BBM 205 Discrete Mathematics Hacettepe University http://web.cs.hacettepe.edu.tr/~bbm205

Lecture 9b: Events, Conditional Probability, Independence, Bayes' Rule

Resources:

Kenneth Rosen, "Discrete Mathematics and App." http://www.eecs70.org/

CS70: On to Calculation.

Events, Conditional Probability, Independence, Bayes' Rule

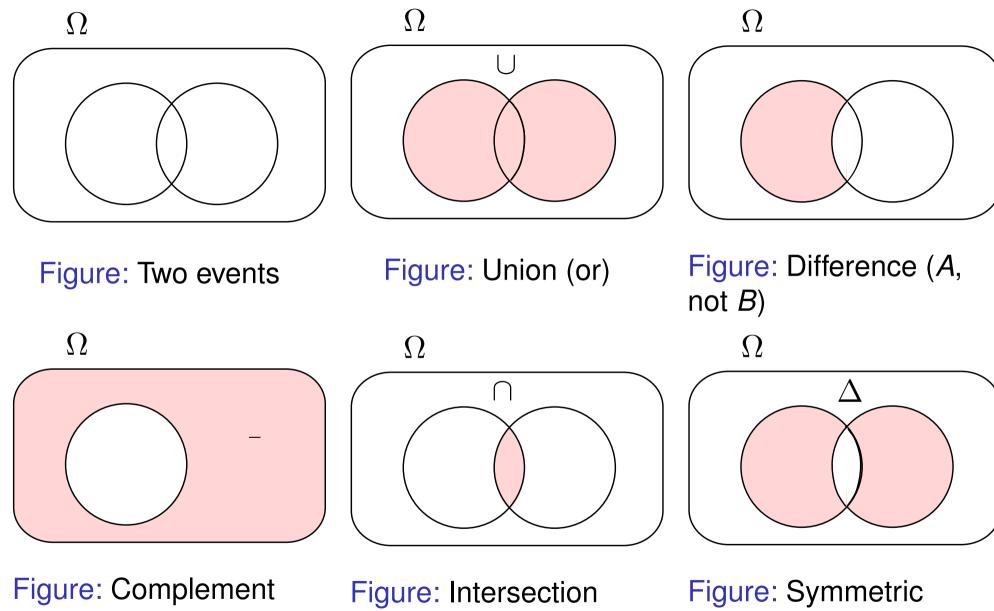
- 1. Probability Basics Review
- 2. Events
- 3. Conditional Probability
- 4. Independence of Events
- 5. Bayes' Rule

Probability Basics Review

Setup:

- Random Experiment.
 Flip a fair coin twice.
- Probability Space.
 - ► Sample Space: Set of outcomes, Ω . $\Omega = \{HH, HT, TH, TT\}$ (Note: Not $\Omega = \{H, T\}$ with two picks!)
 - ► **Probability:** Pr[ω] for all ω ∈ Ω. $Pr[HH] = \cdots = Pr[TT] = 1/4$
 - 1. $0 \le Pr[\omega] \le 1$.
 - 2. $\sum_{\omega \in \Omega} Pr[\omega] = 1$.

Set notation review



(not)

(and)

difference (only one)

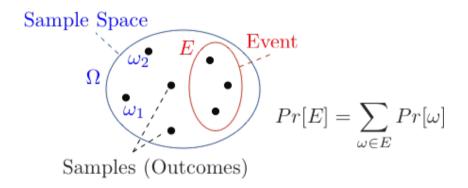
Probability of exactly one 'heads' in two coin flips?

Idea: Sum the probabilities of all the different outcomes that have exactly one 'heads': HT, TH.

This leads to a definition!

Definition:

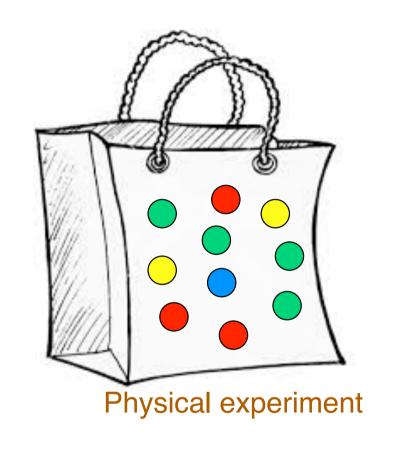
- ▶ An **event**, E, is a subset of outcomes: $E \subset \Omega$.
- ▶ The **probability of** *E* is defined as $Pr[E] = \sum_{\omega \in E} Pr[\omega]$.

