Lecture 5: Arithmetic Modulo m, Primes and Greatest Common Divisors

Lecturer: Lale Özkahya

Resources:
Kenneth Rosen, “Discrete Mathematics and App.”
http://www.inf.ed.ac.uk/teaching/courses/dmmr
Division

Definition

If a and b are integers with $a \neq 0$, then a divides b, written $a \mid b$, if there exists an integer c such that $b = ac$.

b is a multiple of a and a is a factor of b
Division

Definition

If a and b are integers with $a \neq 0$, then a divides b, written $a | b$, if there exists an integer c such that $b = ac$.

b is a multiple of a and a is a factor of b

$3 | (-12) \quad 3 | 0 \quad 3 \nmid 7$ (where \nmid “not divides”)
Division

Definition

If a and b are integers with $a \neq 0$, then a divides b, written $a|b$, if there exists an integer c such that $b = ac$.

b is a multiple of a and a is a factor of b

$3 | (-12) \quad 3 | 0 \quad 3 \nmid 7$ (where \nmid “not divides”)

Theorem

1. If $a|b$ and $a|c$, then $a|(b + c)$
2. If $a|b$, then $a|bc$
3. If $a|b$ and $b|c$, then $a|c$
Division

Definition

If a and b are integers with $a \neq 0$, then a divides b, written $a|b$, if there exists an integer c such that $b = ac$.

b is a multiple of a and a is a factor of b

$3 \mid (-12) \quad 3 \mid 0 \quad 3 \not{\mid} 7$ (where $\not{\mid}$ “not divides”)

Theorem

1. If $a|b$ and $a|c$, then $a|(b + c)$
2. If $a|b$, then $a|bc$
3. If $a|b$ and $b|c$, then $a|c$

Proof.

We just prove the first; the others are similar. Assume $a|b$ and $a|c$. So, there exists integers d, e such that $b = da$ and $c = ea$. So $b + c = da + ea = (d + e)a$ and, therefore, $a|(b + c)$.

Colin Stirling (Informatics) Discrete Mathematics (Chap 4) Today 2 / 19
Theorem

If \(a \) is an integer and \(d \) a positive integer, then there are unique integers \(q \) and \(r \), with \(0 \leq r < d \), such that \(a = dq + r \).
Division algorithm (not really an algorithm!)

Theorem

If a is an integer and d a positive integer, then there are unique integers q and r, with $0 \leq r < d$, such that $a = dq + r$

q is quotient and r the remainder; $q = a \div d$ and $r = a \mod d$
Division algorithm (not really an algorithm!)

Theorem

If a is an integer and d a positive integer, then there are unique integers q and r, with $0 \leq r < d$, such that $a = dq + r$

q is quotient and r the remainder; $q = a \div d$ and $r = a \mod d$

$a = 102$ and $d = 12 \quad q = 8$ and $r = 6 \quad 102 = 12 \cdot 8 + 6$
Theorem

If a is an integer and d a positive integer, then there are unique integers q and r, with $0 \leq r < d$, such that $a = dq + r$

q is quotient and r the remainder; $q = a \div d$ and $r = a \mod d$

$a = 102$ and $d = 12$ $q = 8$ and $r = 6$ $102 = 12 \cdot 8 + 6$

$a = -14$ and $d = 6$ $q = -3$ and $r = 4$ $-14 = 6 \cdot (-3) + 4$
Division algorithm (not really an algorithm!)

Theorem

If a is an integer and d a positive integer, then there are unique integers q and r, with $0 \leq r < d$, such that $a = dq + r$

q is quotient and r the remainder; $q = a \text{ div } d$ and $r = a \text{ mod } d$

$a = 102$ and $d = 12$ \hspace{1em} $q = 8$ and $r = 6$ \hspace{1em} $102 = 12 \cdot 8 + 6$

$a = -14$ and $d = 6$ \hspace{1em} $q = -3$ and $r = 4$ \hspace{1em} $-14 = 6 \cdot (-3) + 4$

Proof.

