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Chapter Summary
● The Basics of Counting
● The Pigeonhole Principle
● Permutations and Combinations (next week)
● Binomial Coefficients and Identities (next week)
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The Basics of Counting
Section 6.1



Section Summary
● The Product Rule
● The Sum Rule
● The Subtraction Rule
● The Division Rule
● Examples, Examples, and Examples
● Tree Diagrams
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The Product Rule

A procedure can be broken down into a sequence of two 
tasks: 
• There are n1 ways to do the first task and 
• n2 ways to do the second task. 

Then there are n1·n2 ways to do the procedure.

5



The Product Rule

   Example: How many bit strings of length seven are 
there?
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The Product Rule

   Example: How many bit strings of length seven are 
there?

   Solution: Since each of the seven bits is either a 0 or a 
1, the answer is 27 = 128.
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The Product Rule
Example: How many different license plates can be 

made if each plate contains a sequence of three 
uppercase English letters followed by three digits?

   
Solution:  By the product rule:
   26 · 26 · 26 · 10 · 10 · 10 = 17,576,000
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Counting Functions
    Counting Functions: How many functions are there from a set 

with m elements to a set with n elements?
    Solution:  We can choose of one of the n elements of the 

codomain for each of the m elements in the domain; so, there 
are

n · n · · ·  n = nm such functions.
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Counting Functions
    Counting One-to-One Functions: How many one-to-one 

functions are there from a set with m elements to one with n 
elements?

•     Solution: Suppose the elements in the domain are a1, a2,…, 
am. There are

• n ways to choose the value of a1 ; 
• n−1 ways to choose a2, etc. 

• The product rule tells us that there are                          
n(n−1) (n−2)···(n−m +1) such functions.
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Telephone Numbering Plan
     Example: The North American numbering plan (NANP) specifies that a telephone number 

consists of 10 digits, consisting of a three-digit area code, a three-digit office code, and a 
four-digit station code.  There are some restrictions on the digits.
● Let X denote a digit from 0 through 9.
● Let N denote a digit from 2 through 9.
● Let Y denote a digit that is  0 or 1.
● In the old plan (in use in the 1960s) the format was NYX-NNX-XXXX.
● In the new plan, the format is NXX-NXX-XXXX.

     How many different telephone numbers are possible under the old plan and the new 
plan?

    

11



Telephone Numbering Plan
     Example: The North American numbering plan (NANP) specifies that a telephone number 

consists of 10 digits, consisting of a three-digit area code, a three-digit office code, and a 
four-digit station code.  There are some restrictions on the digits.
● Let X denote a digit from 0 through 9.
● Let N denote a digit from 2 through 9.
● Let Y denote a digit that is  0 or 1.
● In the old plan (in use in the 1960s) the format was NYX-NNX-XXXX.
● In the new plan, the format is NXX-NXX-XXXX.

     How many different telephone numbers are possible under the old plan and the new 
plan?

     Solution:  Use the Product Rule.
● There are 8 ·2 ·10 = 160 area codes with the format NYX.
● There are  8 ·10 ·10 = 800 area codes with the format NXX. 
● There are 8 ·8 ·10 = 640 office codes with the format NNX.  
● There are  10 ·10 ·10 ·10 = 10,000 station codes with the format XXXX. 

     Number of  old plan telephone numbers: 160 ·640 ·10,000 = 1,024,000,000.
     Number of new plan telephone numbers: 800 ·800 ·10,000 = 6,400,000,000.
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Counting Subsets of a Finite Set
   Counting Subsets of a Finite Set: Use the product rule to 

show that the number of different subsets of a finite set S is 
2|S|. (In Section 5.1, mathematical induction was used to prove this same 
result.)

    Solution: When the elements of S are listed in an arbitrary order, there is 
a one-to-one correspondence between subsets of S and bit strings of 
length |S|.  

When the ith element is in the subset, the bit string has a 1 in the ith 
position and a 0 otherwise.