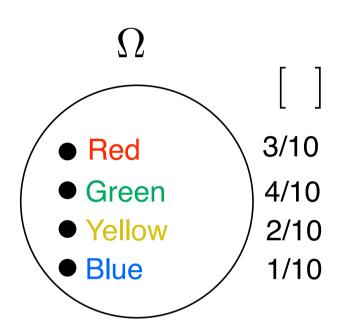


Uniform Probability Space

$$\Omega \underbrace{\begin{bmatrix} \bullet & E \\ \bullet & \bullet \\ \omega & \bullet \end{bmatrix}}_{Pr[E]} \frac{Pr[\omega] = \frac{1}{|\Omega|}}{Pr[E]}$$

Event: Example





Probability model

$$\Omega = \{ \text{Red, Green, Yellow, Blue} \}$$

$$Pr[\text{Red}] = \frac{3}{10}, Pr[\text{Green}] = \frac{4}{10}, \text{ etc.}$$

$$E = \{Red, Green\} \Rightarrow Pr[E] = \frac{3+4}{10} = \frac{3}{10} + \frac{4}{10} = Pr[Red] + Pr[Green].$$

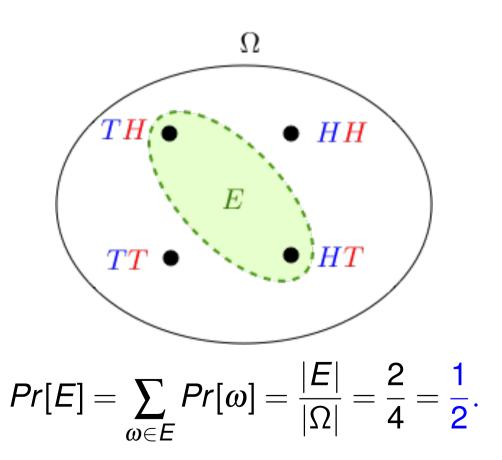
Probability of exactly one heads in two coin flips?

Sample Space, $\Omega = \{HH, HT, TH, TT\}$.

Uniform probability space:

$$Pr[HH] = Pr[HT] = Pr[TH] = Pr[TT] = \frac{1}{4}.$$

Event, *E*, "exactly one heads": {*TH*, *HT*}.



Example: 20 coin tosses.

20 coin tosses

Sample space: Ω = set of 20 fair coin tosses.

$$\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; \ |\Omega| = 2^{20}.$$

- What is more likely?

 - $\omega_2 := (1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)$?

Answer: Both are equally likely: $Pr[\omega_1] = Pr[\omega_2] = \frac{1}{|\Omega|}$.

- What is more likely?
 - (E_1) Twenty Hs out of twenty, or
 - (E_2) Ten Hs out of twenty?

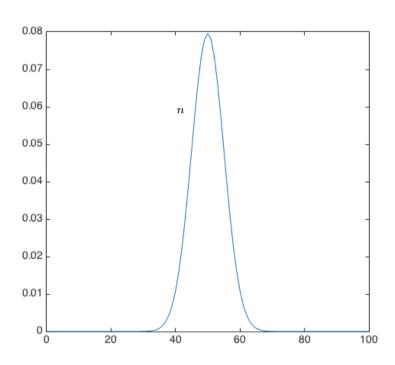
Answer: Ten Hs out of twenty.

Why? There are many sequences of 20 tosses with ten Hs; only one with twenty Hs. $\Rightarrow Pr[E_1] = \frac{1}{|\Omega|} \ll Pr[E_2] = \frac{|E_2|}{|\Omega|}$.

$$|E_2| = {20 \choose 10} = 184,756.$$

Probability of *n* heads in 100 coin tosses.

$$\Omega = \{H, T\}^{100}; |\Omega| = 2^{100}.$$



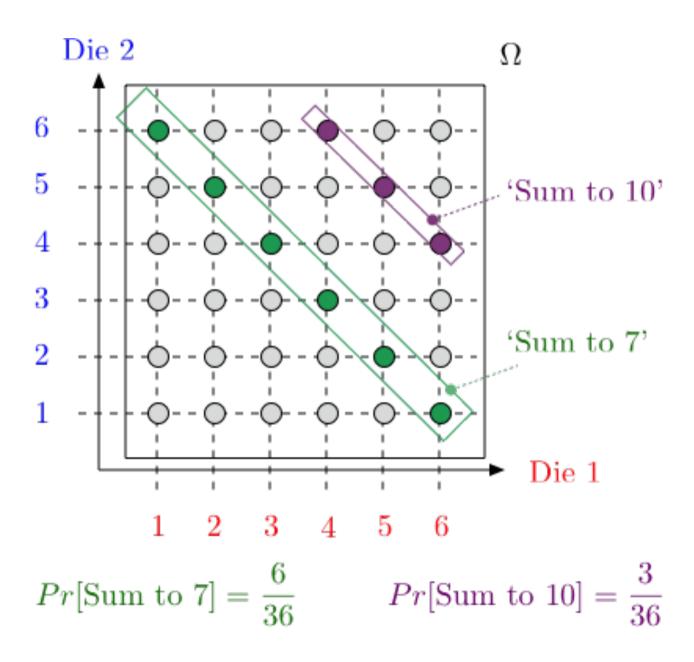
Event $E_n = n$ heads'; $|E_n| = \binom{100}{n}$

$$p_n := Pr[E_n] = \frac{|E_n|}{|\Omega|} = \frac{\binom{100}{n}}{2^{100}}$$

Observe:

- Concentration around mean: Law of Large Numbers;
- Bell-shape: Central Limit Theorem.

Roll a red and a blue die.



Exactly 50 heads in 100 coin tosses.

Sample space: $\Omega = \text{set of } 100 \text{ coin tosses} = \{H, T\}^{100}.$ $|\Omega| = 2 \times 2 \times \cdots \times 2 = 2^{100}.$

Uniform probability space: $Pr[\omega] = \frac{1}{2^{100}}$.

