

Chapter 1, Part I

Propositional Logic

Chapter Summary

- Propositional Logic
- Predicate Logic
- Proofs

Propositional Logic Overview

- The Language of Propositions
 - Connectives, Truth Values, Truth Tables
- Applications
 - Translating English Sentences, System Specifications etc.
- Logical Equivalences
 - Important Equivalences, Showing Equivalence, Satisfiability

Proposition:

A declarative sentence that is either true or false.

Examples of propositions: a) The Moon is made of green cheese. b) Trenton is the capital of New Jersey. c) Toronto is the capital of Canada. d) 1 + 0 = 1

e) 0 + 0 = 2

Examples that are not propositions. a) Sit down! b) What time is it? c) x + 1 = 2d) x + y = z

Constructing Propositions

- Propositional Variables: *p*, *q*, *r*, *s*, ...
- •The proposition that is always true: **T**
- •The proposition that is always false: **F**.

Compound Propositions:

- •constructed from logical connectives and other propositions
 - Negation ¬
 - Conjunction ^
 - Disjunction v
 - Implication →
 - Biconditional ↔

Negation

• The *negation* of p is denoted by ¬p and has this truth table:

р	¬р
Т	F
F	Т

• Example:

- p : "The earth is round."
- ¬p: "It is not the case that the earth is round."
 or simply "The earth is not round."

Conjunction

• The *conjunction* of p and q: $p \land q$

р	q	p ^ q
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

• Example:

- p: "I am at home."
- q:"It is raining."
- p \circleq q : "I am at home and it is raining."

Disjunction

• The *disjunction* of p and q: p vq

p	q	p v q
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

• Example:

- p: "I am at home."
- q: "It is raining."
- p vq: "I am at home or it is raining."

Exclusive or (Xor)

- In $p \oplus q$, one of p and q must be true, but not both!
 - "Soup or salad comes with this entrée," we do not expect to be able to get both soup and salad.
 - The truth table for \oplus is:

p	q	p ⊕q
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

Implication

- If p and q are propositions;
 - p →q is a *conditional statement* or *implication* which is read as "if p, then q "

р	q	p →q
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Implication

- In $p \rightarrow q$,
 - p is the *hypothesis* (antecedent or premise)
 - q is the *conclusion* (or *consequence*).
- Example:
 - p: "I am at home." and q:"It is raining." then;
 - $p \rightarrow q$ denotes "If I am at home then it is raining."

Understanding Implication

- The "meaning" of p →q depends only on the truth values of p and q.
 - *there does not need to be any connection between the antecedent (p) or the consequent (q).*

Understanding Implication

- The "meaning" of p →q depends only on the truth values of p and q.
- These implications are perfectly fine..Does it make sense to you?..
 - "If the moon is made of green cheese, then I have more money than Bill Gates."
 - "If 1 + 1 = 3, then your grandma wears combat boots."

Understanding Implication (cont)

- One way to view the logical conditional is to think of an obligation or contract.
 - "If I am elected, then I will lower taxes."
 - *If the politician is elected and does not lower taxes, then the voters can say that he or she has broken the campaign pledge.*
 - "If you get 100% on the final, then you will get an A."
 - *Something similar holds for the professor.*

Different Ways of Expressing $p \rightarrow q$

- if p, then q
- **if** p, q
- q **unless** ¬p
- q **if** p
- q whenever p
- q follows from p

- p implies q
- p only if q
- q **when** p
- p is sufficient for q
- q is necessary for p
- p—>q: q is a necessary condition for p
- p—>q: p is a sufficient condition for q

- Necessary condition:
 - a—>b: b is a necessary condition for a
 - which means; if not b, then not a
 - equivalently; if a, then b

• Necessary condition:

- a—>b: if not b, then not a
 - => b is a necessary condition for a
 - equivalently; if a, then b
- **Example:** A necessary condition for getting A in BBM205 is that a student completes all the assignments. This can be expressed in two ways:
 - if a student does not complete all the assignments, then he/she can not get an A in BBM205
 - (Contrapositive) if a student gets an A in BBM205, then he/she completes all the assignments.
 - *Completing all the assignments is a necessary condition for getting A.*

- Sufficient condition:
 - a—>b: a is a sufficient condition for b
 - => if a is satisfied, then b is guaranteed

- Sufficient condition:
 - a—>b: a is a sufficient condition for b
 - => if a is satisfied, then b is guaranteed
- Example: A sufficient condition for getting A in BBM205 is that a student gets A from every piece of graded work. This can be expressed as:
 - if a student gets A from every piece of graded work, then he/she gets an A in BBM205.

