Lecture 1: Introduction, Sets and Functions
Lecturer: Lale Özkahya

Resources:
Kenneth Rosen, “Discrete Mathematics and App.”
cs.colostate.edu/ cs122/.Spring15/home_resources.php
Sets and Functions
(Rosen, Sections 2.1, 2.2, 2.3)

TOPICS

• Discrete math
• Set Definition
• Set Operations
• Tuples

Discrete Math at CSU (Rosen book)

- CS 160 or CS122
 - Sets and Functions
 - Propositions and Predicates
 - Inference Rules
 - Proof Techniques
 - Program Verification
- CS 161
 - Counting
 - Induction proofs
 - Recursion
- CS 200
 - Algorithms
 - Relations
 - Graphs
Why Study Discrete Math?

- Digital computers are based on discrete units of data (bits).
- Therefore, both a computer’s structure (circuits) and operations (execution of algorithms) can be described by discrete math.
- A generally useful tool for rational thought! Prove your arguments.

What is ‘discrete’?

- Consisting of distinct or unconnected elements, not continuous (calculus).
- Helps us in Computer Science:
 - What is the probability of winning the lottery?
 - How many valid Internet address are there?
 - How can we identify spam e-mail messages?
 - How many ways are there to choose a valid password on our computer system?
 - How many steps are need to sort a list using a given method?
 - How can we prove our algorithm is more efficient than another?
Uses for Discrete Math in Computer Science

- Advanced algorithms & data structures
- Programming language compilers & interpreters.
- Computer networks
- Operating systems
- Computer architecture
- Database management systems
- Cryptography
- Error correction codes
- Graphics & animation algorithms, game engines, etc.…
- *i.e.*, the whole field!

What is a set?

- *An unordered collection of unique objects*
 - \{1, 2, 3\} = \{3, 2, 1\} since sets are unordered.
 - \{a, b, c\} = \{b, c, a\} = \{c, b, a\} = \{c, a, b\} = \{a, c, b\}
 - \{2\}
 - \{on, off\}
 - \{\}
 - \{1, 2, 3\} = \{1, 1, 2, 3\} since elements in a set are unique
What is a set?

- Objects are called *elements* or *members* of the set.
- **Notation** \(\in \)
 - \(a \in B \) means "a is an element of set B."
 - Lower case letters for elements in the set.
 - Upper case letters for sets.
- If \(A = \{1, 2, 3, 4, 5\} \) and \(x \in A \), what are the possible values of \(x \)?

What is a set?

- **Infinite Sets** *(without end, unending)*
 - \(N = \{0, 1, 2, 3, \ldots\} \) is the Set of natural numbers.
 - \(Z = \{\ldots, -2, -1, 0, 1, 2, \ldots\} \) is the Set of integers.
 - \(Z^+ = \{1, 2, 3, \ldots\} \) is the Set of positive integers.
- **Finite Sets** *(limited number of elements)*
 - \(V = \{a, e, i, o, u\} \) is the Set of vowels.
 - \(O = \{1, 3, 5, 7, 9\} \) is the Set of odd #s \(< 10\).
 - \(F = \{a, 2, Fred, New\ Jersey\} \)
 - Boolean data type used frequently in programming
 - \(B = \{0, 1\} \)
 - \(B = \{false, true\} \)
 - Seasons = \{spring, summer, fall, winter\}
 - ClassLevel = \{Freshman, Sophomore, Junior, Senior\}
What is a set?

- Infinite vs. finite
 - If finite, then the number of elements is called the **cardinality**, denoted \(|S| \)
 - \(V = \{a, e, i, o, u\} \quad |V| = 5 \)
 - \(F = \{1, 2, 3\} \quad |F| = 3 \)
 - \(B = \{0, 1\} \quad |B| = 2 \)
 - \(S = \{\text{spring, summer, fall, winter}\} \quad |S| = 4 \)
 - \(A = \{a, a, a\} \quad |A| = 1 \)

Example sets

- Alphabet
- All characters
- Booleans: true, false
- Numbers:
 - \(\mathbb{N} = \{0, 1, 2, 3, \ldots\} \)
 Natural numbers
 - \(\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\} \)
 Integers
 - \(\mathbb{Q} = \{p/q \mid p \in \mathbb{Z}, q \in \mathbb{Z}, q \neq 0\} \)
 Rationals
 - \(\mathbb{R} \), Real Numbers

Note that:
- \(\mathbb{Q} \) and \(\mathbb{R} \) are not the same. \(\mathbb{Q} \) is a **subset** of \(\mathbb{R} \).
- \(\mathbb{N} \) is a subset of \(\mathbb{Z} \).
Example: Set of Bit Strings

- A bit string is a sequence of zero or more bits.
- A bit string's length is the number of bits in the string.
- A set of all bit strings s of length 3 is
 - $S = \{000, 001, 010, 011, 100, 101, 110, 111\}$

What is a set?

