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Binomial Coefficients

« |t allows us to do a quick expansion of (x+y)"

« Why Iit’s really important:
« |t provides a good context to present proofs
= Especially combinatorial proofs




Review: combinations

lLet n and r be non-negative integers with
r<n. Then C(n,r) = C(n,n-r)
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« Proof (from a previous slide set):
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Review: combinatorial proof

« A combinatorial proof is a proof that uses counting
arguments to prove a theorem, rather than some
other method such as algebraic techniques

« Essentially, show that both sides of the proof
manage to count the same objects

= Usually in the form of an English explanation with
supporting formulae




Polynomial expansion

« Consider (x+y)*: (x+Y)? = X3 +3x2y + 3xy? + Y

* Rephrase it as:

() @+ ) ) = + KB + B + B + O + 5 + R+ B

* When choosing x twice and y once, there are C(3,2) =
C(3,1) = 3 ways to choose where the x comes from

* When choosing x once and y twice, there are C(3,2) =
C(3,1) = 3 ways to choose where the y comes from




Polynomial expansion

SEUEEER (X + y)° = x° +5x*y +10x°y? +10x°y° +5xy* + y°

To obtain the x° term
= Each time you multiple by (x+y), you select the x
= Thus, of the 5 choices, you choose x 5 times
« C(55)=1
= Alternatively, you choose y 0 times
- C(5,0) =1
To obtain the x*y term
= Four of the times you multiply by (x+y), you select the x
* The other time you select the y
= Thus, of the 5 choices, you choose x 4 times
« C(54)=5
= Alternatively, you choose y 1 time
« C(5,1)=5
To obtain the x3y? term
= C(5,3)=C(5,2) =10
Etc...




Polynomial expansion

« For (x+y)°

(X+ y)5 =X +5X4y+1OX3y2 _|_1OX2y3 +5Xy4 + y5

(x+y)> = ° X + > X'y + > Xy° + > x2y° + >
5 4 3 2 1
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Polynomial expansion:
The binomial theorem

* For (x+y)"




Examples

« What is the coefficient of x12y13 in (x+y)2°?

25 25 25
= =——=5,200,300
13 12) 1312

« What is the coefficient of xt2y13 in (2x-3y)%°?
= Rephrase it as (2x+(-3y))?®

25 _ (2D 25— | i
(2x+(-3y)) =Z( | ](ZX) '(—3y)’

j=0
= The coefficient occurs when j=13:

25
( j212(—3)13 - 2% (-3)" = -33,959,763,545,702,400

13 1312




Sample guestion

« Find the coefficient of x°y® in (x+y)13

« Answer: 13 13
= o =1287

5




Pascal’s triangle
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Pascal’s Identity

+ By Pascal’s identity: ( j:[6]+[6j or 21=15+6
5) \4) (5

« Let n and k be positive integers with n = k.

- R

« or C(n+1,k) = C(n,k-1) + C(n,k)

« We will prove this via two ways:
=« Combinatorial proof

= Using the formula for (nj

K




Algebraic proof of Pascal’s identity

(n+Y! | L n
K(n+1-K)!  (K=D)I(n—(k-1)! K (n-K)!

nl nl
k(k=D[(n+1- k)(n k)' n—k+1)(n—k)!+(k—l)!(n—k)!

Substitutions:
(n+1-k)!=(n+1-k)* (n—k)!
(n+D)!I=(n+1)n!
(n—-k+1) =(n-k+1)(n—k)!

k(n+1—k):(n—k+1)+E
T K
K(n+1-K) k(n k+1)  K(n—k+1)




Pascal’s identity: combinatorial proof

Prove C(n+1,k) = C(n,k-1) + C(n,k)
Consider a set T of n+1 elements

= We want to choose a subset of k elements
= We will count the number of subsets of k elements via 2 methods

Method 1: There are C(n+1,k) ways to choose such a subset

Method 2: Let a be an elementof set T

Two cases
= aisin such a subset
« There are C(n,k-1) ways to choose such a subset
= ais notin such a subset
« There are C(n,k) ways to choose such a subset
Thus, there are C(n,k-1) + C(n,k) ways to choose a subset of k
elements

Therefore, C(n+1,k) = C(n,k-1) + C(n,k)




Pascal’s triangle
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Corollary 1 and algebraic proof

