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Reverend Thomas Bayes (1701-1761),
studied logic and theology as an undergraduate student

at the University of Edinburgh from 1719-1722.
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Bayes’ Theorem

Bayes Theorem
Let A and B be two events from a (countable) sample space Ω,
and P : Ω→ [0,1] a probability distribution on Ω, such that
0 < P(A) < 1, and P(B) > 0. Then

P(A | B) =
P(B | A)P(A)

P(B | A)P(A) + P(B | A)P(A)

This may at first look like an obscure equation,
but as we shall see, it is useful....
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Proof of Bayes’ Theorem:
Let A and B be events such that 0 < P(A) < 1 and P(B) > 0.

By definition, P(A | B) = P(A∩B)
P(B)

. So: P(A ∩ B) = P(A | B)P(B).

Likewise, P(B ∩ A) = P(B | A)P(A).
Likewise, P(B ∩ A) = P(B | A)P(A). (Note that P(A) > 0.)
Note that P(A | B)P(B) = P(A ∩ B) = P(B | A)P(A). So,

P(A | B) =
P(B | A)P(A)

P(B)

Furthermore,

P(B) = P((B ∩ A) ∪ (B ∩ A)) = P(B ∩ A) + P(B ∩ A)

= P(B | A)P(A) + P(B | A)P(A)

So: P(A | B) =
P(B | A)P(A)

P(B | A)P(A) + P(B | A)P(A)
.
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Using Bayes’ Theorem

Problem: There are two boxes, Box B1 and Box B2.
Box B1 contains 2 red balls and 8 blue balls.
Box B2 contains 7 red balls and 3 blue balls.
Suppose Jane first randomly chooses one of two boxes B1 and
B2, with equal probability, 1/2, of choosing each.
Suppose Jane then randomly picks one ball out of the box she
has chosen (without telling you which box she had chosen), and
shows you the ball she picked.

Suppose you only see that the ball Jane picked is red.

Question: Given this information, what is the probability that
Jane chose box B1?
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Using Bayes’ Theorem, continued

Answer: The underlying sample space, Ω, is:

Ω = {(a,b) | a ∈ {1,2},b ∈ {red,blue}}
Let F = {(a,b) ∈ Ω | a = 1} be the event that box B1 was
chosen. Thus, F = Ω− F is the event that box B2 was chosen.

Let E = {(a,b) ∈ Ω | b = red} be the event that a red ball was
picked. Thus, E is the event that a blue ball was picked.

We are interested in computing the probability P(F | E).

We know that P(E | F ) = 2
10 and P(E | F ) = 7

10 .

We also know that: P(F ) = 1/2 and P(F ) = 1/2.
Can we compute P(F | E) based on this? Yes, using Bayes’.
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Using Bayes’ Theorem, continued
Note that, 0 < P(F ) < 1, and P(E) > 0.
By Bayes’ Theorem:

P(F | E) =
P(E | F )P(F )

P(E | F )P(F ) + P(E | F )P(F )

=
(2/10) ∗ (1/2)

(2/10) ∗ (1/2) + (7/10) ∗ (1/2)

=
2/20

2/20 + 7/20
=

2
9
.

Note that, without the information that a red ball was picked, the
probability that Jane chose Box B1 is P(F ) = 1/2.
But given the information, E , that a red ball was picked, the
probability becomes much less, changing to P(F | E) = 2/9.
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More on using Bayes’ Theorem: Baysian Spam Filters

Problem: Suppose it has been observed empirically that the
word “Congratulations” occurs in 1 out of 10 spam emails, but
that “Congratulations” only occurs in 1 out of 1000 non-spam
emails. Suppose it has also been observed empirically that
about 4 out of 10 emails are spam.

In Bayesian Spam Fitering, these empirical probabilities are
interpreted as genuine probabilities in order to help estimate the
probability that a incoming email is spam.
Suppose we get a new email that contains “Congratulations”.
Let C be the event that a new email contains “Congratulations”.
Let S be the event that a new email is spam.
We have observed C. We want to know P(S | C).
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Bayesian spam filtering example, continued

Bayesian solution: By Bayes’ Theorem:

P(S | C) =
P(C | S)P(S)

P(C | S)P(S) + P(C | S)P(S)

From the “empirical probabilities”, we get the estimates:
P(C | S) ≈ 1/10; P(C | S) ≈ 1/1000;

P(S) ≈ 4/10; P(S) ≈ 6/10.
So, we estimate that:

P(S | C) ≈ (1/10)(4/10)

(1/10)(4/10) + (1/1000) ∗ (6/10)

≈ .04
.0406

≈ 0.985

So, with “high probability”, such an email is spam. (However,
much caution is needed when interpreting such “probabilities”.)
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Generalized Bayes’ Theorem
Suppose that E ,F1, . . . ,Fn are events from sample space Ω, and
that P : Ω→ [0,1] is a probability distribution on Ω. Suppose
that ∪n

i=1Fj = Ω, and that Fi ∩ Fj = ∅ for all i 6= j .
Suppose P(E) > 0, and P(Fj) > 0 for all j . Then for all j :