Event E = "100 coin tosses with exactly 50 heads"

|E|?

Choose 50 positions out of 100 to be heads.

$$|E| = \binom{100}{50}$$
.

$$Pr[E] = \frac{\binom{100}{50}}{2^{100}}.$$

Calculation.

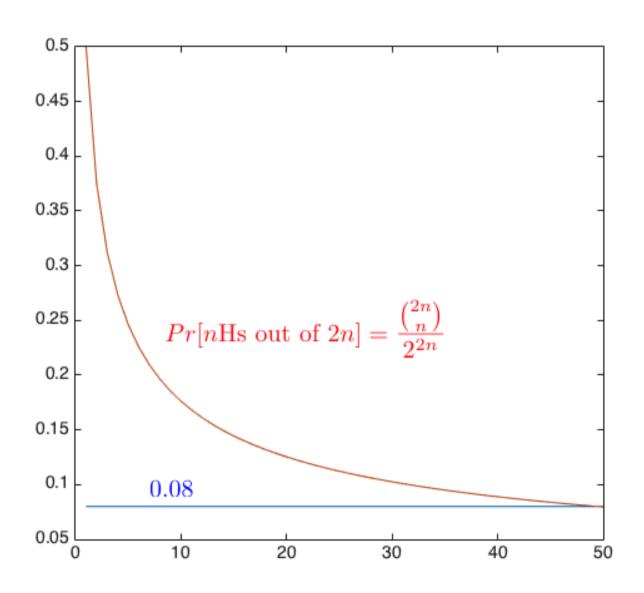
Stirling formula (for large *n*):

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n.$$

$$\binom{2n}{n} pprox rac{\sqrt{4\pi n}(2n/e)^{2n}}{[\sqrt{2\pi n}(n/e)^n]^2} pprox rac{4^n}{\sqrt{\pi n}}.$$

$$Pr[E] = \frac{|E|}{|\Omega|} = \frac{|E|}{2^{2n}} = \frac{1}{\sqrt{\pi n}} = \frac{1}{\sqrt{50\pi}} \approx .08.$$

Exactly 50 heads in 100 coin tosses.



Probability is Additive

Theorem

(a) If events A and B are disjoint, i.e., $A \cap B = \emptyset$, then

$$Pr[A \cup B] = Pr[A] + Pr[B].$$

(b) If events $A_1, ..., A_n$ are pairwise disjoint, i.e., $A_k \cap A_m = \emptyset, \forall k \neq m$, then

$$Pr[A_1 \cup \cdots \cup A_n] = Pr[A_1] + \cdots + Pr[A_n].$$

Proof:

Obvious.

Consequences of Additivity

Theorem

- (a) $Pr[A \cup B] = Pr[A] + Pr[B] Pr[A \cap B];$ (inclusion-exclusion property)
- (b) $Pr[A_1 \cup \cdots \cup A_n] \leq Pr[A_1] + \cdots + Pr[A_n];$ (union bound)
- (c) If $A_1, ..., A_N$ are a partition of Ω , i.e., pairwise disjoint and $\bigcup_{m=1}^N A_m = \Omega$, then

$$Pr[B] = Pr[B \cap A_1] + \cdots + Pr[B \cap A_N].$$
 (law of total probability)

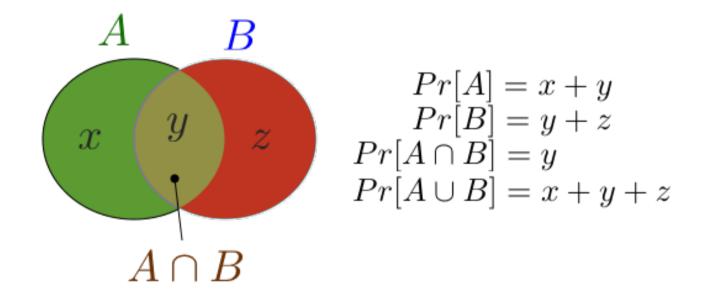
Proof:

(b) is obvious.

Proofs for (a) and (c)? Next...

Inclusion/Exclusion

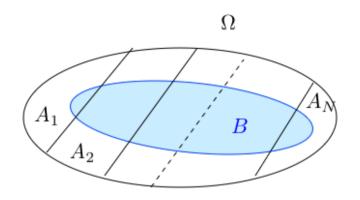
$$Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$$



Another view. Any $\omega \in A \cup B$ is in $A \cap \overline{B}$, $A \cup B$, or $\overline{A} \cap B$. So, add it up.

Total probability

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N .



Then,

$$Pr[B] = Pr[A_1 \cap B] + \cdots + Pr[A_N \cap B].$$

Indeed, *B* is the union of the disjoint sets $A_n \cap B$ for n = 1, ..., N.