Defining a set:
- **Option 1:** List the members
- **Option 2:** Use a set builder that defines set of x that hold a certain characteristic
- **Notation:** $\{x \in S \mid \text{characteristic of } x\}$
- **Examples:**
 - $A = \{x \in Z^+ \mid x \text{ is prime}\}$ – set of all prime positive integers
 - $O = \{x \in N \mid x \text{ is odd and } x < 10000\}$ – set of odd natural numbers less than 10000
Equality

Two sets are *equal* if and only if (iff) they have the same elements.

We write \(A = B \) when for all elements \(x \), \(x \) is a member of the set \(A \) iff \(x \) is also a member of \(B \).

- **Notation:** \(\forall x \{ x \in A \iff x \in B \} \)
- For all values of \(x \), \(x \) is an element of \(A \) if and only if \(x \) is an element of \(B \)

Set Operations

- Operations that take as input sets and have as output sets
- **Operation1: Union**
 - The union of the sets \(A \) and \(B \) is the set that contains those elements that are either in \(A \) or in \(B \), or in both.
 - **Notation:** \(A \cup B \)
 - Example: union of \(\{1,2,3\} \) and \(\{1,3,5\} \) is?
Operation 2: Intersection

- The intersection of sets A and B is the set containing those elements in both A and B.
- Notation: \(A \cap B \)
- Example: \{1,2,3\} intersection \{1,3,5\} is?
- The sets are disjoint if their intersection produces the empty set.

Operation 3: Difference

- The difference of A and B is the set containing those elements that are in A but not in B.
- Notation: \(A - B \)
- Aka the complement of B with respect to A
- Example: \{1,2,3\} difference \{1,3,5\} is?
- Can you define Difference using union, complement and intersection?
Operation 3: Complement

- The complement of set A is the complement of A with respect to U, the universal set.
- Notation: \overline{A}
- Example: If N is the universal set, what is the complement of $\{1, 3, 5\}$?
 Answer: $\{0, 2, 4, 6, 7, 8, \ldots\}$

Venn Diagram

Graphical representation of set relations:

- A
- B
- U
Identities

Identity

\[A \cup \emptyset = A, A \cap U = A \]

Commutative

\[A \cup B = B \cup A, A \cap B = B \cap A \]

Associative

\[A \cup (B \cup C) = (A \cup B) \cup C, A \cap (B \cap C) = (A \cap B) \cap C \]

Distributive

\[A \cap (B \cup C) = (A \cap B) \cup (A \cap C), A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \]

Complement

\[A \cup \bar{A} = U, A \cap \bar{A} = \emptyset \]

Subset

The set A is said to be a subset of B iff for all elements x of A, x is also an element of B.

But not necessarily the reverse...

Notation: \(A \subseteq B \) \(\forall x \{ x \in A \rightarrow x \in B \} \)

Unidirectional implication

- \(\{1,2,3\} \subseteq \{1,2,3\} \)
- \(\{1,2,3\} \subseteq \{1,2,3,4,5\} \)
- What is the cardinality between sets if \(A \subseteq B \) ?

Answer: \(|A| \leq |B| \)
Subset

- **Subset** is when a set is contained in another set. Notation: \subseteq
- **Proper subset** is when A is a subset of B, but B is not a subset of A. Notation: \subset
 - $\forall x ((x \in A) \to (x \in B)) \land \exists x ((x \in B) \land (x \notin A))$
 - All values x in set A also exist in set B
 - … but there is at least 1 value x in B that is not in A
 - $A = \{1,2,3\}$, $B = \{1,2,3,4,5\}$
 - $A \subset B$, means that $|A| < |B|$.