Let q be the largest integer such that $dq \leq a$; then $r = a - dq$ and so, $a = dq + r$ for $0 \leq r < d$: if $r \geq d$ then $d(q + 1) \leq a$ which contradicts that q is largest. So, there is at least one such q and r. Assume that there is more than one: $a = dq_1 + r_1$, $a = dq_2 + r_2$, and $(q_1, r_1) \neq (q_2, r_2)$. If $q_1 = q_2$ then $r_1 = a - dq_1 = a - dq_2 = r_2$. Assume $q_1 \neq q_2$; now we obtain a contradiction; as $dq_1 + r_1 = dq_2 + r_2$, $d = (r_1 - r_2)/(q_2 - q_1)$ which is impossible because $r_1 - r_2 < d$. \hfill \square
Congruent modulo m relation

Definition

If a and b are integers and m is a positive integer, then a is congruent to b modulo m, written $a \equiv b \pmod{m}$, iff $m \mid (a - b)$

- $17 \equiv 5 \pmod{6}$ because 6 divides $17 - 5 = 12$
Definition

If \(a \) and \(b \) are integers and \(m \) is a positive integer, then \(a \) is congruent to \(b \) modulo \(m \), written \(a \equiv b \pmod{m} \), iff \(m \mid (a - b) \)

- \(17 \equiv 5 \pmod{6} \) because 6 divides \(17 - 5 = 12 \)
- \(-17 \not\equiv 5 \pmod{6} \) because 6 \(\nmid (-22) \)
Congruent modulo m relation

Definition

If a and b are integers and m is a positive integer, then a is congruent to b modulo m, written $a \equiv b \pmod{m}$, iff $m|(a - b)$

- $17 \equiv 5 \pmod{6}$ because 6 divides $17 - 5 = 12$
- $-17 \not\equiv 5 \pmod{6}$ because 6 does not divide -22
- $-17 \equiv 1 \pmod{6}$
Congruent modulo m relation

Definition

If a and b are integers and m is a positive integer, then a is congruent to b modulo m, written $a \equiv b \pmod{m}$, iff $m|(a - b)$

- $17 \equiv 5 \pmod{6}$ because 6 divides $17 - 5 = 12$
- $-17 \not\equiv 5 \pmod{6}$ because $6 \nmid (-22)$
- $-17 \equiv 1 \pmod{6}$
- $24 \not\equiv 14 \pmod{6}$ because $6 \nmid 10$
Congruence is an equivalence relation

Theorem

\[a \equiv b \pmod{m} \text{ iff } a \mod m = b \mod m \]
Theorem

\(a \equiv b \pmod{m} \) iff \(a \mod m = b \mod m \)

Proof.

Assume \(a \equiv b \pmod{m} \); so \(m \mid (a - b) \). If \(a = q_1 m + r_1 \) and \(b = q_2 m + r_2 \) where \(0 \leq r_1 < m \) and \(0 \leq r_2 < m \) it follows that \(r_1 = r_2 \) and so \(a \mod m = b \mod m \). If \(a \mod m = b \mod m \) then \(a \) and \(b \) have the same remainder so \(a = q_1 m + r \) and \(b = q_2 m + r \); therefore \(a - b = (q_1 - q_2)m \), and so \(m \mid (a - b) \).
Congruence is an equivalence relation

Theorem

\(a \equiv b \pmod{m} \) iff \(a \mod m = b \mod m \)

Proof.

Assume \(a \equiv b \pmod{m} \); so \(m | (a - b) \). If \(a = q_1 m + r_1 \) and \(b = q_2 m + r_2 \) where \(0 \leq r_1 < m \) and \(0 \leq r_2 < m \) it follows that \(r_1 = r_2 \) and so \(a \mod m = b \mod m \). If \(a \mod m = b \mod m \) then \(a \) and \(b \) have the same remainder so \(a = q_1 m + r \) and \(b = q_2 m + r \); therefore \(a - b = (q_1 - q_2)m \), and so \(m | (a - b) \).

\[\equiv \pmod{m} \] is an equivalence relation on integers
A simple theorem of congruence

Theorem

\[a \equiv b \ (\text{mod} \ m) \iff \text{there is an integer } k \text{ such that } a = b + km \]

Proof.