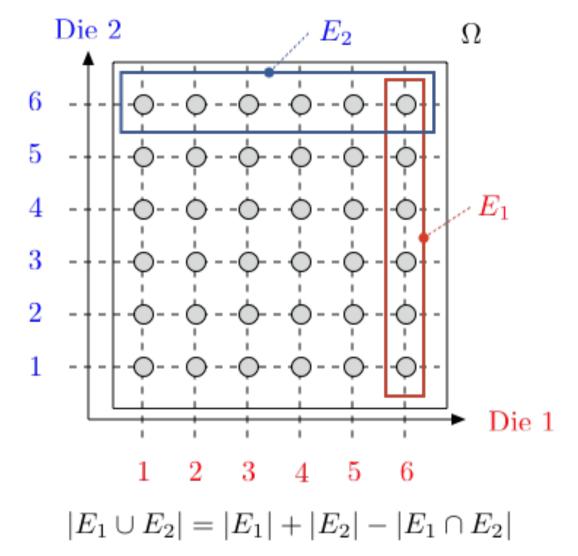
In "math": $\omega \in B$ is in exactly one of $A_i \cap B$.

Adding up probability of them, get $Pr[\omega]$ in sum.

..Did I say...

Add it up.

Roll a Red and a Blue Die.

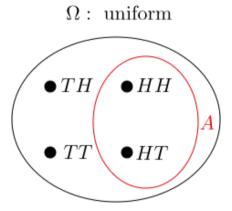


 E_1 = 'Red die shows 6'; E_2 = 'Blue die shows 6' $E_1 \cup E_2$ = 'At least one die shows 6'

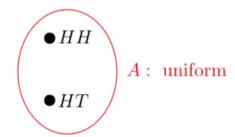
$$Pr[E_1] = \frac{6}{36}, Pr[E_2] = \frac{6}{36}, Pr[E_1 \cup E_2] = \frac{11}{36}.$$

Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads? $\Omega = \{HH, HT, TH, TT\}$; Uniform probability space. Event A =first flip is heads: $A = \{HH, HT\}$.



New sample space: A; uniform still.



Event B = two heads.

The probability of two heads if the first flip is heads. The probability of B given A is 1/2.

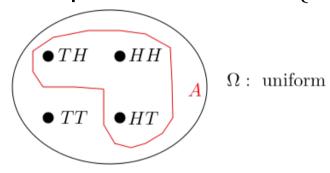
A similar example.

Two coin flips. At least one of the flips is heads.

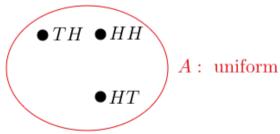
→ Probability of two heads?

 $\Omega = \{HH, HT, TH, TT\}$; uniform.

Event $A = \text{at least one flip is heads. } A = \{HH, HT, TH\}.$



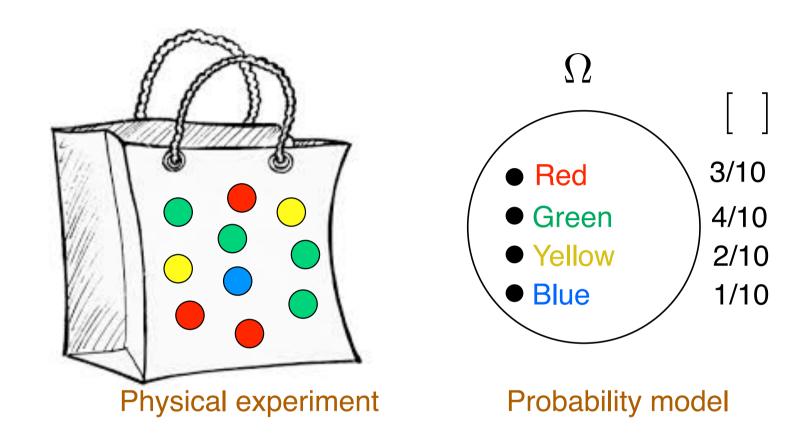
New sample space: A; uniform still.



Event B = two heads.

The probability of two heads if at least one flip is heads. The probability of B given A is 1/3.

Conditional Probability: A non-uniform example

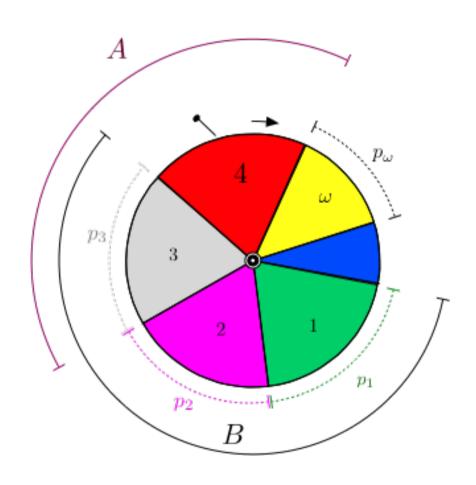


$$\Omega = \{ \text{Red, Green, Yellow, Blue} \}$$

$$Pr[\text{Red}|\text{Red or Green}] = \frac{3}{7} = \frac{Pr[\text{Red} \cap (\text{Red or Green})]}{Pr[\text{Red or Green}]}$$

Another non-uniform example

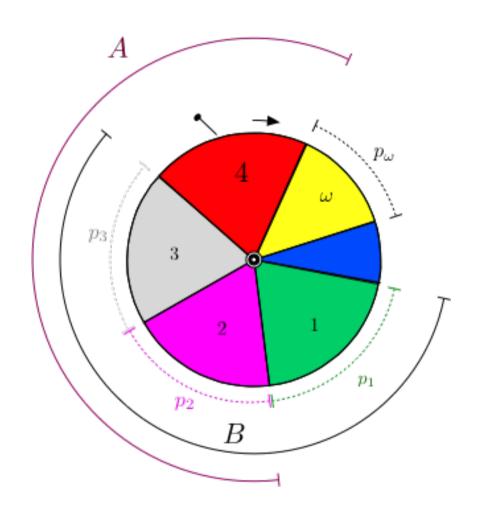
Consider $\Omega = \{1, 2, ..., N\}$ with $Pr[n] = p_n$. Let $A = \{3, 4\}, B = \{1, 2, 3\}$.