« Let n be a non-negative integer. Then




Combinatorial proof of corollary 1

+ Let n be a non-negative integer. Then Z”:(”j _ o
k

« Combinatorial proof
= A set with n elements has 2" subsets
« By definition of power set

= Each subset has either 0 or 1 or 2 or ... or n elements

* There are subsets with O elements subsets with 1 element,
and ” subsets with n elements

* Thus, the total number of subsets is
" k o




Pascal’s triangle




Proof practice: corollary 2

« Let n be a positive integer. Then
« Algebraic proof




Proof practice: corollary 3

« Let n be a non-negative integer. Then

« Algebraic proof




Vandermonde’s identity

* Let m, n, and r be non-negative integers with r not
exceeding either m or n. Then

« Assume a congressional committee must consist of
r people, and there are n Democrats and m
Republicans
= How many ways are there to pick the committee?




Combinatorial proof of (mﬂj
Vandermonde’s identity

¥

Consider two sets, one with m items and one with n items

= Then there are (m:”J ways to choose r items from the union of those
two sets

Next, we'll find that value via a different means
Pick k elements from the set with n elements

Pick the remaining r-k elements from the set with m elements

Via the product rule, there are (rr_‘“k}@ ways to do that for EACH value
of k

Lastly, consider this for all values of k:

R




Sample question

« How many bit strings of length 10 contain exactly
four 1's?
= Find the positions of the four 1's

= The order of those positions does not matter
* Positions 2, 3, 5, 7 is the same as positions 7, 5, 3, 2

= Thus, the answer is C(10,4) = 210

* Generalization of this result:

= There are C(n,r) possibilities of bit strings of length n
containing r ones




Yet another combinatorial proof

* Let n and r be non-negative integers with r <n. Then

* We will do the combinatorial proof by showing that both

sides show the ways to count bit strings of length n+1 with
r+1 ones

* From previous slide: (n+1j achieves this
r+1




Yet another combinatorial proof

* Next, show the right side counts the same objects
* The final one must occur at position r+1 or r+2 or ... or n+1
« Assume that it occurs at the k™ bit, where r+1 < k < n+1
= Thus, there must be r ones in the first k-1 positions
« Thus, there are such strings of length k-1
* As k can be any value from r+1 to n+1, the total number of
possibilities is
n+1 k 1




Sample guestion

+ Show that if p iIs a prime and k is an integer such that
1 <k < p-1, then p divides
k
+ We know that (EJ:k!(pp!—k)!
* p divides the numerator (p!) once only

=« Because p is prime, it does not have any factors less than p

* We need to show that it does NOT divide the
denominator
= Otherwise the p factor would cancel out

« Since k < p (it was given that k < p-1), p cannot divide k!

* Since k = 1, we know that p-k < p, and thus p cannot
divide (p-k)!

* Thus, p divides the numerator but not the denominator

* Thus, p divides




Sample guestion

* Give a combinatorial proof that if n is positive integer then

* Provided hint: show that both sides count the ways to select
a subset of a set of n elements together with two not
necessarily distinct elements from the subset

* Following the other provided hint, we express the right side
as follows:




Sample guestion

« Show the left side properly counts the desired
property

Consider each
of the possible
subset sizes k

Choosing a subset of k
elements from a set of
Choosing one of n elements
the k elements in
the subset twice




Sample guestion

« Two cases to show the right side: n(n-1)2"-2+n2"-1

= Pick the same element from the subset
Pick that one element from the set of n elements: total of n possibilities

Pick the rest of the subset

. Asbthere are n-1 elements left, there are a total of 2"1 possibilities to pick a given
subset

« We have to do both
= Thus, by the product rule, the total possibilities is the product of the two
= Thus, the total possibilities is n*2"-1
= Pick different elements from the subset
Pick the first element from the set of n elements: total of n possibilities
Pick the next element from the set of n-1 elements: total of n-1 possibilities

Pick the rest of the subset

. Asbthere are n-2 elements left, there are a total of 2"2 possibilities to pick a given
subset

« We have to do all three
= Thus, by the product rule, the total possibilities is the product of the three
= Thus, the total possibilities is n*(n-1)*2"-2
= We do one or the other
* Thus, via the sum rule, the total possibilities is the sum of the two
« Or n*2"-1+n*(n-1)*2n-2