If \(a \equiv b \ (\text{mod} \ m) \), then by the definition of congruence \(m \mid (a - b) \).

Hence, there is an integer \(k \) such that \(a - b = km \) and equivalently \(a = b + km \).

If there is an integer \(k \) such that \(a = b + km \), then \(km = a - b \). Hence, \(m \mid (a - b) \) and \(a \equiv b \ (\text{mod} \ m) \).
A simple theorem of congruence

Theorem

\[a \equiv b \pmod{m} \text{ iff there is an integer } k \text{ such that } a = b + km \]

Proof.

If \(a \equiv b \pmod{m} \), then by the definition of congruence \(m | (a - b) \). Hence, there is an integer \(k \) such that \(a - b = km \) and equivalently \(a = b + km \). If there is an integer \(k \) such that \(a = b + km \), then \(km = a - b \). Hence, \(m | (a - b) \) and \(a \equiv b \pmod{m} \).
Theorem

If \(a \equiv b \pmod{m} \) and \(c \equiv d \pmod{m} \), then \(a + c \equiv b + d \pmod{m} \) and \(ac \equiv bd \pmod{m} \).
Theorem

If $a \equiv b \ (\text{mod} \ m)$ and $c \equiv d \ (\text{mod} \ m)$, then $a + c \equiv b + d \ (\text{mod} \ m)$ and $ac \equiv bd \ (\text{mod} \ m)$

Proof.

Since $a \equiv b \ (\text{mod} \ m)$ and $c \equiv d \ (\text{mod} \ m)$, by the previous theorem, there are integers s and t with $b = a + sm$ and $d = c + tm$. Therefore,

$b + d = (a + sm) + (c + tm) = (a + c) + m(s + t)$, and

$bd = (a + sm)(c + tm) = ac + m(at + cs + stm)$. Hence,

$a + c \equiv b + d \ (\text{mod} \ m)$ and $ac \equiv bd \ (\text{mod} \ m)$
Congruences of sums, differences, and products

Theorem

If \(a \equiv b \pmod{m} \) and \(c \equiv d \pmod{m} \), then \(a + c \equiv b + d \pmod{m} \) and \(ac \equiv bd \pmod{m} \)

Proof.

Since \(a \equiv b \pmod{m} \) and \(c \equiv d \pmod{m} \), by the previous theorem, there are integers \(s \) and \(t \) with \(b = a + sm \) and \(d = c + tm \). Therefore, \(b + d = (a + sm) + (c + tm) = (a + c) + m(s + t) \), and \(bd = (a + sm)(c + tm) = ac + m(at + cs + stm) \). Hence, \(a + c \equiv b + d \pmod{m} \) and \(ac \equiv bd \pmod{m} \)

Corollary

- \((a + b) \pmod{m} = ((a \pmod{m}) + (b \pmod{m})) \pmod{m}\)
- \(ab \pmod{m} = ((a \pmod{m})(b \pmod{m})) \pmod{m}\)
Arithmetic modulo m

- $\mathbb{Z}_m = \{0, 1, \ldots, m - 1\}$
Arithmetic modulo m

- $\mathbb{Z}_m = \{0, 1, \ldots, m - 1\}$
- $+_m$ on \mathbb{Z}_m is $a+_m b = (a + b) \mod m$

Find $7 +_{11} 11$ and $-7 \cdot_{11} 9$

$7 +_{11} 11 = (7 + 9) \mod 11 = 16 \mod 11 = 5$

$-7 \cdot_{11} 9 = (-7 \cdot 9) \mod 11 = -63 \mod 11 = 3$
Arithmetic modulo \(m \)