$$Pr[A|B] = \frac{p_3}{p_1 + p_2 + p_3} = \frac{Pr[A \cap B]}{Pr[B]}.$$

Yet another non-uniform example

Consider $\Omega = \{1, 2, ..., N\}$ with $Pr[n] = p_n$. Let $A = \{2, 3, 4\}, B = \{1, 2, 3\}$.

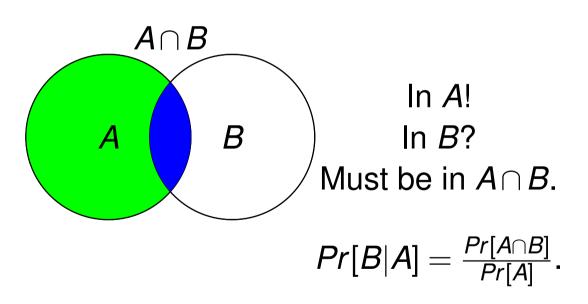


$$Pr[A|B] = \frac{p_2 + p_3}{p_1 + p_2 + p_3} = \frac{Pr[A \cap B]}{Pr[B]}.$$

Conditional Probability.

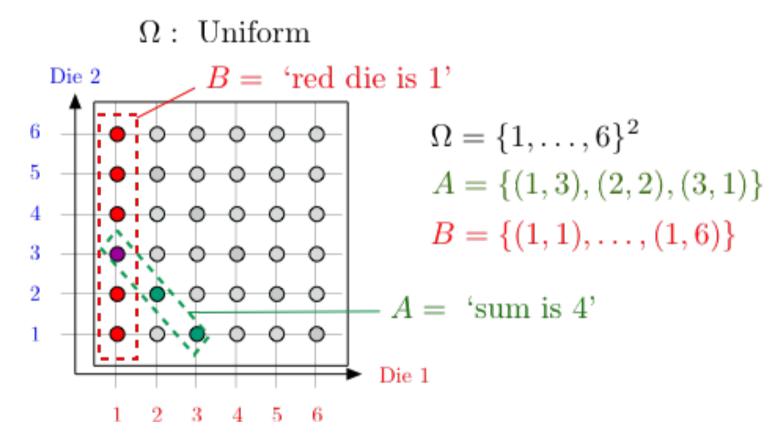
Definition: The **conditional probability** of *B* given *A* is

$$Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]}$$



More fun with conditional probability.

Toss a red and a blue die, sum is 4, What is probability that red is 1?

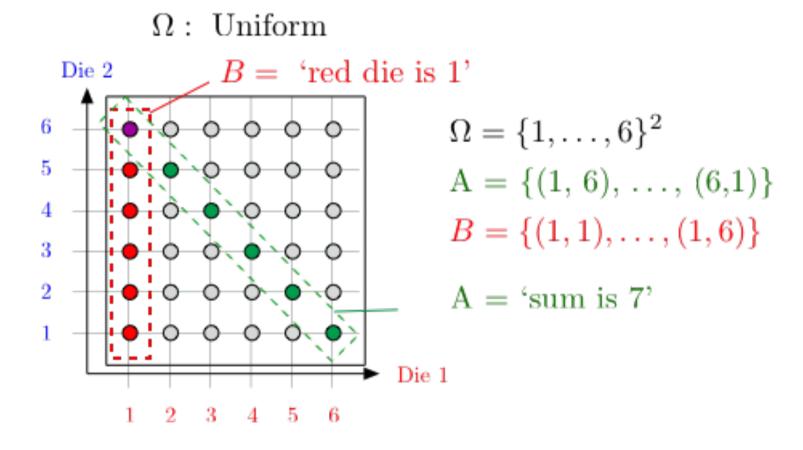


$$Pr[B|A] = \frac{|B \cap A|}{|A|} = \frac{1}{3}$$
; versus $Pr[B] = 1/6$.

B is more likely given A.

Yet more fun with conditional probability.

Toss a red and a blue die, sum is 7, what is probability that red is 1?



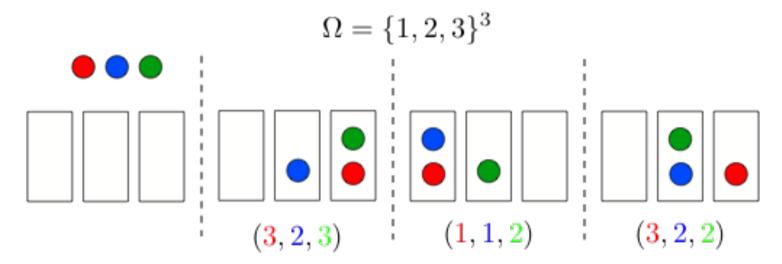
$$Pr[B|A] = \frac{|B \cap A|}{|A|} = \frac{1}{6}$$
; versus $Pr[B] = \frac{1}{6}$.

