BBM 205 Discrete Mathematics Hacettepe University http://web.cs.hacettepe.edu.tr/~bbm205

Lecture 1: Logic

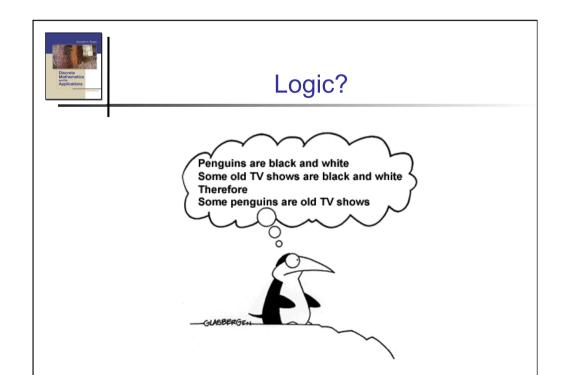
Resources:

Kenneth Rosen, "Discrete Mathematics and App." cs.colostate.edu/cs122/.Spring15/home resources.php

Propositional Logic, Truth Tables, and Predicate Logic (Rosen, Sections 1.1, 1.2, 1.3)

TOPICS

- Propositional Logic
- Logical Operations
- Equivalences
- Predicate Logic



What is logic?

Logic is a <u>truth-preserving</u> system of <u>inference</u>

Truth-preserving:
If the initial
statements are
true, the inferred
statements will
be true

System: a set of mechanistic transformations, based on syntax alone

Inference: the process of deriving (inferring) new statements from old statements

Propositional Logic

- A proposition is a statement that is either true or false
- Examples:
 - This class is CS122 (true)
 - Today is Sunday (false)
 - It is currently raining in Singapore (???)
- Every proposition is true or false, but its truth value (true or false) may be unknown

Propositional Logic (II)

- A propositional statement is one of:
 - A simple proposition
 - denoted by a capital letter, e.g. 'A'.
 - A negation of a propositional statement
 - e.g. ¬A: "not A"
 - Two propositional statements joined by a *connective*
 - e.g. A ∧ B : "A and B"
 - e.g. A v B : "A or B"
 - If a connective joins complex statements, parenthesis are added
 - e.g. A ∧ (B∨C)

Truth Tables

- The truth value of a compound propositional statement is determined by its truth table
- Truth tables define the truth value of a connective for every possible truth value of its terms

Logical negation

- Negation of proposition A is ¬A
 - A: It is snowing.
 - ¬A: It is not snowing
 - A: Newton knew Einstein.
 - ¬A: Newton did not know Einstein.
 - A: I am not registered for CS195.
 - ¬A: I am registered for CS195.

Negation Truth Table

A	$\neg A$
0	1
1	0

Logical and (conjunction)

- Conjunction of A and B is A ∧ B
 - A: CS160 teaches logic.
 - B: CS160 teaches Java.
 - A A B: CS160 teaches logic and Java.
- Combining conjunction and negation
 - A: I like fish.
 - B: I like sushi.
 - I like fish but not sushi: A ∧ ¬B

Truth Table for Conjunction

A	В	$A \wedge B$
0	0	0
0	1	0
1	0	0
1	1	1

Logical or (disjunction)

- Disjunction of A and B is A v B
 - A: Today is Friday.
 - B: It is snowing.
 - A v B: Today is Friday or it is snowing.
- This statement is true if any of the following hold:
 - Today is Friday
 - It is snowing
 - Both
- Otherwise it is false

Truth Table for Disjunction

\boldsymbol{A}	В	A vB
0	0	0
0	1	1
1	0	1
1	1	1

Exclusive Or

- The "or" connective v is inclusive: it is true if either *or both* arguments are true
- There is also an exclusive or ⊕

\boldsymbol{A}	В	<i>A⊕B</i>
0	0	0
0	1	1
1	0	1
1	1	0

Confusion over Inclusive OR and Exclusive OR

- Restaurants typically let you pick one (either soup or salad, not both) when they say "The entrée comes with a soup or salad".
 - Use exclusive OR to write as a logic proposition
- Give two interpretations of the sentence using inclusive OR and exclusive OR:
 - Students who have taken calculus or intro to programming can take this class

Implication

- The conditional implication connective is →
- The biconditional implication connective is ↔
- These, too, are defined by truth tables

\boldsymbol{A}	В	$A \rightarrow B$
0	0	1
0	1	1
1	0	0
1	1	1

\boldsymbol{A}	В	A⇔B
0	0	1
0	1	0
1	0	0
1	1	1

Conditional implication

- A: A programming homework is due.
- B: It is Tuesday.
- A → B:
 - If a programming homework is due, then it must be Tuesday.
 - A programming homework is due only if it is Tuesday.
- Is this the same?
 - If it is Tuesday, then a programming homework is due.