- \(\mathbb{Z}_m = \{0, 1, \ldots, m - 1\} \)
- \(+_m \) on \(\mathbb{Z}_m \) is \(a +_m b = (a + b) \mod m \)
- \(\cdot_m \) on \(\mathbb{Z}_m \) is define \(a \cdot_m b = (a \cdot b) \mod m \)

- \(7 + 11 \equiv 5 \pmod{11} \)
- \(-7 \cdot 11 \equiv 3 \pmod{11} \)
Arithmetic modulo m

- $\mathbb{Z}_m = \{0, 1, \ldots, m - 1\}$

- $+_m$ on \mathbb{Z}_m is $a +_m b = (a + b) \mod m$

- \cdot_m on \mathbb{Z}_m is define $a \cdot_m b = (a \cdot b) \mod m$

- Find $7 +_{11} 9$ and $-7 \cdot_{11} 9$

\[7 +_{11} 9 = (7 + 9) \mod 11 = 16 \mod 11 = 5\]
\[-7 \cdot_{11} 9 = (-7 \cdot 9) \mod 11 = -63 \mod 11 = 3\]
Arithmetic modulo m

- $\mathbb{Z}_m = \{0, 1, \ldots, m - 1\}$
- $+_m$ on \mathbb{Z}_m is $a +_m b = (a + b) \mod m$
- \cdot_m on \mathbb{Z}_m is define $a \cdot_m b = (a \cdot b) \mod m$

Find $7 +_{11} 9$ and $-7 \cdot_{11} 9$

- $7 +_{11} 9 = (7 + 9) \mod 11 = 16 \mod 11 = 5$
Arithmetic modulo m

- $\mathbb{Z}_m = \{0, 1, \ldots, m-1\}$
- $+_m$ on \mathbb{Z}_m is $a+_m b = (a + b) \mod m$
- \cdot_m on \mathbb{Z}_m is defined as $a \cdot_m b = (a \cdot b) \mod m$

Find $7 +_{11} 9$ and $-7 \cdot_{11} 9$

- $7 +_{11} 9 = (7 + 9) \mod 11 = 16 \mod 11 = 5$
- $-7 \cdot_{11} 9 = (-7 \cdot 9) \mod 11 = -63 \mod 11 = 3$
Primes

Definition
A positive integer \(p > 1 \) is called prime iff the only positive factors of \(p \) are 1 and \(p \). Otherwise it is called composite.
Primes

Definition
A positive integer \(p > 1 \) is called prime iff the only positive factors of \(p \) are 1 and \(p \). Otherwise it is called composite.

Theorem (Fundamental Theorem of Arithmetic)
Every positive integer greater than 1 can be written uniquely as a prime or as the product of its prime factors, written in order of nondecreasing size.

\[765 = 3 \cdot 3 \cdot 5 \cdot 17 = 3^2 \cdot 5 \cdot 17 \]
Primes

Definition
A positive integer $p > 1$ is called prime iff the only positive factors of p are 1 and p. Otherwise it is called composite.

Theorem (Fundamental Theorem of Arithmetic)
Every positive integer greater than 1 can be written uniquely as a prime or as the product of its prime factors, written in order of nondecreasing size.

$765 = 3 \cdot 3 \cdot 5 \cdot 17 = 3^2 \cdot 5 \cdot 17$
Theorem (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a prime or as the product of its prime factors, written in order of nondecreasing size.
Proof of fundamental theorem

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a prime or as the product of its prime factors, written in order of nondecreasing size.

Showed by induction if $n > 1$ is an integer then n can be written as a product of primes.
Proof of fundamental theorem

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a prime or as the product of its prime factors, written in order of nondecreasing size.

Showed by induction if $n > 1$ is an integer then n can be written as a product of primes.

