1. For each of the following sets, determine whether 2 is an element of the set.
 (a) \(\{x \in \mathbb{R} | x \text{ is an integer greater than 1} \} \)
 (b) \(\{x \in \mathbb{R} | x \text{ is the square of an integer} \} \)
 (c) \(\{2, \{2\} \} \)
 (d) \(\{\{2\}, \{\{2\}\}\} \)
 (e) \(\{\{2\}, \{2, \{2\}\}\} \)
 (f) \(\{\{\{2\}\}\} \)

2. Determine whether each of these statements is true or false.
 a) \(0 \in \emptyset \)
 b) \(\emptyset \in \{0\} \)
 c) \(\{0\} \subset \emptyset \)
 d) \(\emptyset \subset \{0\} \)
 e) \(\{0\} \in \{0\} \)
 f) \(\{0\} \in \{0\} \)
 g) \(\{\emptyset\} \subseteq \{\emptyset\} \)

3. Let \(A = \{a, b, c\} \), \(B = \{x, y\} \) and \(C = \{0, 1\} \). Find
 a) \(A \times B \times C \)
 b) \(C \times B \times A \)
 c) \(C \times A \times B \)
 d) \(B \times B \times B \)

4. How many different elements does \(A \times B \) have if \(A \) has \(m \) elements and \(B \) has \(n \) elements?

5. What is the cardinality of each of these sets?
 a) \(\{a\} \)
 b) \(\{\{a\}\} \)
 c) \(\{a, \{a\}\} \)
 d) \(\{a, \{a\}, \{a, \{a\}\}\} \)

6. Let \(A = \{0, 2, 4, 6, 8, 10\} \), \(B = \{0, 1, 2, 3, 4, 5, 6\} \), and \(C = \{4, 5, 6, 7, 8, 9, 10\} \). Find
 a) \(A \cap B \cap C \)
 b) \(A \cup B \cup C \)
 c) \((A \cup B) \cap C \)
 d) \((A \cap B) \cup C \)
7. How many license plates can be made using either three letters followed by three digits or four letters followed by two digits?

8. How many different functions are there from a set with 8 elements to a set with 3 elements?

9. How many bit strings of length seven either begin with two 0’s or end with three 1’s?

10. How many subsets with more than two elements does a set with 100 elements have?