BBM 205

Problem Set 6:

Recursion: Solving Recursive Equations

- 1. Let S_n denote the number of *n*-bit strings that do not contain the pattern 000. Find a recurrence relation and initial conditions for the sequence $\{S_n\}$.
- 2. Derive a recurrence relation for $C(n,k) = \binom{n}{k}$, the number of k-element subsets of an n-element subset. Specifically, write C(n+1,k), in terms of C(n,i) for appropriate i.
- 3. Solve the recurrence relation

$$S_n = 2S_{n-1},$$

subject to the initial condition $S_0 = 1$.

- 4. Solve the recurrence relations with the given initial conditions below.
 - (a) $a_n = 6a_{n-1} 8a_{n-2}, a_0 = 1, a_1 = 0.$
 - (b) $a_n = 7a_{n-1} 10a_{n-2}, a_0 = 5, a_1 = 16.$
 - (c) $a_n = 2a_{n-1} + 8a_{n-2}$, $a_0 = 4$, $a_1 = 10$.
 - (d) $a_n = -3a_{n-1}, a_0 = 2.$
 - (e) $a_n = 2na_{n-1}, a_0 = 1.$
 - (f) $a_n = a_{n-1} + n$, $a_0 = 0$.
- 5. Solve the recurrence relation

$$a_n = \sqrt{\frac{a_{n-2}}{a_{n-1}}}$$

with initial conditions $a_0 = 8$, $a_1 = 1/(2\sqrt{2})$ by taking the logarithm of both sides and making the substitution $b_n = \log a_n$.

- 6. (Spring 2014)
 - (a) Solve the recurrence relation $a_n = 2^n a_{n-1}$, n > 0, with the initial condition $a_0 = 1$.

- (b) Solve the recurrence relation $\sqrt{a_n} = \sqrt{a_{n-1}} + 2\sqrt{a_{n-2}}$ with initial conditions $a_0 = a_1 = 1$ by making substitution $b_n = \sqrt{a_n}$.
- 7. (Spring 2015) Let S(n, k) denote the number of functions from $\{1, \ldots, n\}$ onto $\{1, \ldots, k\}$. Show that S(n, k) satisfies the recurrence relation

$$S(n,k) = k^{n} - \sum_{i=1}^{k-1} C(k,i)S(n,i).$$

- 8. (Spring 2015)
 - (a) Find a recurrence relation and the initial conditions for c_n , that is the minimum number of moves in which the n-disk Tower of Hanoi puzzle can be solved.
 - (b) Solve this recurrence relation.
- 9. (Fall 2016) Let S_n denote the number of *n*-bit strings that do not contain the pattern 00.
 - (a) Find a recurrence relation and initial conditions for the sequence $\{S_n\}$.
 - (b) Show that $S_n = f_{n+2}$ for n = 2, 3, ..., where f_n denotes nth Fibonacci number.
- 10. (Fall 2016) Solve the recurrence relations with the given initial conditions.
 - (a) $a_n = (n-1)a_{n-2}$, $a_0 = 1$, $a_1 = 3$.
 - (b) $a_n = 6a_{n-1} 9a_{n-2}, a_0 = 1, a_1 = 0.$
- 11. (Fall 2016) A computer system considers a string of decimal digits a valid codeword if it contains an even number of 0 digits. For instance, 1230407869 is valid, whereas 1209805608 is not valid. Let a_n be the number of valid n-digit codewords.
 - (a) Find a recurrence relation and initial conditions for a_n .
 - (b) Solve this recurrence relation.