Missing is uniqueness.
Proof of fundamental theorem

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a prime or as the product of its prime factors, written in order of nondecreasing size

Showed by induction if \(n > 1 \) is an integer then \(n \) can be written as a product of primes

Missing is uniqueness

Lemma if \(p \) is prime and \(p|a_1a_2\ldots a_n \) where each \(a_i \) is an integer, then \(p|a_j \) for some \(1 \leq j \leq n \)
Proof of fundamental theorem

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a prime or as the product of its prime factors, written in order of nondecreasing size

Showed by induction if \(n > 1 \) is an integer then \(n \) can be written as a product of primes

Missing is uniqueness

Lemma if \(p \) is prime and \(p | a_1 a_2 \ldots a_n \) where each \(a_i \) is an integer, then \(p | a_j \) for some \(1 \leq j \leq n \)

By induction too
Theorem (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a prime or as the product of its prime factors, written in order of nondecreasing size.

Showed by induction if \(n > 1 \) is an integer then \(n \) can be written as a product of primes.

Missing is uniqueness.

Lemma if \(p \) is prime and \(p | a_1 a_2 \ldots a_n \) where each \(a_i \) is an integer, then \(p | a_j \) for some \(1 \leq j \leq n \).

By induction too.

Now result follows.
There are infinitely many primes

Lemma

Every natural number greater than one is either prime or it has a prime divisor.

Follows from fundamental theorem

Proof

Suppose towards a contradiction that there are only finitely many primes $p_1, p_2, p_3, \ldots, p_k$. Consider the number $q = p_1 p_2 p_3 \ldots p_k + 1$, the product of all the primes plus one. By hypothesis q cannot be prime because it is strictly larger than all the primes. Thus, by the lemma, it has a prime divisor, p. Because $p_1, p_2, p_3, \ldots, p_k$ are all the primes, p must be equal to one of them, so p is a divisor of their product. So we have that p divides $p_1 p_2 p_3 \ldots p_k$, and p divides q, but that means p divides their difference, which is 1. Therefore $p \leq 1$.

Contradiction. Therefore there are infinitely many primes.
There are infinitely many primes

Lemma Every natural number greater than one is either prime or it has a prime divisor.
There are infinitely many primes

Lemma Every natural number greater than one is either prime or it has a prime divisor

Follows from fundamental theorem
There are infinitely many primes

Lemma Every natural number greater than one is either prime or it has a prime divisor

Follows from fundamental theorem

Proof Suppose towards a contradiction that there are only finitely many primes $p_1, p_2, p_3, \ldots, p_k$. Consider the number $q = p_1 p_2 p_3 \ldots p_k + 1$, the product of all the primes plus one. By hypothesis q cannot be prime because it is strictly larger than all the primes. Thus, by the lemma, it has a prime divisor, p. Because $p_1, p_2, p_3, \ldots, p_k$ are all the primes, p must be equal to one of them, so p is a divisor of their product. So we have that p divides $p_1 p_2 p_3 \ldots p_k$, and p divides q, but that means p divides their difference, which is 1. Therefore $p \leq 1$. Contradiction. Therefore there are infinitely many primes.
The Sieve of Eratosthenes

How to find all primes between 2 and n?

A very inefficient method of determining if a number n is prime:

Try every integer $i \leq \sqrt{n}$ and see if n is divisible by i.

Write the numbers $2, \ldots, n$ into a list. Let $i := 2$.

Remove all strict multiples of i from the list.

Let k be the smallest number present in the list such that $k > i$ and let $i := k$.

If $i > \sqrt{n}$ then stop; else go to step 2.

Testing if a number is prime can be done efficiently in polynomial time [Agrawal-Kayal-Saxena 2002], i.e., polynomial in the number of bits used to describe the input number. Efficient randomized tests had been available previously.
The Sieve of Eratosthenes

How to find all primes between 2 and \(n \)?

A very inefficient method of determining if a number \(n \) is prime:

Try every integer \(i \leq \sqrt{n} \) and see if \(n \) is divisible by \(i \)

1. Write the numbers 2, \ldots, \(n \) into a list. Let \(i := 2 \)
The Sieve of Eratosthenes

How to find all primes between 2 and \(n \)?