Observing A does not change your mind about the likelihood of B.

Emptiness..

Suppose I toss 3 balls into 3 bins.

A = ``1st bin empty''; B = ``2nd bin empty.'' What is <math>Pr[A|B]?



 $\omega = (\text{bin of red ball}, \text{bin of blue ball}, \text{bin of green ball})$

$$Pr[B] = Pr[\{(a,b,c) \mid a,b,c \in \{1,3\}] = Pr[\{1,3\}^3] = \frac{8}{27}$$

 $Pr[A \cap B] = Pr[(3,3,3)] = \frac{1}{27}$
 $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]} = \frac{(1/27)}{(8/27)} = 1/8$; vs. $Pr[A] = \frac{8}{27}$.

A is less likely given B: If second bin is empty the first is more likely to have balls in it.

Three Card Problem

Three cards: Red/Red, Red/Black, Black/Black.

Pick one at random and place on the table. The upturned side is a

Red. What is the probability that the other side is Black?

Can't be the BB card, so...prob should be 0.5, right?

R: upturned card is Red; RB: the Red/Black card was selected.

Want P(RB|R).

What's wrong with the reasoning that leads to $\frac{1}{2}$?

$$P(RB|R) = \frac{P(RB \cap R)}{P(R)}$$

$$= \frac{\frac{\frac{1}{3}\frac{1}{2}}{\frac{1}{3}(1) + \frac{1}{3}\frac{1}{2} + \frac{1}{3}(0)}}{\frac{\frac{1}{6}}{\frac{1}{2}} = \frac{1}{3}}$$

Once you are given R: it is twice as likely that the RR card was picked.

Gambler's fallacy.

Flip a fair coin 51 times.

A = "first 50 flips are heads"

B = "the 51st is heads"

Pr[B|A]?

$$A = \{HH \cdots HT, HH \cdots HH\}$$

$$B \cap A = \{HH \cdots HH\}$$

Uniform probability space.

$$Pr[B|A] = \frac{|B \cap A|}{|A|} = \frac{1}{2}.$$

Same as Pr[B].

The likelihood of 51st heads does not depend on the previous flips.

Product Rule

Recall the definition:

$$Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]}.$$

Hence,

$$Pr[A \cap B] = Pr[A]Pr[B|A].$$

Consequently,

$$Pr[A \cap B \cap C] = Pr[(A \cap B) \cap C]$$

$$= Pr[A \cap B]Pr[C|A \cap B]$$

$$= Pr[A]Pr[B|A]Pr[C|A \cap B].$$

Product Rule

Theorem Product Rule

Let A_1, A_2, \dots, A_n be events. Then

$$Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1]\cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$$

Proof: By induction.

Assume the result is true for n. (It holds for n = 2.) Then,

$$Pr[A_1 \cap \cdots \cap A_n \cap A_{n+1}]$$

$$= Pr[A_1 \cap \cdots \cap A_n] Pr[A_{n+1} | A_1 \cap \cdots \cap A_n]$$

$$= Pr[A_1] Pr[A_2 | A_1] \cdots Pr[A_n | A_1 \cap \cdots \cap A_{n-1}] Pr[A_{n+1} | A_1 \cap \cdots \cap A_n],$$

so that the result holds for n+1.

Correlation

An example.

Random experiment: Pick a person at random.

Event A: the person has lung cancer.

Event *B*: the person is a heavy smoker.

Fact:

$$Pr[A|B] = 1.17 \times Pr[A].$$

Conclusion:

- Smoking increases the probability of lung cancer by 17%.
- Smoking causes lung cancer.

Correlation

Event A: the person has lung cancer. Event B: the person is a heavy smoker. $Pr[A|B] = 1.17 \times Pr[A]$.

A second look.

Note that

$$Pr[A|B] = 1.17 \times Pr[A] \Leftrightarrow \frac{Pr[A \cap B]}{Pr[B]} = 1.17 \times Pr[A]$$

 $\Leftrightarrow Pr[A \cap B] = 1.17 \times Pr[A]Pr[B]$
 $\Leftrightarrow Pr[B|A] = 1.17 \times Pr[B].$

Conclusion:

- Lung cancer increases the probability of smoking by 17%.
- Lung cancer causes smoking. Really?

Causality vs. Correlation

Events A and B are positively correlated if

$$Pr[A \cap B] > Pr[A]Pr[B].$$

(E.g., smoking and lung cancer.)

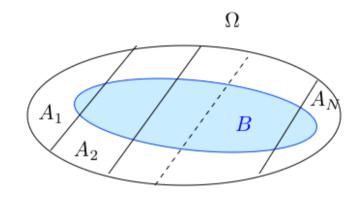
A and B being positively correlated does not mean that A causes B or that B causes A.

Other examples:

- Tesla owners are more likely to be rich. That does not mean that poor people should buy a Tesla to get rich.
- People who go to the opera are more likely to have a good career. That does not mean that going to the opera will improve your career.
- Rabbits eat more carrots and do not wear glasses. Are carrots good for eyesight?

Total probability

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N .