P(Fj | E) =
P(E | Fj)P(Fj)∑n
i=1 P(E | Fi)P(Fi)

Suppose Jane first randomly chooses a box from among n
different boxes, B1, . . . ,Bn, and then randomly picks a coloured
ball out of the box she chose. (Each Box may have different
numbers of balls of each colour.)
We can use the Generalized Bayes’ Theorem to calculate the
probability that Jane chose box Bj (event Fj), given that the
colour of the ball that Jane picked is red (event E).
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Proof of Generalized Bayes’ Theorem: Very similar to
the proof of Bayes’ Theorem. Observe that:

P(Fj | E) =
P(Fj ∩ E)

P(E)
=

P(E | Fj)P(Fj)

P(E)

So, we only need to show that P(E) =
∑n

i=1 P(E | Fi)P(Fi).
But since

⋃
i Fi = Ω, and since Fi ∩ Fj = ∅ for all i 6= j :

P(E) = P(
⋃

i

(E ∩ Fi))

=
n∑

i=1

P(E ∩ Fi) (because Fi ’s are disjoint)

=
n∑

i=1

P(E | Fi)P(Fi).
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Expected Value (Expectation) of a Random Variable
Recall: A random variable (r.v.), is a function X : Ω→ R, that
assigns a real value to each outcome in a sample space Ω.

The expected value, or expectation, or mean, of a random
variable X : Ω→ R, denoted by E(X ), is defined by:

E(X ) =
∑

s∈Ω

P(s)X (s)

Here P : Ω→ [0,1] is the underlying probability distribution on Ω.

Question: Let X be the r.v. outputing the number that comes up
when a fair die is rolled. What is the expected value, E(X ), of X?

Answer: E(X ) =
6∑

i=1

1
6
· i =

21
6

=
7
2
.
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A bad way to calculate expectation

The definition of expectation, E(X ) =
∑

s∈Ω P(s)X (s), can be
used directly to calculate E(X ). But sometimes this is
horribly inefficient.

Example: Suppose that a biased coin, which comes up heads
with probability p each time, is flipped 11 times consecutively.
Question: What is the expected # of heads?

Bad way to answer this: Let’s try to use the definition of E(X )
directly, with Ω = {H,T}11. Note that |Ω| = 211 = 2048.
So, the sum

∑
s∈Ω P(s)X (s) has 2048 terms!

This is clearly not a practical way to compute E(X ).
Is there a better way? Yes.
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Better expression for the expectation
Recall P(X = r) denotes the probability P({s ∈ Ω | X (s) = r}).
Recall that for a function X : Ω→ R,

range(X ) = {r ∈ R | ∃s ∈ Ω such that X (s) = r}

Theorem: For a random variable X : Ω→ R,

E(X ) =
∑

r∈range(X)

P(X = r) · r

Proof: E(X ) =
∑

s∈Ω P(s)X (s), but for each r ∈ range(X ), if we
sum all terms P(s)X (s) such that X (s) = r , we get P(X = r) · r
as their sum. So, summing over all r ∈ range(X ) we get
E(X ) =

∑
r∈range(X) P(X = r) · r .

So, if |range(X )| is small, and if we can compute P(X = r), then
we need to sum a lot fewer terms to calculate E(X ).
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Expected # of successes in n Bernoulli trials
Theorem: The expected # of successes in n (independent)
Bernoulli trials, with probability p of success in each, is np.

Note: We’ll see later that we do not need independence for this.
First, a proof which uses mutual independence: For
Ω = {H,T}n, let X : Ω→ N count the number of successes in n
Bernoulli trials. Let q = (1− p). Then...

E(X ) =
n∑

k=0

P(X = k) · k

=
n∑

k=1

(
n
k

)
pkqn−k · k

The second equality holds because, assuming mutual
independence, P(X = k) is the binomial distribution b(k ; n,p).

Colin Stirling (Informatics) Discrete Mathematics (Chapter 7) Today 5 / 13



first proof continued

E(X ) =
n∑

k=0

P(X = k) · k =
n∑

k=1

(
n
k

)
pkqn−k · k =

=
n∑

k=1

n!

k !(n − k)!
pkqn−k · k =

n∑

k=1

n!

(k − 1)!(n − k)!
pkqn−k

=
n∑

k=1

n · (n − 1)!

(k − 1)!(n − k)!
pkqn−k = n

n∑

k=1

(
n − 1
k − 1

)
pkqn−k

= np
n∑

k=1

(
n − 1
k − 1

)
pk−1qn−k = np

n−1∑

j=0

(
n − 1

j

)
pjqn−1−j

= np(p + q)n−1

= np .
We will soon see this was an unnecessarily complicated proof.
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Expectation of a geometrically distributed r.v.
Question: A coin comes up heads with probability p > 0 each
time it is flipped. The coin is flipped repeatedly until it comes up
heads. What is the expected number of times it is flipped?