A very inefficient method of determining if a number \(n \) is prime

Try every integer \(i \leq \sqrt{n} \) and see if \(n \) is divisible by \(i \)

1. Write the numbers 2, \ldots, \(n \) into a list. Let \(i := 2 \)
2. Remove all strict multiples of \(i \) from the list
The Sieve of Eratosthenenes

How to find all primes between 2 and \(n \)?

A very inefficient method of determining if a number \(n \) is prime

Try every integer \(i \leq \sqrt{n} \) and see if \(n \) is divisible by \(i \)

1. Write the numbers 2, \ldots, \(n \) into a list. Let \(i := 2 \)
2. Remove all strict multiples of \(i \) from the list
3. Let \(k \) be the smallest number present in the list s.t. \(k > i \) and let \(i := k \)
The Sieve of Eratosthenes

How to find all primes between 2 and n?

A very inefficient method of determining if a number n is prime

Try every integer $i \leq \sqrt{n}$ and see if n is divisible by i

1. Write the numbers 2, ..., n into a list. Let $i := 2$
2. Remove all strict multiples of i from the list
3. Let k be the smallest number present in the list s.t. $k > i$ and let $i := k$
4. If $i > \sqrt{n}$ then stop else go to step 2
The Sieve of Eratosthenes

How to find all primes between 2 and \(n \)?

A very inefficient method of determining if a number \(n \) is prime

Try every integer \(i \leq \sqrt{n} \) and see if \(n \) is divisible by \(i \)

1. Write the numbers 2, \ldots, \(n \) into a list. Let \(i := 2 \)
2. Remove all strict multiples of \(i \) from the list
3. Let \(k \) be the smallest number present in the list s.t. \(k > i \) and let \(i := k \)
4. If \(i > \sqrt{n} \) then stop else go to step 2

Testing if a number is prime can be done efficiently in polynomial time [Agrawal-Kayal-Saxena 2002], i.e., polynomial in the number of bits used to describe the input number. Efficient randomized tests had been available previously.
Greatest common divisor

Definition

Let \(a, b \in \mathbb{Z}^+ \). The largest integer \(d \) such that \(d \mid a \) and \(d \mid b \) is called the greatest common divisor of \(a \) and \(b \), written \(\gcd(a, b) \).
Greatest common divisor

Definition

Let $a, b \in \mathbb{Z}^+$. The largest integer d such that $d|a$ and $d|b$ is called the greatest common divisor of a and b, written $\text{gcd}(a, b)$.

\[\text{gcd}(24, 36) = 12 \]
Greatest common divisor

Definition

Let \(a, b \in \mathbb{Z}^+ \). The largest integer \(d \) such that \(d \mid a \) and \(d \mid b \) is called the greatest common divisor of \(a \) and \(b \), written \(\gcd(a, b) \)

\[
\gcd(24, 36) = 12
\]

Definition

The integers \(a \) and \(b \) are relatively prime (coprime) iff \(\gcd(a, b) = 1 \)
Greatest common divisor

Definition
Let $a, b \in \mathbb{Z}^+$. The largest integer d such that $d|a$ and $d|b$ is called the greatest common divisor of a and b, written $\text{gcd}(a, b)$

$$\text{gcd}(24, 36) = 12$$

Definition
The integers a and b are relatively prime (coprime) iff $\text{gcd}(a, b) = 1$

9 and 22 are coprime (both are composite)
Gcd by prime factorisations

Suppose that the prime factorisations of \(a \) and \(b \) are

\[
a = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n}
\]
\[
b = p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n}
\]

where each exponent is a nonnegative integer (possibly zero)

This number clearly divides \(a \) and \(b \). No larger number can divide both \(a \) and \(b \). Proof by contradiction and the prime factorisation of a postulated larger divisor.