Then,

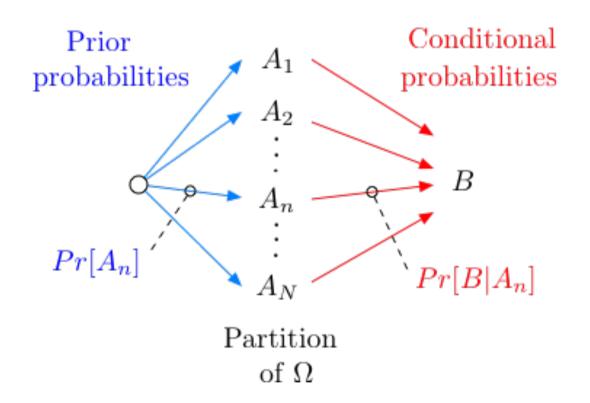
$$Pr[B] = Pr[A_1 \cap B] + \cdots + Pr[A_N \cap B].$$

Indeed, *B* is the union of the disjoint sets $A_n \cap B$ for n = 1, ..., N. Thus,

$$Pr[B] = Pr[A_1]Pr[B|A_1] + \cdots + Pr[A_N]Pr[B|A_N].$$

Total probability

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N .



$$Pr[B] = Pr[A_1]Pr[B|A_1] + \cdots + Pr[A_N]Pr[B|A_N].$$

Is your coin loaded?

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = 'coin is fair', B = 'outcome is heads'

We want to calculate P[A|B].

We know P[B|A] = 1/2, $P[B|\bar{A}] = 0.6$, $Pr[A] = 1/2 = Pr[\bar{A}]$ Now,

$$Pr[B] = Pr[A \cap B] + Pr[\bar{A} \cap B] = Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}]$$

= $(1/2)(1/2) + (1/2)0.6 = 0.55.$

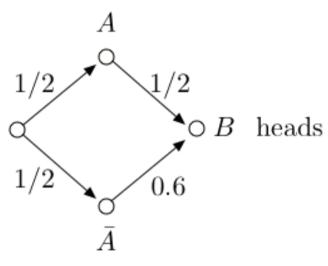
Thus,

$$Pr[A|B] = \frac{Pr[A]Pr[B|A]}{Pr[B]} = \frac{(1/2)(1/2)}{(1/2)(1/2) + (1/2)0.6} \approx 0.45.$$

Is your coin loaded?

A picture:

fair coin



loaded coin

Imagine 100 situations, among which m := 100(1/2)(1/2) are such that A and B occur and n := 100(1/2)(0.6) are such that \bar{A} and B occur.

Thus, among the m+n situations where B occurred, there are m where A occurred.

Hence,

$$Pr[A|B] = \frac{m}{m+n} = \frac{(1/2)(1/2)}{(1/2)(1/2)+(1/2)0.6}.$$

Independence

Definition: Two events *A* and *B* are **independent** if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

Examples:

- When rolling two dice, A = sum is 7 and B = red die is 1 are independent;
- When rolling two dice, A = sum is 3 and B = red die is 1 are not independent;
- ▶ When flipping coins, A = coin 1 yields heads and B = coin 2 yields tails are independent;
- When throwing 3 balls into 3 bins, A = bin 1 is empty and B = bin 2 is empty are not independent;

Independence and conditional probability

Fact: Two events *A* and *B* are **independent** if and only if

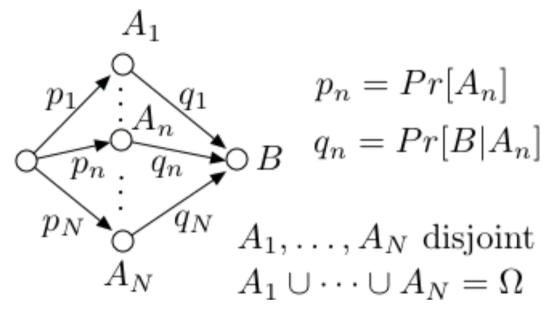
$$Pr[A|B] = Pr[A].$$

Indeed: $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$, so that

$$Pr[A|B] = Pr[A] \Leftrightarrow \frac{Pr[A \cap B]}{Pr[B]} = Pr[A] \Leftrightarrow Pr[A \cap B] = Pr[A]Pr[B].$$

Bayes Rule

Another picture: We imagine that there are N possible causes A_1, \ldots, A_N .



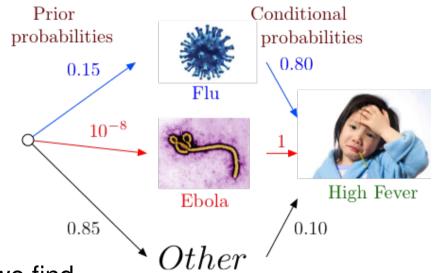
Imagine 100 situations, among which $100p_nq_n$ are such that A_n and B occur, for n = 1, ..., N.

Thus, among the $100\sum_{m}p_{m}q_{m}$ situations where B occurred, there are $100p_{n}q_{n}$ where A_{n} occurred.

Hence,

$$Pr[A_n|B] = \frac{p_nq_n}{\sum_m p_mq_m}.$$

Why do you have a fever?