Bi-conditional

- A: You can drive a car.
- B: You have a driver's license.
- A ← B
 - You can drive a car if and only if you have a driver's license (and vice versa).
- What if we said "if"?
- What if we said "only if"?

Compound Truth Tables

■ Truth tables can also be used to determine the truth values of compound statements, such as (AvB)∧(¬A) (fill this as an exercise)

\boldsymbol{A}	В	$\neg A$	$A \lor B$	$(A \lor B) \land (\neg A)$
0	0	1	0	0
0	1	1	1	1
1	0	0	1	0
1	1	0	1	0

Tautology and Contradiction

- A tautology is a compound proposition that is always true.
- A contradiction is a compound proposition that is always false.
- A contingency is neither a tautology nor a contradiction.
- A compound proposition is satisfiable if there is at least one assignment of truth values to the variables that makes the statement true.

Examples

А	¬А	Av¬A	A∧¬A
0	1	1	0
1	0	1	0

000

Result is always
true, no matter
what A is

Therefore, it is a tautology

Result is always false, no matter what A is

Therefore, it is a contradiction

Logical Equivalence

- Two compound propositions, p and q, are logically equivalent if p ↔ q is a tautology.
- Notation: p = q
- De Morgan's Laws:

$$\cdot \neg (p \land q) \equiv \neg p \lor \neg q$$

$$\cdot \neg (p \lor q) \equiv \neg p \land \neg q$$

How so? Let's build a truth table!

Prove
$$\neg(p \land q) \equiv \neg p \lor \neg q$$

p	q	¬р	¬q	(p × q)	¬(p ^ q)	¬p v ¬q
0	0	1	1	0	1	1
0	1	1	0	0	1	1
1	0	0	1	0	1	1
1	1	0	0	1	0	0

Show $\neg(p \lor q) \equiv \neg p \land \neg q$

p	q	¬р	¬q	(p v q)	¬(p vq)	¬p ^ ¬q
0	0	1	1	0	1	1
0	1	1	0	1	0	0
1	0	0	1	1	0	0
1	1	0	0	1	0	0

Other Equivalences

- Show $p \rightarrow q = \neg p \lor q$
- Show Distributive Law:
 - $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

Show $p \rightarrow q \equiv \neg p \vee q$

р	q	¬р	$p \rightarrow q$	¬p v q
0	0	1	1	1
0	1	1	1	1
1	0	0	0	0
1	1	0	1	1

Show $p \vee (q \wedge r) = (p \vee q) \wedge (p \vee r)$

p	q	r	q ^ r	pvq	pvr	p v (q ^ r)	(p v q) ^ (p v r)
0	0	0	0	0	0	0	0
0	0	1	0	0	1	0	0
0	1	0	0	1	0	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

More Equivalences

Equivalence	Name
$p \wedge T \equiv p$ $p \vee F \equiv p$	Identity
$p \land q = q \land p$ $p \lor q = q \lor p$	Commutative
$p \lor (p \land q) = p$ $p \land (p \lor q) = p$	Absorption

See Rosen for more.

Equivalences with Conditionals and Biconditionals

- Conditionals
- Biconditionals
 - $p \rightarrow q \equiv \neg p \lor q$ $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$ $p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$ $\neg (p \rightarrow q) \equiv p \land \neg q$ $\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$

Prove Biconditional Equivalence

р	q	¬q	$p \leftrightarrow q$	¬(p ↔ q)	p ↔ ¬q
0	0	1	1	0	0
0	1	0	0	1	1
1	0	1	0	1	1
1	1	0	1	0	0

Converse, Contrapositive, Inverse

- The converse of an implication p → q reverses the propositions: q → p
- The *inverse* of an implication $p \rightarrow q$ inverts both propositions: $\neg p \rightarrow \neg q$
- The *contrapositive* of an implication $p \rightarrow q$ reverses and inverts: $\neg q \rightarrow \neg p$

The converse and inverse are not logically equivalent to the original implication, but the contrapositive is, and may be easier to prove.

