Lecture 5: Asymptotic Notation
Lecturer: Lale Özkahya

Resources:
Kenneth Rosen, “Discrete Mathematics and App.”
http://www.inf.ed.ac.uk/teaching/courses/dmmr
The growth of function

Given functions $f : \mathbb{N} \rightarrow \mathbb{R}$ or $f : \mathbb{R} \rightarrow \mathbb{R}$. Analyzing how fast a function grows

- Comparing two functions
- Comparing the efficiently of different algorithms that solve the same problem
- Applications in number theory (Chapter 4) and combinatorics (Chapters 6 and 8)
Let $f, g : \mathbb{N} \rightarrow \mathbb{R}$ or $f, g : \mathbb{R} \rightarrow \mathbb{R}$. We say that f is $O(g)$ if there is a constant k and a positive constant C such that

$$\forall x > k. \ |f(x)| \leq C|g(x)|$$

- We say “f is big-O of g” or “g asymptotically dominates f”
- C and k are called witnesses to the relationship between f and g. Only one pair of witnesses is needed. (One pair implies many pairs: one can always make k or C larger)
- Common abuses of notation: “$f(x)$ is big-O of $g(x)$” or “$f(x) = O(g(x))$”. This is not strictly true, since big-O refers to functions and not their values, and the equality doesn’t hold
- $O(g)$ is the class of all functions f that satisfy the condition above. So it would be formally correct to write $f \in O(g)$
Examples

- \(f(x) = a_n x^n + a_{n1} x^{n1} + \cdots + a_1 x + a_0 \) is \(O(x^n) \)
- \(1 + 2 + \cdots + n \) is \(O(n^2) \)
- \(\log(n) \) is \(O(n) \)
- \(n! = 1 \times 2 \times \cdots \times n \) is \(O(n^n) \)
- \(\log(n!) \) is \(O(n \log(n)) \)
Useful big-\(O\) estimates

- if \(d > c > 1\), then \(n^c\) is \(O(n^d)\), but \(n^d\) is not \(O(n^c)\)
- if \(b > 1\) and \(c\) and \(d\) are positive, then \((\log_b(n))^c\) is \(O(n^d)\), but \(n^d\) is not \(O((\log_b(n))^c)\)
- if \(b > 1\) and \(d\) is positive, then \(n^d\) is \(O(b^n)\), but \(b^n\) is not \(O(n^d)\)
- if \(c > b > 1\), then \(b^n\) is \(O(c^n)\), but \(c^n\) is not \(O(b^n)\)
- if \(f_1\) is \(O(g_1)\) and \(f_2\) is \(O(g_2)\) then \((f_1 + f_2)\) is \(O(\max(|g_1|, |g_2|))\)
- if \(f_1\) is \(O(g_1)\) and \(f_2\) is \(O(g_2)\) then \((f_1 \times f_2)\) is \(O(g_1 \times g_2)\)
Big-Omega notation

Definition

Let $f, g : \mathbb{R} \rightarrow \mathbb{R}$. We say that f is $\Omega(g)$ if there is a constant k and a positive constant C such that

$$\forall x > k. \ |f(x)| \geq C|g(x)|$$

- We say “f is big-Omega of g”. The constants “C” and “k” are called witnesses to the relationship between f and g
- Big-O gives an upper bound on the growth of a function, while Big-Omega gives a lower bound
- Big-Omega tells us that a function grows at least as fast as another
- Similar abuse of notation as for big-O
- f is $\Omega(g)$ if and only if g is $O(f)$ (Prove this by using the definitions of O and Ω)
Big-Theta notation

Definition

Let $f, g : \mathbb{R} \to \mathbb{R}$. We say that f is $\Theta(g)$ iff f is $O(g)$ and f is $\Omega(g)$

- We say “f is big-Theta of g” and also “f is of order g” and also “f and g are of the same order”
- f is $\Theta(g)$ iff there exists constants C_1, C_2 and k such that $C_1|g(x)| \leq |f(x)| \leq C_2|g(x)|$ if $x > k$. This follows from the definitions of big-O and big-Ω.
Example

Show that the sum $1 + 2 + \cdots + n$ of the first n positive integers is $\Theta(n^2)$. Solution: Let $f(n) = 1 + 2 + \cdots + n$. We have previously shown that $f(n)$ is $O(n^2)$.