Converse, Contrapositive, and Inverse • Given $p \rightarrow q$: • $\neg p \rightarrow \neg q$: inverse of $p \rightarrow q$ • $q \rightarrow p$: converse of $p \rightarrow q$ • $\neg q \rightarrow \neg p$: contrapositive of $p \rightarrow q$

Converse, Contrapositive, and Inverse

- From $p \rightarrow q$ we can form new conditional statements .
 - $\neg p \rightarrow \neg q$ is the **inverse** of $p \rightarrow q$
 - $q \rightarrow p$ is the **converse** of $p \rightarrow q$
 - $\neg q \rightarrow \neg p$ is the **contrapositive** of $p \rightarrow q$

Example: Find the converse, inverse, and contrapositive of "It raining is a *sufficient condition* for my not going to town."
Solution:

Original: "_____"

inverse: converse:

contrapositive:

Converse, Contrapositive, and Inverse

- From $p \rightarrow q$ we can form new conditional statements .
 - $\neg p \rightarrow \neg q$ is the **inverse** of $p \rightarrow q$
 - $q \rightarrow p$ is the **converse** of $p \rightarrow q$
 - $\neg q \rightarrow \neg p$ is the **contrapositive** of $p \rightarrow q$

Example: Find the converse, inverse, and contrapositive of "It raining is a sufficient condition for my not going to town."

Solution:

Original: "If it is raining, then I will not go to town."

inverse:

converse:

contrapositive:

Converse, Contrapositive, and Inverse

- From $p \rightarrow q$ we can form new conditional statements .
 - $\neg p \rightarrow \neg q$ is the **inverse** of $p \rightarrow q$
 - $q \rightarrow p$ is the **converse** of $p \rightarrow q$
 - $\neg q \rightarrow \neg p$ is the **contrapositive** of $p \rightarrow q$

Example: Find the converse, inverse, and contrapositive of "It raining is a sufficient condition for my not going to town."

Solution:

Original: "If it is raining, then I will not go to town."

inverse: If it is not raining, then I will go to town.converse: If I do not go to town, then it is raining.contrapositive: If I go to town, then it is not raining.

Biconditional

- If p and q are propositions, then;
 - *biconditional* proposition p ↔q: "p if and only if q ."

р	q	p ⇔q
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

- Example:
 - p:"I am at home." and q:"It is raining."
 - p ⇔q:"I am at home if and only if it is raining."

Expressing the Biconditional

- Some alternative ways "*p* if and only if *q*" is expressed in English:
 - *p* is necessary and sufficient for *q*
 - if *p* then *q* , and conversely
 - *p* **iff** *q*

Truth Tables

For Compound Propositions

- Construction of a truth table:
- Rows
 - Need a row for every possible combination of values for the atomic propositions.
- Columns
 - Need a column for the compound proposition (usually at far right)
 - Need a column for the truth value of each expression that occurs in the compound proposition as it is built up.
 - This includes the atomic propositions

Example Truth Table

• Construct a truth table for $p \lor q \to \neg r$

p	q	r	¬r	p v q	$p \lor q \rightarrow \neg r$
Т	Т	Т	F	Т	F
Т	Т	F	Т	Т	Т
Т	F	Т	F	Т	F
Т	F	F	Т	Т	Т
F	Т	Т	F	Т	F
F	Т	F	Т	Т	Т
F	F	Т	F	F	Т
F	F	F	Т	F	Т

Equivalent Propositions

- Two propositions are **e***quivalent* if they always have the same truth value.
- Example: Show using a truth table that the conditional (implication) is equivalent to the contrapositive.

Solution:

р	q	¬ p	¬ q	p →q	$\neg q \rightarrow \neg p$
Т	Т	F	F	Т	Т
Т	F	F	Т	F	F
F	Т	Т	F	Т	Т
F	F	Т	Т	Т	Т

Using a Truth Table to Show Non-Equivalence

Example: Show using truth tables that neither the converse nor inverse of an implication are not equivalent to the implication.

Solution:

р	q	¬ p	¬ q	p →q	¬ p →¬ q	$q \rightarrow p$
Т	Т	F	F	Т	Т	Т
Т	F	F	Т	F	Т	Т
F	Т	Т	F	Т	F	F
F	F	Т	Т	Т	Т	Т

Problem

• How many rows are there in a truth table with *n* propositional variables?