    By the product rule, there are  2|S| such bit strings, and therefore 2|S| 
subsets. 
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Product Rule in Terms of Sets
● If A1, A2, … , Am are finite sets, then the number of elements in the 

Cartesian product of these sets is the product of the number of 
elements of each set.
● The task of choosing an element in the Cartesian product A1 ⨉ A2 

⨉ ··· ⨉ Am is done by choosing an element in A1, an element in 
A2 , …, and an element in Am. 

● By the product rule, it follows that:
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|A1 ⨉ A2 ⨉ ··· ⨉ Am |= |A1| · |A2| ·  ···  · |Am|.  



The Sum Rule

   If a task can be done either in one of n1 ways or in one of  n2, 
where none of the set of n1 ways is the same as any of the  n2 
ways,  then there are n1 + n2 ways  to do the task.
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The Sum Rule
    Example:  The mathematics department must choose 

either a student or a faculty member as a representative 
for a university committee. How many choices are there 
for this representative if there are 
• 37 members of the mathematics faculty and 
• 83 mathematics majors and 
• no one is both a faculty member and a student.

    
   Solution: By the sum rule it follows that there are                    

37 + 83 = 120 possible ways to pick a representative.
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The Sum Rule in terms of sets.
● The sum rule can be phrased in terms of sets.
          |A ∪ B|= |A| + |B| as long as A and B are 

disjoint sets.
● Or more generally,

● The case where the sets have elements in common, 
we will consider the subtraction rule (Chapter 8).
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|A1 ∪ A2 ∪ ··· ∪ Am |= |A1| + |A2| + ··· + |Am|  
              when Ai ∩ Aj  = ∅ for all i, j.



Combining the Sum and Product Rule
   Example: Suppose that variables in a programming 

language can be either a single letter or a letter 
followed by a digit. Find the number of possible 
labels.

    Solution:  Use the sum and the product rule.
         26 + 26 · 10 = 286
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Counting Passwords
● Combining the sum and product rule allows us to solve more complex problems.
      Example: Each user on a computer system has a password, which is six to eight 

characters long, where each character is an uppercase letter or a digit. Each password 
must contain at least one digit. 

How many possible passwords are there?

      Solution:  Let P be the total number of passwords, and let P6, P7, and P8 be the 
passwords of length 6, 7, and 8. 
● By the sum rule P = P6 + P7 +P8. 
● To find each of P6, P7, and P8 , we find the number of passwords of the specified length 

composed of letters and digits and subtract the number composed only of letters. We find 
that:
     
           P6 = 366 − 266            

P7 = 367 − 267 
                P8 = 368 − 268                     
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Internet Addresses
● Version 4 of the Internet Protocol (IPv4) uses 32 bits.

● Class A Addresses: used for the largest networks, a 0, followed by a 7-bit netid 
and a 24-bit hostid.

● Class B Addresses: used for the medium-sized networks, a 10, followed by a 
14-bit netid and a 16-bit hostid.

● Class C Addresses: used for the smallest networks, a 110, followed by a 21-bit 
netid and a 8-bit hostid.
● Neither Class D nor Class E addresses are assigned as the address of a computer on 

the internet. Only Classes A, B, and C are available. 
● 1111111 is not available as the netid of a Class A network.
● Hostids consisting of all 0s and all 1s are not available in any network. 
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Counting Internet Addresses
    Example: How many different IPv4 addresses are available for 

computers on the internet?
    Solution: Use both the sum and the product rule. Let x be the number 