Predicate Logic

- Some statements cannot be expressed in propositional logic, such as:
 - All men are mortal.
 - Some trees have needles.
 - X > 3.
- Predicate logic can express these statements and make inferences on them.

Statements in Predicate Logic

P(x,y)

- Two parts:
 - A predicate P describes a relation or property.
 - Variables (x,y) can take arbitrary values from some domain.
- Still have two truth values for statements (T and F)
- When we assign values to x and y, then P has a truth value.

Example

- Let Q(x,y) denote "x=y+3".
 - What are truth values of:
- Let R(x,y) denote x beats y in Rock/Paper/ Scissors with 2 players with following rules:
 - Rock smashes scissors, Scissors cuts paper, Paper covers rock.
 - What are the truth values of:
 - R(rock, paper) ··· false
 - R(scissors, paper) ··· € true

Quantifiers

- Quantification expresses the extent to which a predicate is true over a set of elements.
- Two forms:
 - Universal ∀
 - Existential 3

Universal Quantifier

- P(x) is true for all values in the domain∀x∈D, P(x)
- For every x in D, P(x) is true.
- An element x for which P(x) is false is called a *counterexample*.
- Given P(x) as "x+1>x" and the domain of R, what is the truth value of:

$$\forall x P(x)$$

Example

- Let P(x) be that x>0 and x is in domain of R.
- Give a counterexample for:
 ∀x P(x)

Existential Quantifier

P(x) is true for <u>at least one value</u> in the domain.

 $\exists x \in D, P(x)$

- For some x in D, P(x) is true.
- Let the domain of x be "animals", M(x) be "x is a mammal" and E(x) be "x lays eggs", what is the truth value of:

Platypuses

 $\exists x (M(x) \land E(x))$

English to Logic

- Some person in this class has visited the Grand Canyon.
- Domain of x is the set of all persons
- C(x): x is a person in this class
- V(x): x has visited the Grand Canyon
- $\exists x(C(x) \land V(x))$

English to Logic

- For every one there is someone to love.
- Domain of x and y is the set of all persons
- L(x, y): x loves y
- ∀x∃y L(x,y)
- Is it necessary to explicitly include that x and y must be different people (i.e. x≠y)?
 - Just because x and y are different variable names doesn't mean that they can't take the same values

English to Logic

- No one in this class is wearing shorts and a ski parka.
- Domain of x is persons in this class
 - S(x): x is wearing shorts
 - P(x): x is wearing a ski parka
 - $\neg \exists x (S(x) \land P(x))$
- Domain of x is all persons
 - C(x): x belongs to the class
 - $\neg \exists x (C(x) \land S(x) \land P(x))$

Evaluating Expressions: Precedence and Variable Bindings

- Precedence:
 - Quantifiers and negation are evaluated before operators
 - Otherwise left to right
- Bound:
 - Variables can be given specific values or
 - Can be constrained by quantifiers

Predicate Logic Equivalences

Statements are *logically equivalent* iff they have the same truth value under all possible bindings.

For example:

$$\forall x (P(x) \land Q(x)) \equiv \forall x P(x) \land \forall x Q(x)$$

In English: "Given the domain of students in CS160, all students have passed M124 course (P) and are registered at CSU (Q); hence, all students have passed M124 and all students are registered at CSU.

Other Equivalences

• Someone likes skiing (P) or likes swimming (Q); hence, there exists someone who likes skiing or there exists someone who likes skiing.

$$\exists x (P(x) \lor Q(x)) \equiv \exists x P(x) \lor \exists x Q(x)$$

Not everyone likes to go to the dentist; hence there is someone who
does not like to go to the dentist.

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$

• There does not exist someone who likes to go to the dentist; hence everyone does not like to go to the dentist.

$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

Inference Rules (Rosen, Section 1.5)

TOPICS

- Logic Proofs
- ♦ via Truth Tables

Propositional Logic Proofs

- An *argument* is a sequence of propositions:
 - ♦ Premises (Axioms) are the first n propositions
 - ♦ Conclusion is the final proposition.
- An argument is *valid* if $(p_1 \land p_2 \land ... \land p_n) \rightarrow q$ is a tautology, given that p_i are the premises (axioms) and q is the conclusion.