Empty Set

- **Empty set** has no elements and therefore is the subset of all sets. $\{\}$ Alternate Notation: \emptyset
- Is $\emptyset \subseteq \{1,2,3\}$? - Yes!
- The cardinality of \emptyset is zero: $|\emptyset| = 0$.
- Consider the set containing the empty set: $\{\emptyset\}$.
- Yes, this is indeed a set: $\emptyset \in \{\emptyset\}$ and $\emptyset \subseteq \{\emptyset\}$.
Set Theory - Definitions and notation

• Quiz time:
 • $A = \{ x \in \mathbb{N} \mid x \leq 2000 \}$ What is $|A| = 2001$?
 • $B = \{ x \in \mathbb{N} \mid x \geq 2000 \}$ What is $|B| =$ Infinite!
 • Is $\{x\} \subseteq \{x\}$? Yes
 • Is $\{x\} \in \{x,\{x\}\}$? Yes
 • Is $\{x\} \subseteq \{x,\{x\}\}$? Yes
 • Is $\{x\} \in \{x\}$? No

Powerset

• The powerset of a set is the set containing all the subsets of that set.

• Notation: $P(A)$ is the powerset of set A.

• Fact: $|P(A)| = 2^{|A|}$.
 • If $A = \{ x, y \}$, then $P(A) = \{ \emptyset, \{x\}, \{y\}, \{x,y\} \}$
 • If $S = \{a, b, c\}$, what is $P(S)$?
Powerset example

- Number of elements in powerset = 2^n where $n = \# \text{elements in set}

- S is the set \{a, b, c\}, what are all the subsets of S?

- \{\} – the empty set

- \{a\}, \{b\}, \{c\} – one element sets

- \{a, b\}, \{a, c\}, \{b, c\} – two element sets

- \{a, b, c\} – the original set

and hence the power set of S has $2^3 = 8$ elements:

\[
\{\}, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{c, a\}, \{a, b, c\}
\]

Why sets?

- Programming - Recall a class... it is the set of all its possible objects.

- We can restrict the type of an object, which is the set of values it can hold.

- Example: Data Types

 - int set of integers (finite)
 - char set of characters (finite)

- Is \mathbb{N} the same as the set of integers in a computer?
Order Matters

- What if order matters?
 - Sets disregard ordering of elements
 - If order is important, we use *tuples*
 - If order matters, then are duplicates important too?

Tuples

- Order matters
- Duplicates matter
- Represented with parens ()
- Examples
 - \((1, 2, 3) \neq (3, 2, 1) \neq (1, 1, 2, 3, 3)\)
 - \((a_1, a_2, \ldots, a_n)\)
Tuples

- The **ordered n-tuple** \((a_1, a_2, ..., a_n)\) is the ordered collection that has \(a_1\) as its first element, \(a_2\) as its second element, ... and \(a_n\) as its \(n\)th element.

- An **ordered pair** is a 2-tuple.

- Two ordered pairs \((a,b)\) and \((c,d)\) are equal iff \(a=c\) and \(b=d\) \((e.g.\ NOT\ if\ a=d\ and\ b=c)\).

- A 3-tuple is a **triple**; a 5-tuple is a **quintuple**.

In programming?

- Let's say you're working with three integer values, first is the office room # of the employee, another is the # years they've worked for the company, and the last is their ID number.
 - Given the following set \{320, 13, 4392\}, how many years has the employee worked for the company?
 - What if the set was \{320, 13, 4392\}?
 - Doesn't \{320, 13, 4392\} = \{320, 4392, 13\}?
 - Given the 3-tuple \(320, 13, 4392\) can we identify the number of years the employee worked?
Why?

- Because ordered n-tuples are found as lists of arguments to functions/methods in computer programming.
- Create a mouse in a position (2, 3) in a maze: `new Mouse(2, 3)`
- Can we reverse the order of the parameters?
- From Java, `Math.min(1, 2)`

Cartesian Product of Two Sets

- Let A and B be sets. The Cartesian Product of A and B is the set of all ordered pairs (a,b), where \(b \in B \) and \(a \in A \)
- Cartesian Product is denoted \(A \times B \).
- Example: \(A = \{1,2\} \) and \(B = \{a,b,c\} \). What is \(A \times B \) and \(B \times A \)?
Cartesian Product

- $A = \{a, b\}$
- $B = \{1, 2, 3\}$
- $A \times B = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$
- $B \times A = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$

Functions in CS

- Function = mappings or transformations
- Examples
 - $f(x) = x$
 - $f(x) = x + 1$
 - $f(x) = 2x$
 - $f(x) = x^2$
Function Definitions

- A function f from sets A to B assigns exactly one element of B to each element of A.

- Example: the floor function

\[
\begin{array}{cccc}
2.4 & 1.6 & 5.0 & 4.8 & 2.3 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
1 & 2 & 3 & 4 & 5 \\
\end{array}
\]

$\text{Domain} = A$, $\text{Codomain} = B$

- Range: $\{1, 2, 4, 5\}$

What's the difference between codomain and range?