of available addresses, and let xA, xB, and xC denote the number of 
addresses for the respective classes.
● To find, xA: 27 − 1 netids. 224 − 2 hostids. 
                   xA = (27 − 1 )·( 224 − 2)    ———->127· 16,777,214 = 2,130,706,178.
● To find, xB: 214 netids. 216 − 2 hostids. 
                   xB = 214 · (216 − 2)    ——————————->16,384 · 16, 534 = 1,073,709,056.
● To find, xC: 221 = 2,097,152 netids. 28 − 2 = 254 hostids. 
                   xC = 221 · (28 − 2)   ——————>2,097,152 · 254 = 532,676,608.
● Hence, the total number of available IPv4 addresses is
            x = xA +  xB  + xC                            => 3, 737,091,842.
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Subtraction Rule
If a task can be done either in one of n1 ways or in one of  n2 ways, then the total 
number of ways to do the task is  n1 + n2 minus the number of ways  to do the task 
that are common to the two different ways.

Also known as, the principle of inclusion-exclusion:
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Counting Bit Strings
   Example: How many bit strings of length eight either 

start with a 1 bit or end with the two bits 00?
   Solution:  Use the subtraction rule.

● Number of bit strings of length eight                                    
that start with a 1 bit:  27 = 128

● Number of bit strings of length eight                                    
that end with bits 00:  26 = 64

● Number of bit strings of length eight                                
that start with a 1 bit and end with bits 00 :  25 = 32

    Hence, the number is 128 + 64 − 32 = 160.
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Division Rule

     There are n/d ways to do a task if it can be done using a procedure that can be carried 
out in n ways, and for every way w, exactly d of the n ways correspond to way w. 

• In terms of sets: If the finite set A is the union of n pairwise disjoint subsets each with d 
elements, then the pairwise disjoint subsets n = |A|/d.

• In terms of functions: If f is a function from A to B, where both are finite sets, and for 
every value y ∈ B there are exactly d values x ∈ A such that f(x) = y, then   |B| = |A|/d.
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Division Rule
  
     Example: How many ways are there to seat four people around a circular table, where two 

seatings are considered the same when each person has the same left  and right neighbor?
     
    Solution: Number the seats around the table from 1 to 4 proceeding clockwise. There are:

• 4 ways to select the person for seat 1, 
• 3 for seat 2, 
• 2, for seat 3, 
• 1 way for seat 4. 

     Thus there are 4! = 24 ways to order the four people. 

Note that rotations are not considered as new arrangements. 
Hence, if we take a person as a reference point, there are only 3! arrangements taking 
this person as a reference. 

• In other words, there are 4 such combinations where the same reference sits in a 
different chair.

     
      Therefore, by the division rule, there are 24/4 = 6 different seating arrangements. 

25



Tree Diagrams
● Tree Diagrams:  We can solve many counting problems through the 

use of tree diagrams, where   a branch represents a possible choice and 
the leaves represent possible outcomes. 
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Tree Diagrams
● Tree Diagrams:  We can solve many counting problems through the use of tree 

diagrams, where   a branch represents a possible choice and the leaves represent 
possible outcomes. 

● Example: Suppose that T-shirts come in 
● five different sizes: S,M,L,XL, and XXL. 
● Each size comes in four colors (white, red, green, and black), 

● except XL, which comes only in red, green, and black, and 
● XXL, which comes only in green and black. 

What is the minimum number of shirts that the campus book store needs to stock to 
have one of each size and color available?

● Solution: Draw the tree diagram.

● The store must stock 17 T-shirts.
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The Pigeonhole Principle
Section 6.2



Section Summary
● The Pigeonhole Principle
● The Generalized Pigeonhole Principle
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The Pigeonhole Principle
● If a flock of 13 pigeons roosts in a set of  12 pigeonholes, one of 

the pigeonholes must have more than 1 pigeon.
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The Pigeonhole Principle

    Pigeonhole Principle: If k is a positive integer and k + 1 objects 
are placed into k boxes, then at least one box contains two or 
more objects. 

    Proof: We use a proof  by contradiction. Suppose none of the k 
boxes has more than one object. Then the total number of 
objects would be at most k. This contradicts the statement that 
we have k + 1 objects.
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The Pigeonhole Principle
   Corollary 1: A function f from a set with k + 1 

elements to a set with k elements is not one-to-one.
   Proof: Use the pigeonhole principle.