Proof Method #1: Truth Table

- If the conclusion is true in the truth table whenever the premises are true, it is proved
 - Warning: when the premises are false, the conclusion my be true or false
- Problem: given *n* propositions, the truth table has 2ⁿ rows
 - Proof by truth table quickly becomes infeasible

3

Example Proof by Truth Table

$$s = ((p \vee q) \land (\neg p \vee r)) \rightarrow (q \vee r)$$

p	q	r	¬р	pvq	¬р v r	qvr	(p v q)∧ (¬p v r)	S
0	0	0	1	0	1	0	0	1
0	0	1	1	0	1	1	0	1
0	1	0	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1
1	0	0	0	1	0	0	0	1
1	0	1	0	1	1	1	1	1
1	1	0	0	1	0	1	0	1
1	1	1	0	1	1	1	1	1

Proof Method #2: Rules of Inference

- A rule of inference is a pre-proved relation: any time the left hand side (LHS) is true, the right hand side (RHS) is also true.
- Therefore, if we can match a premise to the LHS (by substituting propositions), we can assert the (substituted) RHS

į

Inference properties

- Inference rules are truth preserving
 - If the LHS is true, so is the RHS
- Applied to true statements
 - Axioms or statements proved from axioms
- Inference is syntactic
 - Substitute propositions
 - if *p* replaces *q* once, it replaces *q* everywhere
 - If p replaces q, it only replaces q
 - Apply rule

Example Rule of Inference

Modus Ponens

Modus Ponens
$$p$$

$$(p \land (p \rightarrow q)) \rightarrow q \qquad \qquad \frac{p \rightarrow q}{\therefore q}$$

$$\therefore q$$

$$p \rightarrow q$$

p	q	$p \rightarrow q$	$p \land (p \rightarrow q)$	$(p \land (p \rightarrow q)) \rightarrow q$
0	0	1	0	1
0	1	1	0	1
1	0	0	0	1
1	1	1	1	1

Rules of Inference

Rules of Inference

Modus Ponens

Modus Tollens

Hypothetical Syllogism

$$p \rightarrow q$$

$$\frac{\neg q}{p \rightarrow q}$$

$$\frac{p \to q}{q \to r}$$

$$\frac{q \to r}{p \to r}$$

Addition

Resolution

Disjunctive Syllogism

$$\frac{p}{p \vee q}$$

$$\frac{p \vee q}{\neg p \vee r}$$

$$\frac{\neg p \vee r}{q \vee r}$$

Simplification

Conjunction

$$\frac{p \wedge q}{p}$$

Logical Equivalences

Logical Equivalences

Idempotent Laws DeMorgan's Laws Distributive Laws

 $p \lor p \equiv p \qquad \neg (p \land q) \equiv \neg p \lor \neg q \qquad p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land p \equiv p \qquad \neg (p \lor q) \equiv \neg p \land \neg q \qquad p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

Double Negation Absorption Laws Associative Laws

 $\neg(\neg p) \equiv p \qquad p \lor (p \land q) \equiv p \qquad (p \lor q) \lor r \equiv p \lor (q \lor r)$ $p \land (p \lor q) \equiv p \qquad (p \land q) \land r \equiv p \land (q \land r)$

Commutative Laws Implication Laws Biconditional Laws

 $p \vee q \equiv q \vee p \hspace{1cm} p \rightarrow q \equiv \neg p \vee q \hspace{1cm} p \leftrightarrow q \equiv (p \rightarrow q) \wedge (q \rightarrow p)$

 $p \wedge q \equiv q \wedge p$ $p \rightarrow q \equiv \neg q \rightarrow \neg p$ $p \leftrightarrow q \equiv \neg q \leftrightarrow \neg p$

Discrete Michematics

Modus Ponens

If p, and p implies q, then q

Example:

p = it is sunny, q = it is hot

 $p \rightarrow q$, it is hot whenever it is sunny

"Given the above, if it is sunny, it must be hot".

. .

Modus Tollens

If not q and p implies q, then not p Example:

p = it is sunny, q = it is hot p \rightarrow q, it is hot whenever it is sunny "Given the above, if it is not hot, it cannot be sunny."

11

Hypothetical Syllogism

If p implies q, and q implies r, then p implies r

Example:

p = it is sunny, q = it is hot, r = it is dry $p \rightarrow q$, it is hot when it is sunny $q \rightarrow r$, it is dry when it is hot "Given the above, it must be dry when it is sunny"

Disjunctive Syllogism

If p or q, and not p, then q

Example:

p = it is sunny, q = it is hot

p v q, it is hot or sunny

"Given the above, if it not sunny, but it is hot or sunny, then it is hot"

13

Resolution

If p or q, and not p or r, then q or r Example:

p = it is sunny, q = it is hot, r = it is dry

p v q, it is sunny or hot

 $\neg p \lor r$, it is not hot or dry

"Given the above, if it is sunny or hot, but not sunny or dry, it must be hot or dry"

Not obvious!