To show that $f(n)$ is $\Omega(n^2)$, we need a positive constant C such that $f(n) > Cn^2$ for sufficiently large n.

Summing only the terms greater than $n/2$ we obtain the inequality:

$$1 + 2 + \cdots + n \geq \lceil n/2 \rceil + (\lceil n/2 \rceil + 1) + \cdots + n$$
$$\geq \lceil n/2 \rceil + \lceil n/2 \rceil + \cdots + \lceil n/2 \rceil$$
$$= (n - \lceil n/2 \rceil + 1)\lceil n/2 \rceil$$
$$\geq (n/2)(n/2)$$
$$= n^2/4$$

Taking $C = 1/4$, $f(n) > Cn^2$ for all positive integers n. Hence, $f(n)$ is $\Omega(n^2)$, and we can conclude that $f(n)$ is $\Theta(n^2)$.

Complexity of algorithms

- Given an algorithm, how efficient is this algorithm for solving a problem given input of a particular size? How much time does this algorithm use to solve a problem? How much computer memory does this algorithm use to solve a problem?
- We measure time complexity in terms of the number of operations an algorithm uses and use big-O and big-Theta notation to estimate the time complexity.
- Compare the efficiency of different algorithms for the same problem.
- We focus on the worst-case time complexity of an algorithm. Derive an upper bound on the number of operations an algorithm uses to solve a problem with input of a particular size. (As opposed to the average-case complexity)
- Here: Ignore implementation details and hardware properties \rightarrow See courses on algorithms and complexity.
Worst-Case complexity of linear search

procedure linear_search\((x, a_1, \ldots, a_n) \)
\[
i := 1 \\
\text{while } i \leq n \text{ and } x \neq a_i \\
\quad i := i + 1 \\
\text{if } i \leq n \\
\quad \text{then location} := i \\
\text{else location} := 0 \\
\text{return location}
\]

Count the number of comparisons:

- at each step two comparisons are made; \(i \leq n \) and \(x \neq a_i \)
- to end the loop, one comparison \(i \leq n \) is made
- after the loop, one more \(i \leq n \) comparison is made

If \(x = a_i \), \(2i + 1 \) comparisons are used. If \(x \) is not on the list, \(2n + 1 \) comparisons are made and then an additional comparison is used to exit the loop. So, in the worst case \(2n + 2 \) comparisons are made. Hence, the complexity is \(\Theta(n) \)
Average-Case complexity of linear search

For many problems, determining the average-case complexity is very difficult. (And often not very useful, since the real distribution of input cases does not match the assumptions.) However, for linear search the average-case is easy. Assume the element is in the list and that the possible positions are equally likely. By the argument on the previous slide, if \(x = a_i \), the number of comparisons is \(2i + 1 \). Hence, the average-case complexity of linear search is

\[
\frac{1}{n} \sum_{i=1}^{n} 2i + 1 = n + 2
\]

Which is \(\Theta(n) \)
Worst-Case complexity of binary search

procedure binary_search(x, a_1, ..., a_n)
 Assume
 i := 1
 j := m
 while i < j
 m := \lfloor (i + j)/2 \rfloor
 if x > a_m then i := m + 1 else j := m
 if x = a_i then location := i else location := 0
 return location

(for simplicity) n = 2^k elements. Note that k = log_2 n. Two comparisons are made at each stage; i < j, and x > a_m. At the first iteration the size of the list is 2^k and after the first iteration it is 2^{k-1}. Then 2^{k-2} and so on until the size of the list is 2^1 = 2. At the last step, a comparison tells us that the size of the list is the size is 2^0 = 1 and the element is compared with the single remaining element. Hence, at most 2k + 2 = 2log_2 n + 2 comparisons are made. \Theta(log n)