● Create a box for each element y in the codomain of f .
● Put in the box for y all of the elements x from the 

domain such that f(x) = y.  
● Because there are k + 1 elements and only k boxes, at 

least one box has two or more elements. 
    Hence, f can’t be one-to-one.
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Pigeonhole Principle

   Example: Among any group of 367 people, there must be at 
least two with the same birthday, because there are only 366 
possible birthdays.
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Example: At least two students registered for this 
course will receive exactly the same final exam 
mark. Why? 
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Example: At least two students registered for this course 
will receive exactly the same final exam mark. Why? 

There are at least 102 students registered for this class 
(the actual number is more than 190), so, there are at 
least 102 objects. 

Final exam marks are integers in the range 0-100 (so, 
exactly 101 boxes). 
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The Generalized Pigeonhole Principle
    The Generalized Pigeonhole Principle: If N objects are 

placed into k boxes, then there is at least one box 
containing at least ⌈N/k⌉ objects.

   
   Example: Among 100 people there are at least     
  ⌈100/12⌉ = 9 who were born in the same month.
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The Generalized Pigeonhole Principle
    Example:  How many cards must be selected from a standard 

deck of 52 cards to guarantee that at least three cards of the 
same suit are chosen? 
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The Generalized Pigeonhole Principle
    Example:  How many cards must be selected from a standard 

deck of 52 cards to guarantee that at least 3 cards of the same 
suit are chosen? 

     Solution: 
We assume four boxes; one for each suit. 
Using the generalized pigeonhole principle, at least one box 

contains at least ⌈N/4⌉ cards. 
At least three cards of one suit are selected if ⌈N/4⌉ ≥3. The 

smallest integer N such that ⌈N/4⌉ ≥3 is:  
N = 2 · 4 + 1 = 9.
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The Generalized Pigeonhole Principle
    Example:  Selecting again from a standard deck of 52 cards; 
    how many must be selected to guarantee that at least 3 hearts 

are selected?
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The Generalized Pigeonhole Principle
    Example:  Selecting again from a standard deck of 52 cards; 
    how many must be selected to guarantee that at least 3 hearts 

are selected?
    Solution:
     A deck contains 13 hearts and 39 cards which are not hearts. 
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The Generalized Pigeonhole Principle
    Example:  Selecting again from a standard deck of 52 cards; 
    how many must be selected to guarantee that at least 3 hearts 

are selected?
    Solution:
     A deck contains 13 hearts and 39 cards which are not hearts. 
     So, if we select 41 cards, we may have 39 cards which are not hearts 

along with 2 hearts.
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The Generalized Pigeonhole Principle
    Example:  Selecting again from a standard deck of 52 cards; 
    how many must be selected to guarantee that at least 3 hearts 

are selected?
    Solution:
     A deck contains 13 hearts and 39 cards which are not hearts. 
     So, if we select 41 cards, we may have 39 cards which are not hearts 

along with 2 hearts. 
    However, when we select 42 cards, we must have at least 3 hearts. 

(Note that the generalized pigeonhole principle is not used here.)
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More examples
● Let ABC be an equilateral triangle with |AB|=1. 

Show that by selecting 10 points in this triangle, there 
are at least two points with distance  apart.≤ 1/3
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More examples
● Let ABC be an equilateral triangle with |AB|=1. 

Show that by selecting 10 points in this triangle, there 
are at least two points with distance  apart.≤ 1/3
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More examples
● Let ABC be an equilateral triangle with |AB|=1. 

Show that by selecting 10 points in this triangle, there 
are at least two points with distance  apart.≤ 1/3
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A point can be at most 1/3 apart within 
each triangle.

When we select 10 points, at least 2 will 
be in the same triangle; so the distance 
between them will be ≤ 1/3


