char ¢ '= pat.charat(j), set

dfa[c][j] = dfa]c] [x1;then update X = dfa[pat.charAt(j)]I[X].

simulation of BAB A C

1(:
0

Constructing the DFA for KMP substring search for ABABAC

57

Knuth-Morris-Pratt construction (in linear time)

o o —= > |o
o N —= D8 |-
o o w >IN

Constructing the DFA for KMP substring search for ABABAC

O »~ — W |W

S O uv1 > |bd

A 4

S b — N |1

58

Constructing the DFA for KMP substring search: Java

implementation

For each state j5:

® Copy dfa[][x] to dfa[][j] for mismatch case.
® Set dfa[pat.charAt(j)]1[j] to j+1 for match case.
e Update x.

public KMP (String pat)
{
this.pat = pat;
M = pat.length() ;
dfa = new int[R] [M];
dfa[pat.charAt(0)] [0] = 1;
for (int X =0, J=1; j < M; j++)
{
for (int ¢ = 0; ¢ < R; c++)

dfa[c] [J] = dfa[c] [X]; < copy mismatch cases
dfa[pat.charAt(j)]1[]J] = J+1; <« set match case
X = dfa[pat.charAt(])] [X]’ < update restart state

Running time. M character accesses (but space proportional to R M).

KMP substring search analysis

Proposition. KMP substring search accesses no more than M + N chars

to search for a pattern of length A in a text of length V.

Pf. Each pattern char accessed once when constructing the DFA;
each text char accessed once (in the worst case) when simulating the DFA.

Proposition. KMP constructs dfa[j[] in time and space proportional to R M.

Larger alphabets. Improved version of KMP constructs nfa[] in time and

space proportional to M.

R
SIS U

KMP NFA for ABABAC

60

Knuth-Morris-Pratt: brief history

® Independently discovered by two theoreticians and a hacker.

- Knuth: inspired by esoteric theorem, discovered linear-time algorithm
- Pratt: made running time independent of alphabet size
- Morris: built a text editor for the CDC 6400 computer

® Theory meets practice.

SIAM J. COMPUT.
Vol. 6, No. 2, June 1977

FAST PATTERN MATCHING IN STRINGS*

DONALD E. KNUTHfY, JAMES H. MORRIS, JR.f AND VAUGHAN R. PRATTY

Abstract. An algorithm is presented which finds all occurrences of one given string within
another, in running time proportional to the sum of the lengths of the strings. The constant of
proportionality is low enough to make this algorithm of practical use, and the procedure can also be
extended to deal with some more general pattern-matching problems. A theoretical application of the
algorithm shows that the set of concatenations of even palindromes, i.e., the language {aa®}*, can be

recognized in linear time. Other algorithms which run even faster on the average are also considered.

d bt
: V|
Don Knuth Jim Morris Vaughan Pratt

6l

SUBSTRING SEARCH

» Brute force

» Knuth-Morris-Pratt
» Boyer-Moore

» Rabin-Karp

Boyer Moore Intuition

® Scan the text with a window of M chars (length of pattern)

Pattern in Text (M)

oummm—

Scan Window (M)

e Case |:Scan Window is exactly on top of the searched pattern

. . 0 AN BB IE S ee] = A Tvaon Lmad e
8 S ADBAZAE SR ARRL G R o VBL He'Q 1320 Oxt @ p €D o

- Starting from one end check if all characters are equal. (We must check!)

e Case 2:Scan Window starts after the pattern starts.

Text

63

Boyer Moore Intuition (2)

® Case 3:Scan Window starts before the pattern starts

) . " Al B A man 2100 - ‘ R fnan o
-3 - anBamel RARRL QR L 2R B9 2. HalQ p €0

e Case 4:Independent

et

® In case 4, simply shift window M characters
® Avoid Case 2
e Convert Case 3 to Case |, by shifting appropriately

64

Boyer Moore Intuition (3)

® |f we can recognise the character in the scan window end-point, we can
find how many characters to shift.

ABCDEFGH

® So, for example D is the 4th character, we must shift window 4 characters
so that they overlap.
ABCDEFGH

65

Boyer Moore Intuition (4)

® A potential problem, the character in the text can repeat.
® For example, pattern = XXAXX and the text is

AXAXAXAXXAXXAXAXAXAX

® Solution: be conservative, choose the instance with the least Shift (so

we cannot miss the others).

® So, for the example above when end-point is X, we should shift for |
characters, when it is A shift for 2 characters.

66

Boyer-Moore: mismatched character heuristic

Intuition.

® Scan characters in pattern from right to left.
® Can skip as many as M text chars when finding one not in the pattern.

- First we check the character in index pattern.length()-1

- Itis N which is not E, so we know that first 5 characters is not a match. Shift text 5
characters

- S !=E so shift 5, E == E so we can check for the pattern.length()-2, L!=N, skip 4.