Note: This simply asks: “What is the expected value E(X ) of a
geometrically distributed random variable with parameter p?”
Answer: Ω = {H,TH,TTH, . . .}, and P(T k−1H) = (1− p)k−1p.
And clearly X (T k−1H) = k . Thus E(X ) =

∑
s∈Ω P(s)X (s) =

E(X ) =
∞∑

k=1

(1− p)k−1p · k = p
∞∑

k=1

k(1− p)k−1 = p · 1
p2 =

1
p
.

This is because:
∑∞

k=1 k · xk−1 = 1
(1−x)2 , for |x | < 1.

Example: If p = 1/4, then the expected number of coin tosses
before we see Heads for the first time is 4.
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Linearity of Expectation (VERY IMPORTANT)
Theorem (Linearity of Expectation): For any random variables
X ,X1, . . . ,Xn on Ω, E(X1 + X2 + . . .+ Xn) = E(X1) + . . .+ E(Xn).

Furthermore, for any a,b ∈ R,
E(a X + b) = a E(X ) + b.

(In other words, the expectation function is a linear function.)

Proof:

E(
n∑

i=1

Xi) =
∑

s∈Ω

P(s)
n∑

i=1

Xi(s) =
n∑

i=1

∑

s∈Ω

P(s)Xi(s) =
n∑

i=1

E(Xi).

E(aX + b) =
∑

s∈Ω

P(s)(aX (s) + b) = (a
∑

s∈Ω

P(s)X (s)) + b
∑

s∈Ω

P(s)

= aE(X ) + b.
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Using linearity of expectation
Theorem: The expected # of successes in n (not necessarily
independent) Bernoulli trials, with probability p of success in
each trial, is np.

Easy proof, via linearity of expectation: For Ω = {H,T}n, let
X be the r.v. counting the expected number of successes, and
for each i , let Xi : Ω→ R be the binary r.v. defined by:

Xi((s1, . . . , sn)) =

{
1 if si = H
0 if si = T

Note that E(Xi) = p · 1 + (1− p) · 0 = p , for all i ∈ {1, . . . ,n}.
Also, clearly, X = X1 + X2 + . . . + Xn , so:

E(X ) = E(X1 + . . . + Xn) =
n∑

i=1

E(Xi) = np.

Note: this holds even if the n coin tosses are totally correlated.
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Using linearity of expectation, continued
Hatcheck problem: At a restaurant, the hat-check person
forgets to put claim numbers on hats.
n customers check their hats in, and they each get a random hat
back when they leave the restuarant.
What is the expected number, E(X ), of people who get their
correct hat back?

Answer: Let Xi be the r.v. that is 1 if the i ’th customer gets their
hat back, and 0 otherwise.
Clearly, E(X ) = E(

∑
i Xi).

Furthermore, E(Xi) = P(i ’th person gets its hat back) = 1/n.
Thus, E(X ) = n · (1/n) = 1.

This would be much harder to prove without using the linearity
of expectation.
Note: E(X ) doesn’t even depend on n in this case.
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Independence of Random Variables
Definition: Two random variables, X and Y , are called
independent if for all r1, r2 ∈ R:

P(X = r1 and Y = r2) = P(X = r1) · P(Y = r2)

Example: Two die are rolled. Let X1 be the number that comes
up on die 1, and let X2 be the number that comes up on die 2.
Then X1 and X2 are independent r.v.’s.

Theorem: If X and Y are independent random variables on the
same space Ω. Then

E(XY ) = E(X )E(Y )

We will not prove this in class. (The proof is a simple
re-arrangement of the sums in the definition of expectation. See
Rosen’s book for a proof.)
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Variance

The “variance” and “standard deviation” of a r.v., X , give us ways
to measure (roughly) “on average, how far off the value of the
r.v. is from its expectation”.

Variance and Standard Deviation
Definition: For a random variable X on a sample space Ω, the
variance of X , denoted by V (X ), is defined by:

V (X ) = E((X − E(X ))2) =
∑

s∈Ω

(X (s)− E(X ))2P(s)

The standard deviation of X , denoted σ(X ), is defined by

σ(X ) =
√

V (X )
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Example, and a useful identity for variance
Example: Consider the r.v., X , such that P(X = 0) = 1, and the
r.v. Y , such that P(Y = −10) = P(Y = 10) = 1/2.
Then E(X ) = E(Y ) = 0, but V (X ) = 0 = σ(X ), whereas
V (Y ) = 100 and σ(Y ) = 10.

Theorem: For any random variable X ,

V (X ) = E(X 2)− E(X )2

Proof:
V (X ) = E((X − E(X ))2)

= E(X 2 − 2XE(X ) + E(X )2)

= E(X 2)− 2E(X )E(X ) + E(X )2

= E(X 2)− E(X )2.
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