Using Bayes' rule, we find

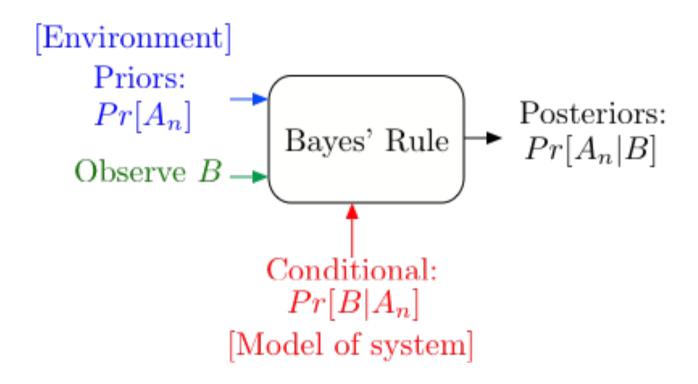
$$Pr[\text{Flu}|\text{High Fever}] = \frac{0.15 \times 0.80}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 0.58$$

$$Pr[\text{Ebola}|\text{High Fever}] = \frac{10^{-8} \times 1}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 5 \times 10^{-8}$$

$$Pr[\text{Other}|\text{High Fever}] = \frac{0.85 \times 0.1}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 0.42$$

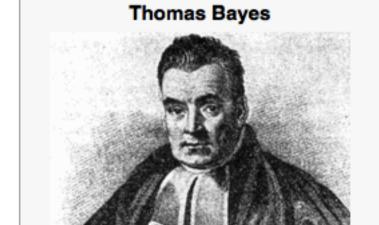
These are the posterior probabilities. One says that 'Flu' is the Most Likely a Posteriori (MAP) cause of the high fever.

Bayes' Rule Operations



Bayes' Rule is the canonical example of how information changes our opinions.

Thomas Bayes



Portrait used of Bayes in a 1936 book,^[1] but it is doubtful whether the portrait is actually of him.^[2]
No earlier portrait or claimed portrait survives.

Born c. 1701

London, England

Died 7 April 1761 (aged 59)

Tunbridge Wells, Kent, England

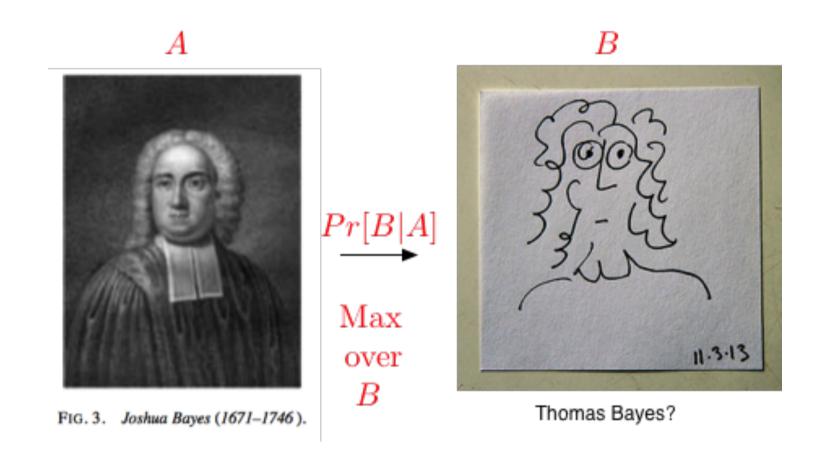
Residence Tunbridge Wells, Kent, England

Nationality English

Known for Bayes' theorem

Source: Wikipedia.

Thomas Bayes



A Bayesian picture of Thomas Bayes.

Testing for disease.

Let's watch TV!!

Random Experiment: Pick a random male.

Outcomes: (test, disease)

A - prostate cancer.

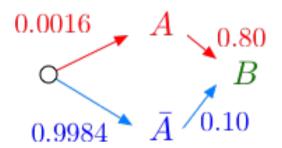
B - positive PSA test.

- ightharpoonup Pr[A] = 0.0016, (.16 % of the male population is affected.)
- ightharpoonup Pr[B|A] = 0.80 (80% chance of positive test with disease.)
- ► $Pr[B|\overline{A}] = 0.10$ (10% chance of positive test without disease.)

From http://www.cpcn.org/01_psa_tests.htm and http://seer.cancer.gov/statfacts/html/prost.html (10/12/2011.)

Positive PSA test (*B*). Do I have disease?

Bayes Rule.



Using Bayes' rule, we find

$$P[A|B] = \frac{0.0016 \times 0.80}{0.0016 \times 0.80 + 0.9984 \times 0.10} = .013.$$

A 1.3% chance of prostate cancer with a positive PSA test.

Surgery anyone?

Impotence...

Incontinence...

Death.

Summary

Events, Conditional Probability, Independence, Bayes' Rule

Key Ideas:

Conditional Probability:

$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$$

- ▶ Independence: $Pr[A \cap B] = Pr[A]Pr[B]$.
- Bayes' Rule:

$$Pr[A_n|B] = \frac{Pr[A_n]Pr[B|A_n]}{\sum_m Pr[A_m]Pr[B|A_m]}.$$

$$Pr[A_n|B] = posterior probability; $Pr[A_n] = prior probability$.$$

All these are possible:

$$Pr[A|B] < Pr[A]; Pr[A|B] > Pr[A]; Pr[A|B] = Pr[A].$$