Solution: 2ⁿ

• This means that with n propositional variables, we can construct 2ⁿ distinct (i.e., not equivalent) propositions.

Precedence of Logical Operators

Operator	Precedence
¬	1
A V	2 3
\rightarrow \leftrightarrow	4 5

 $p \lor q \rightarrow \neg r$ is equivalent to $(p \lor q) \rightarrow \neg r$

If the intended meaning is $p \lor (q \rightarrow \neg r)$ then parentheses must be used.

Applications of Propositional Logic Section 1.2

Applications of Propositional Logic: Summary

- Translating English to Propositional Logic
- System Specifications
- Boolean Searching
- Logic Puzzles
- Logic Circuits

Translating English Sentences

- Steps to convert an English sentence to a statement in propositional logic
 - Identify atomic propositions and represent using propositional variables.
 - Determine appropriate logical connectives

Example:

"If I go to Harry's or to the country, I will not go shopping."

- *p*: I go to Harry's
- q: I go to the country.
- *r*: I will go shopping.

Example:

"If I go to Harry's or to the country, I will not go shopping."

- *p*: I go to Harry's
- q: I go to the country.
- *r*: I will go shopping.

If p or q then not r.

Example:

"If I go to Harry's or to the country, I will not go shopping."

- *p*: I go to Harry's
- q: I go to the country.
- *r*: I will go shopping.

If p or q then not r.

$$(p \lor q) \to \neg r$$

Example

- **Problem:** Translate the following sentence into propositional logic:
- "You can access the Internet from campus only if you are a computer science major or you are not a freshman."

Example

Problem: Translate the following sentence into propositional logic: *"You can access the Internet from campus only if you are a computer science major or you are not a freshman."*

One Solution: Let a, c, and f represent respectively a: "You can access the internet from campus," c: "You are a computer science major," and f: "You are a freshman." $a \rightarrow (c \lor \neg f)$

System Specifications

- System and Software engineers take requirements in English and express them in a precise specification language based on logic.
 - **Example:** "The automated reply cannot be sent when the file system is full" (Express in propositional logic)

System Specifications

- System and Software engineers take requirements in English and express them in a precise specification language based on logic.
 - **Example:** "The automated reply cannot be sent when the file system is full" (Express in propositional logic)
 - **Solution**: One possible solution:
 - *p* : "The automated reply can be sent"
 - *q* : "The file system is full."

$$q \rightarrow \neg p$$

A list of propositions is *consistent* if it is <u>possible to assign truth values</u> to the proposition variables so that each proposition is true.

Exercise: Are these specifications consistent?

- "The diagnostic message is stored in the buffer or it is retransmitted."
- •"The diagnostic message is not stored in the buffer."
- •"If the diagnostic message is stored in the buffer, then it is retransmitted."

Exercise: Are these specifications consistent?

- "The diagnostic message is stored in the buffer or it is retransmitted."
- "The diagnostic message is not stored in the buffer."
- "If the diagnostic message is stored in the buffer, then it is retransmitted."

Solution:

- p: "The diagnostic message is stored in the buffer."
- q: "The diagnostic message is retransmitted"
- The specification: $p \lor q$, $\neg p$, $p \rightarrow q$.
- Can we assign truth values to p and q such that each three proposition above becomes True?

Exercise: Are these specifications consistent?

- "The diagnostic message is stored in the buffer or it is retransmitted."
- "The diagnostic message is not stored in the buffer."
- "If the diagnostic message is stored in the buffer, then it is retransmitted."

Solution:

p: "The diagnostic message is stored in the buffer."

q: "The diagnostic message is retransmitted"

The specification: $p \lor q$, $\neg p$, $p \rightarrow q$.

Indeed! When p is F and q is T, all three statements are true.

So the specification is *consistent*.

Exercise: Are these specifications consistent?

- "The diagnostic message is stored in the buffer or it is retransmitted."
- "The diagnostic message is not stored in the buffer."
- "If the diagnostic message is stored in the buffer, then it is retransmitted."

What if we add another specification, as follows:

• "The diagnostic message is not retransmitted."

Solution: Now we are adding $\neg q$ to the existing $p \lor q$, $\neg p$, $p \rightarrow q$. There is no satisfying assignment that makes all specs true. So the specification is *not consistent*.

Next

• Propositional Equivalences