Factorisation is a very inefficient method to compute gcd
Gcd by prime factorisations

Suppose that the prime factorisations of a and b are

$$a = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n} \quad b = p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n}$$

where each exponent is a nonnegative integer (possibly zero)

$$\gcd(a, b) = p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \cdots p_n^{\min(a_n,b_n)}$$

This number clearly divides a and b. No larger number can divide both a and b. Proof by contradiction and the prime factorisation of a postulated larger divisor.

Factorisation is a very inefficient method to compute gcd.
Gcd by prime factorisations

Suppose that the prime factorisations of a and b are

\[
a = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n} \quad \quad \quad b = p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n}
\]

where each exponent is a nonnegative integer (possibly zero)

\[
gcd(a, b) = p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \cdots p_n^{\min(a_n,b_n)}
\]

This number clearly divides a and b. No larger number can divide both a and b. Proof by contradiction and the prime factorisation of a postulated larger divisor.
Gcd by prime factorisations

Suppose that the prime factorisations of a and b are

\[a = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n}, \quad b = p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n} \]

where each exponent is a nonnegative integer (possibly zero)

\[\gcd(a, b) = p_1^{\min(a_1, b_1)} p_2^{\min(a_2, b_2)} \cdots p_n^{\min(a_n, b_n)} \]

This number clearly divides a and b. No larger number can divide both a and b. Proof by contradiction and the prime factorisation of a postulated larger divisor.

Factorisation is a very inefficient method to compute gcd
Euclidian algorithm: efficient for computing gcd

Euclidian algorithm

algorithm gcd(x, y)
 if y = 0
 then return(x)
 else return(gcd(y, x mod y))
Euclidian algorithm: efficient for computing gcd

Euclidian algorithm

algorithm gcd(x, y)
 if y = 0
 then return(x)
 else return(gcd(y, x mod y))

The Euclidian algorithm relies on

∀x, y ∈ ℤ (x > y → gcd(x, y) = gcd(y, x mod y))
Euclidian algorithm (proof of correctness)

Lemma

If \(a = bq + r \), where \(a, b, q, \) and \(r \) are positive integers, then \(\text{gcd}(a, b) = \text{gcd}(b, r) \)

Proof.

(\(\Rightarrow \))
Suppose that \(d \) divides both \(a \) and \(b \). Then \(d \) also divides \(a - bq = r \). Hence, any common divisor of \(a \) and \(b \) must also be a common divisor of \(b \) and \(r \).

(\(\Leftarrow \))
Suppose that \(d \) divides both \(b \) and \(r \). Then \(d \) also divides \(bq + r = a \). Hence, any common divisor of \(b \) and \(r \) must also be a common divisor of \(a \) and \(b \).

Therefore, \(\text{gcd}(a, b) = \text{gcd}(b, r) \).
Euclidian algorithm (proof of correctness)

Lemma
If $a = bq + r$, where a, b, q, and r are positive integers, then $\gcd(a, b) = \gcd(b, r)$

Proof.
(\Rightarrow) Suppose that d divides both a and b. Then d also divides $a - bq = r$. Hence, any common divisor of a and b must also be a common divisor of b and r.

(\Leftarrow) Suppose that d divides both b and r. Then d also divides $bq + r = a$. Hence, any common divisor of b and r must also be a common divisor of a and b.
Therefore, $\gcd(a, b) = \gcd(b, r)$.
Theorem (Bézout’s theorem)

If x and y are positive integers, then there exist integers a and b such that $\text{gcd}(x, y) = ax + by$
Theorem (Bézout's theorem)

If x and y are positive integers, then there exist integers a and b such that $\gcd(x, y) = ax + by$

Proof.