. .

Addition

If p then p or q

Example:

p = it is sunny, q = it is hot

p v q, it is hot or sunny

"Given the above, if it is sunny, it must be hot or sunny"

Of course!

15

Simplification

If p and q, then p

Example:

p = it is sunny, q = it is hot

p ∧ q, it is hot and sunny

"Given the above, if it is hot and sunny, it must be hot"

Of course!

Conjunction

If p and q, then p and q

Example:

p = it is sunny, q = it is hot

 $p \wedge q$, it is hot and sunny

"Given the above, if it is sunny and it is hot, it must be hot and sunny"

Of course!

17

A Simple Proof

Given X, $X \rightarrow Y$, $Y \rightarrow Z$, $\neg Z \lor W$, prove W

	Step	Reason
1.	$x \rightarrow y$	Premise
2.	$y \rightarrow z$	Premise
3.	$x \rightarrow z$	Hypothetical Syllogism (1, 2)
4.	X	Premise
5.	Z	Modus Ponens (3, 4)
6.	$\neg z \lor w$	Premise
7.	w	Disjunctive Syllogism (5, 6)

A Simple Proof

"In order to sign up for CS161, I must complete CS160 and either M155 or M160. I have not completed M155 but I have completed CS161. Prove that I have completed M160."

STEP 1) Assign propositions to each statement.

A: CS161

■ B: CS160

C: M155

■ D: M160

19

Setup the proof

STEP 2) Extract axioms and conclusion.

- Axioms:
 - $A \rightarrow B \land (C \lor D)$
 - A
 - ¬C
- Conclusion:
 - D

--

Now do the Proof

STEP 3) Use inference rules to prove conclusion.

	Step	Reason
1.	$A \rightarrow B \land (C \lor D)$	Premise
2.	A	Premise
3.	B Λ (C v D)	Modus Ponens (1, 2)
4.	CvD	Simplification
5.	¬C	Premise
6.	D	Disjunctive Syllogism (4, 5)

21

Another Example

Given:

Conclude:

$$p \rightarrow q$$

$$\neg q \rightarrow s$$

$$\neg p \rightarrow r$$

$$r \rightarrow s$$

Proof of Another Example

	Step	Reason
1.	$p \rightarrow q$	Premise
2.	$\neg q \rightarrow \neg p$	Implication law (1)
3.	$\neg p \rightarrow r$	Premise
4.	$\neg q \rightarrow r$	Hypothetical syllogism (2, 3)
5.	$r \rightarrow s$	Premise
6.	$\neg q \rightarrow s$	Hypothetical syllogism (4, 5)

Proof using Rules of Inference <u>and</u> Logical Equivalences

Prove:
$$\neg(p \lor (\neg p \land q)) \equiv (\neg p \land \neg q)$$

$$\neg (p \lor (\neg p \land q)) \equiv \neg p \land \neg (\neg p \land q)$$
$$\equiv \neg p \land (\neg (\neg p) \lor \neg q)$$
$$\equiv \neg p \land (p \lor \neg q)$$

$$\equiv (\neg p \land p) \lor (\neg p \land \neg q)$$

$$= F \vee (\neg p \wedge \neg q)$$

$$= (\neg p \wedge \neg q) \vee F$$

$$= (\neg p \wedge \neg q)$$

_ .

Example of a Fallacy

q

$$(q \land (p \rightarrow q)) \rightarrow p \qquad \qquad \frac{p \rightarrow q}{p}$$

$$\therefore p$$

p	q	$p \rightarrow q$	$q \land (p \rightarrow q)$	$(q \land (p \rightarrow q)) \rightarrow p$
0	0	1	0	1
0	1	1	1	0
1	0	0	0	1
1	1	1	1	1

This is not a tautology, therefore the argument is not valid

Example of a fallacy

If q, and p implies q, then p

Example:

p = it is sunny, q = it is hot

 $p \rightarrow q$, if it is sunny, then it is hot

"Given the above, just because it is hot, does NOT necessarily mean it is sunny.