Range contains the codomain values that A maps to.

- In Programming
 - Function header definition example

\[
\text{int floor(float real)} \\
\{
\}
\]

- Domain = R
- Codomain = Z
Other Functions

- The identity function, f_{ID}, on A is the function where: $f_{ID}(x) = x$ for all x in A.

 $A = \{a, b, c\}$ and $f(a) = a, f(b) = b, f(c) = c$

- **Successor function**, $f_{\text{succ}}(x) = x+1$, on Z

 - $f(1) = 2$
 - $f(-17) = -16$
 - $f(a)$ Does NOT map to b

- **Predecessor function**, $f_{\text{pred}}(x) = x-1$, on Z

 - $f(1) = 0$
 - $f(-17) = -18$

- $\neg x$, also on R (or Z), maps a value into the negative of itself.

- $f_{SQ}(x) = x^2$, maps a value, x, into its square, x^2.

- The ceiling function: $\text{ceil}(2.4) = 3$.

Functions in CS

• What are ceiling and floor useful for?
 – Data stored on disk are represented as a string of bytes. Each byte = 8 bits. How many bytes are required to encode 100 bits of data?

Need smallest integer that is at least as large as 100/8

100/8 = 12.5
But we don’t work with ½ a byte.
So we need 13 bytes

What is NOT a function?

• Consider \(f_{\text{SQRT}}(x) \) from \(\mathbb{Z} \) to \(\mathbb{R} \).
• This does not meet the given definition of a function, because \(f_{\text{SQRT}}(16) = \pm 4 \).
• In other words, \(f_{\text{SQRT}}(x) \) assigns exactly one element of \(\mathbb{Z} \) to two elements of \(\mathbb{R} \).

No Way!
Say it ain’t so!!

Note that the convention is that \(\sqrt{x} \) is always the positive value.
\[f_{\text{SQRT}}(x) = \pm \sqrt{x} \]
1 to 1 Functions

• A function f is said to be *one-to-one* or *injective* if and only if $f(a) = f(b)$ implies that $a = b$ for all a and b in the domain of f.

• Example: the *square* function from \mathbb{Z}^+ to \mathbb{Z}^+

$\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
1 & 2 & 3 & 4 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
... & ... & 9 & 16 \\
\end{array}$

1 to 1 Functions, cont.

• Is *square* from \mathbb{Z} to \mathbb{Z} an example?
 – NO!
 – Because $f_{SQ}(-2) = 4 = f_{SQ}(+2)$!

• Is *floor* an example?
 INCONCEIVABLE!!

• Is *identity* an example?
 Unique at last!!

How *dare* they have the same codomain!
Increasing Functions

• A function f whose domain and co-domain are subsets of the set of real numbers is called increasing if $f(x) \leq f(y)$ and strictly increasing if $f(x) < f(y)$, whenever
 - $x < y$ and
 - x and y are in the domain of f.

• Is floor an example?

 \begin{align*}
 1.5 & < 1.7 \quad \text{and} \quad \text{floor}(1.5) = 1 = \text{floor}(1.7) \\
 1.2 & < 2.2 \quad \text{and} \quad \text{floor}(1.2) = 1 < 2 = \text{floor}(2.2)
 \end{align*}

• Is square an example?

 When mapping \mathbb{Z} to \mathbb{Z} or \mathbb{R} to \mathbb{R}:
 \begin{align*}
 \text{square}(-2) & = 4 > 1 = \text{square}(1) \quad \text{yet} \ -2 < 1
 \end{align*}

How is Increasing Useful?

• Most programs run longer with larger or more complex inputs.

• Consider looking up a telephone number in the paper directory...
Cartesian Products and Functions

- A function with multiple arguments maps a Cartesian product of inputs to a codomain.

- Example:
 - `Math.min` maps $\mathbb{Z} \times \mathbb{Z}$ to \mathbb{Z}

    ```java
    int minVal = Math.min( 23, 99 );
    ```
 - `Math.abs` maps \mathbb{Q} to \mathbb{Q}^+

    ```java
    int absVal = Math.abs( -23 );
    ```

Quiz Check

- Is the following an increasing function?

 $\mathbb{Z} \rightarrow \mathbb{Z}$ $f(x) = x + 5$

 $\mathbb{Z} \rightarrow \mathbb{Z}$ $f(x) = 3x - 1$