1 J O 1 2 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23

txt— F I N D I N A H A Y S T A CK N E E D L E

0 5 E <— pattern

5 5 E

11 4 L E

15 0 N E E D L E
N

return i = 15

67

Boyer-Moore: mismatched character heuristic

Q. How much to skip!?

Case |. Mismatch character not in pattern.
I

before l
txt T L E
pat D L E
|
after l
txt T L E
pat N E E D L E

mismatch character 'T' not in pattern: increment i one character beyond 'T'

68

Boyer-Moore: mismatched character heuristic

Q. How much to skip!?

Case 2a. Mismatch character in pattern.

before l
txt N L E
pat D L E
|
after l
txt N L E
pat N E E D L E

mismatch character 'N' in pattern: align text 'N' with rightmost pattern 'N'

69

Boyer-Moore: mismatched character heuristic

Q. How much to skip!?

Case 2b. Mismatch character in pattern (but heuristic no help).

before l
txt E L E
pat D L E
[
aligned with rightmost E? l
txt E L E
pat N E E D L E

mismatch character 'E' in pattern: align text 'E' with rightmost pattern 'E' ?

70

Boyer-Moore: mismatched character heuristic

Q. How much to skip!?

Case 2b. Mismatch character in pattern (but heuristic no help).

before l
txt E L E
pat D L E
i
after l
txt E L E
pat N E E D L E

mismatch character 'E' in pattern: incrementi by 1

71

Boyer-Moore: mismatched character heuristic

Q. How much to skip!?

A. Precompute index of rightmost occurrence of character c in pattern

(-1 if character not in pattern).

C

A -1 -1
right = new int[R]; B -1 -1
for (int c¢ = 0; c < R; c++) C -1 -1

right[c] = -1; D -1 3
for (int § = 0; j < M; j++) E -1 @ @ (5) 5
right[pat.charAt(j)] = J; o -1
L -1 (4 4
M -1 -1
N -1 0 0
-1

Boyer-Moore skip table computation

72

Boyer-M

public

int
int
int

for

}

oore: Java implementation

int search (String txt)

N = txt.length() ;

M = pat.length();

skip;

(int 1 = 0; i <= N-M; i += skip)

skip = 0;
for (int j = M-1; § >= 0; j--)
{

if (pat.charAt(j)
{

= txt.charAt (i+]j)) <

skip = Math.max (1, j - right[txt.charAt(i+j)]);
break; K\
} in case other term is nonpositive

}

if (skip == 0) return i;

return N;

compute skip value

match

73

Another Example

SEARCH FOR: XXXX

AXAXAXAXXXAXAXXXXAAA

Foetemn- |

If the window scan points to an unrecognised character, we can skip M
steps (gray scan). For this example, when we see an A skip 4. When we

see an X skip 1 step.

74

Boyer-Moore: analysis

Property. Substring search with the Boyer-Moore mismatched character

neuristic takes about ~ N/ M character compares to search for a pattern of
ength M in a text of Iengthvﬁ.\ ol

Worst-case. Can be as bad as ~ M N.

1 skip O 1 2 3 4 5 6 7 8 9
txt— B B B B B B B B

0 0 A B B B B <«——pat

1 1 A B B B B

2 1 A B B B B

3 1 A B B B B

4 1 A B B B B

5 1 A B B B B

Boyer-Moore variant. Can improve worst case to ~ 3 N by adding a

KMP-like rule to guard against repetitive patterns.

SUBSTRING SEARCH

» Brute force

» Knuth-Morris-Pratt
» Boyer-Moore

» Rabin-Karp

Rabin-Karp fingerprint search

Basic idea = modular hashing.

® Compute a hash of pattern characters 0 to M - 1.

® For each i, compute a hash of text charactersito M +i - 1.

e If pattern hash = text substring hash, check for a match.

pat.charAt(i)
i O 1 2 3 4

2 6 5 3 5 % 997 = 613

txt.charAt(i)

i 0 1 2 3 4 5 6 7 8 91011 12 13 14 15
3 1 4 15 9 2 6 5 3 5 8 9 7 9 3

0 3 1 4 1 5 %997 = 508

1 1 4 1 5 9 %997 = 201

2 4 1 5 9 2 %997 = 715

3 1 5 9 2 6 %997 = 971

4 5 9 2 6 5 % 997 = 442

5 9 2 6 5 3 %997 = 929 ZT“ﬁ

6 ~— returni = 6 2 6 5 3 5 %997 = 613

77

Efficiently computing the hash function

Modular hash function. Using the notation #; for txt.charat (i),
we wish to compute

X =t R+t RM2 + .+ tivy1 RO (mod Q)

Intuition. M-digit, base-R integer, modulo Q.