Let S be the set of positive integers of the form $ax + by$ (where a or b may be a negative integer); clearly, S is non-empty as it includes $x + y$. By the well-ordering principle S has a least element c. So $c = ax + by$ for some a and b. If $d|\ x$ and $d|y$ then $d|ax$ and $d|by$ and so $d|(ax + by)$, that is $d|c$. We now show $c|x$ and $c|y$ which means that $c = \gcd(x, y)$. Assume $c \nmid x$. So $x = qc + r$ where $0 < r < c$. Now $r = x − qc = x − q(ax + by)$. That is, $r = (1 − qa)x + (−qb)y$, so $r \in S$ which contradicts that c is the least element in S as $r < c$. The same argument shows $c|y$.
Computing Bézout coefficients

\[2 = \gcd(6, 14) = (-2) \cdot 6 + 1 \cdot 14 \]
Computing Bézout coefficients

\[2 = \gcd(6, 14) = (-2) \cdot 6 + 1 \cdot 14 \]

Extended Euclidian algorithm (NOT EXAMINABLE)

```algorithm extended-gcd(x, y)
    if y = 0
        then return(x, 1, 0)
    else
        (d, a, b) := extended-gcd(y, x mod y)
        return((d, b, a - ((x div y) * b)))
```

Colin Stirling (Informatics) Discrete Mathematics (Chap 4) Today 18 / 19
Further properties

Theorem

If a, b, c are positive integers such that $\gcd(a, b) = 1$ and $a|bc$ then $a|c$

Proof.

Because $\gcd(a, b) = 1$, by Bézout's theorem there are integers s and t such that $sa + tb = 1$. So, $sac + tbc = c$. Assume $a|bc$. Therefore, $a|tbc$ and $a|sac$, so $a|(sac + tbc)$; that is, $a|c$.

Theorem

Let m be a positive integer and let a, b, c be integers. If $ac \equiv bc \pmod{m}$ and $\gcd(c, m) = 1$ then $a \equiv b \pmod{m}$

Proof.

Because $ac \equiv bc \pmod{m}$, it follows $m|ac - bc$; so, $m|c(a - b)$. By the result above because $\gcd(c, m) = 1$, it follows that $m|(a - b)$.
Theorem

If \(a, b, c \) are positive integers such that \(\gcd(a, b) = 1 \) and \(a \mid bc \) then \(a \mid c \)

Proof.

Because \(\gcd(a, b) = 1 \), by Bézout’s theorem there are integers \(s \) and \(t \) such that \(sa + tb = 1 \). So, \(sac + tbc = c \). Assume \(a \mid bc \). Therefore, \(a \mid tbc \) and \(a \mid sac \), so \(a \mid (sac + tbc) \); that is, \(a \mid c \).
Further properties

Theorem

If a, b, c are positive integers such that $\gcd(a, b) = 1$ and $a|bc$ then $a|c$

Proof.

Because $\gcd(a, b) = 1$, by Bézout's theorem there are integers s and t such that $sa + tb = 1$. So, $sac + tbc = c$. Assume $a|bc$. Therefore, $a|tbc$ and $a|sac$, so $a|(sac + tbc)$; that is, $a|c$.

Theorem

Let m be a positive integer and let a, b, c be integers. If $ac \equiv bc \pmod{m}$ and $\gcd(c, m) = 1$ then $a \equiv b \pmod{m}$
Further properties

Theorem

If a, b, c are positive integers such that $\gcd(a, b) = 1$ and $a|bc$ then $a|c$

Proof.

Because $\gcd(a, b) = 1$, by Bézout’s theorem there are integers s and t such that $sa + tb = 1$. So, $sac + tbc = c$. Assume $a|bc$. Therefore, $a|tbc$ and $a|sac$, so $a|(sac + tbc)$; that is, $a|c$.

Theorem

Let m be a positive integer and let a, b, c be integers. If $ac \equiv bc \pmod{m}$ and $\gcd(c, m) = 1$ then $a \equiv b \pmod{m}$

Proof.

Because $ac \equiv bc \pmod{m}$, it follows $m|(ac - bc)$; so, $m|c(a - b)$. By the result above because $\gcd(c, m) = 1$, it follows that $m|(a - b)$.