Horner's method. Linear-time method to evaluate degree-M polynomial.

pat.charAt() // Compute hash for M-digit key
1. 01 2 3 4 private long hash(String key, int M)

2 6 5 3 5

R Q ¢

0 2 9% 997 =2 J J long h = 0;
1 2 6 %997 = (2*10 + 6) % 997 = 26 for (int § = 0; j < M; J++)
2 2 6 5 %997 = (26%*10 + 5) % 997 = 265 h = (R * h + key.charAt(j)) % Q;
3 2 6 5 3 %997 = (265%10 + 3) % 997 = 659 return h;
4 2 6 5 3 5 %997 = (659%10 + 5) % 997 = 613

78

Efficiently computing the hash function

Challenge. How to efficiently compute x;.1 given that we know x;.
Xi =t RM + 6 RM2 + L+t RO

Xitl =i+ 1 RM P+ o RM2 4+ + tivm RO

Key property. Can update hash function in constant time!

xiv1 = (xi - t;RM™1) R + ti+m
current subtract multiply add new

can precompute RM-2
value leading digit by radix trailing digit (> >)

1 ... 2 3 4 5 6 7
current value 4 1 9 2
text
new value 1 9 2 6 = fex
4 1 5 9 2 currentvalue
- 4 0 0 O
1 5 9 2 subtractleading digit
1 0 multiply by radix
1 5 9 2 0
+ 6 addnew trailing digit
1 5 9 2 6 newvalue

79

Rabin-Karp substring search example

i 0 1 2 3 4 5 6 7 8 910 11 12 13 14 15
3 1 415 9 2 6 5 358 9 7 9 3

0 3 %997 = 3 ’/Q

1 3 1 %997 = (3*10 + 1) % 997 = 31

2 3 1 4 % 997 = (31%10 + 4) % 997 = 314

3 3 1 4 1 %997 = (314*10 + 1) % 997 = 150

4 3 1 4 1 5 %997 = (150%10 + 5) % 997 = SOE/RT//R

5 1 4 1 5 9 %997 = ((508 + 3*%(997 - 30))*10 + 9) % 997 = 201

6 4 1 5 9 2 %997 = ((201 + 1%*(997 - 30))*10 + 2) % 997 = 715

7 1 5 9 2 6 %997 = ((715 + 4%(997 - 30))*10 + 6) % 997 = 971

8 S 9 2 6 5 %997 = ((971 + 1¥(997 - 30))*10 + 5) % 997 = 442 .
9 9 2 6 5 3 % 997 = ((442 + 5%(997 - 30))*10 + 3) % 997 = 929 l
10 <— returni-M+1 = 6 2 6 5 3 5 %997 = ((929 + 9*(997 - 30))*10 + 5) % 997 = 613

80

Rabin-Karp: Java implementation

public class RabinKarp
{

private long patHash; // pattern hash value
private int M; // pattern length
private long Q; // modulus

private int R; // radix

private long RM; // R*(M-1) % Q

public RabinKarp (String pat) {
M = pat.length() ;

R = 256; .
: a large prime
Q = longRandomPrime () ; <
(but avoid overflow)
RM = 1; < precompute RM-1 (mod Q)

for (int 1 =1; i <= M-1; i++)
RM = (R * RM) % Q;
patHash = hash(pat, M);

private long hash(String key, int M)
{ /* as before */ }

public int search(String txt)
{ /* see next slide */ }

Rabin-Karp:)Java implementation (continued)

Monte Carlo version. Return match if hash match.

public int search(String txt)

(check for hash collision
int N = txt.length(); using rolling hash function
int txtHash = hash(txt, M);
if (patHash == txtHash) return O;

for (int i = M; i < N; i++)

{
txtHash = (txtHash + Q - RM*txt.charAt(i-M) % Q) % Q;
txtHash = (txtHash*R + txt.charAt(i)) % Q;
if (patHash == txtHash) return i - M + 1;

}

return N;

Las Vegas version. Check for substring match if hash match;
continue search if false collision.

Rabin-Karp analysis

Theory. If O is a sufficiently large random prime (about M N?),
then the probability of a false collision is about 1/ V.

Practice. Choose Q to be a large prime (but not so large as to cause

overflow). Under reasonable assumptions, probability of a collision is
about 1/ 0.

RANDOMIZED

1 GORITHMS
Monte Carlo version. \LGORITHMS

® Always runs in linear time.

e Extremely likely to return correct answer (but not always!).

Las Vegas version.

® Always returns correct answer.

e Extremely likely to run in linear time (but worst case is M N).

83

Rabin-Karp fingerprint search

Advantages.

® Extends to 2d patterns.
® Extends to finding multiple patterns.

Disadvantages.

® Arithmetic ops slower than char compares.

® | asVegas version requires backup.
® Poor worst-case guarantee.

84

Substring search cost summary

Cost of searching for an M-character pattern in an N-character text.

operation count

algorithm version .bzf\ckup correct? extra
guarantee typical !ninput? space
brute force — MN 1.1N yes yes 1
full DFA
(Algorithm 5.6) 2N LIN no yes MR
Knuth-Morris-Pratt |
mz.smatch 3N LIN . s y
transitions only
full algorithm 3N N/ M yes yes R

Boyer-Moore mismatched char

heuristic only MN N/ M yes yes R

(Algorithm 5.7)
Monte Carlo
;
(Algorithm 5.8) 7N 7N i yes :
Rabin-Karp'
Las Vegas 7NT 7N yes yes 1

1 probabilisitic guarantee, with uniform hash function

85

