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Basic Counting Principles: The Product 
Rule 
   The Product Rule: A procedure can be broken down 

into a sequence of two tasks. There are n1 ways to do 
the first task and n2 ways to do the second task. Then 
there are n1∙n2 ways to do the procedure. 

 

   Example: How many bit strings of length seven are 
there? 

   Solution: Since each of the seven bits is either a 0 or a 
1, the answer is 27 = 128. 

 



The Product Rule 
   Example: How many different license plates can be 

made if each plate contains a sequence of three 
uppercase English letters followed by three digits? 

   Solution:  By the product rule, 

    there are 26 ∙ 26 ∙ 26 ∙ 10 ∙ 10 ∙ 10 = 17,576,000 
different possible license plates. 



Counting Functions 
    Counting Functions: How many functions are there from a set 

with m elements to a set with n elements? 
    Solution:  Since a function represents a choice of one of the n 

elements of the codomain for each of the m elements in the 
domain, the product rule tells us that there are n ∙ n ∙ ∙ ∙  n = nm 
such functions. 

 
    Counting One-to-One Functions: How many one-to-one 

functions are there from a set with m elements to one with n 
elements? 

    Solution: Suppose the elements in the domain are                      
a1, a2,…, am. There are n ways to choose the value of a1 and n−1 
ways to choose a2, etc. The product rule tells us that there are                          
n(n−1) (n−2)∙∙∙(n−m +1) such functions. 



Telephone Numbering Plan 
     Example: The North American numbering plan (NANP) specifies that a telephone 

number consists of 10 digits, consisting of a three-digit area code, a three-digit office 
code, and a four-digit station code.  There are some restrictions on the digits. 
 Let X denote a digit from 0 through 9. 
 Let N denote a digit from 2 through 9. 
 Let Y denote a digit that is  0 or 1. 
 In the old plan (in use in the 1960s) the format was NYX-NNX-XXX. 
 In the new plan, the format is NXX-NXX-XXX. 

     How many different telephone numbers are possible under the old plan and the new 
plan? 

 
     Solution:  Use the Product Rule. 

 There are 8 ∙2 ∙10 = 160 area codes with the format NYX. 
 There are  8 ∙10 ∙10 = 800 area codes with the format NXX.  
 There are 8 ∙8 ∙10 = 640 office codes with the format NNX.   
 There are  10 ∙10 ∙10 ∙10 = 10,000 station codes with the format XXXX.  

     Number of  old plan telephone numbers: 160 ∙640 ∙10,000 = 1,024,000,000. 
     Number of new plan telephone numbers: 800 ∙800 ∙10,000 = 6,400,000,000. 

 
 



Counting Subsets of a Finite Set 
   Counting Subsets of a Finite Set: Use the product rule to 

show that the number of different subsets of a finite set S is 
2|S|. (In Section 5.1, mathematical induction was used 
to prove this same result.) 

    Solution: When the elements of S are listed in an 
arbitrary order, there is a one-to-one correspondence 
between subsets of S and bit strings of length |S|.  When 
the ith element is in the subset, the bit string has a 1 in the 
ith position and a 0 otherwise. 

 
    By the product rule, there are  2|S| such bit strings, and 

therefore 2|S| subsets.  
       



Product Rule in Terms of Sets 
 If A1, A2, … , Am are finite sets, then the number of 

elements in the Cartesian product of these sets is the 
product of the number of elements of each set. 

 The task of choosing an element in the Cartesian 

product A1 ⨉ A2 ⨉ ∙∙∙ ⨉ Am is done by choosing an 
element in A1, an element in A2 , …, and an element 
in Am.  

 By the product rule, it follows that: 

 

 

|A1 ⨉ A2 ⨉ ∙∙∙ ⨉ Am |= |A1| ∙ |A2| ∙  ∙∙∙  ∙ |Am|.   
               



DNA and Genomes 
 A gene is a segment of a DNA molecule that encodes a particular 

protein and the entirety of genetic information of an organism is called 
its genome. 

 DNA molecules consist of two strands of blocks known as nucleotides. 
Each nucleotide is composed of bases: adenine (A), cytosine (C), 
guanine (G), or thymine (T).  

 The DNA of bacteria has between 105 and 107 links (one of the four 
bases). Mammals have between 108 and 1010 links. So, by the product 
rule there are at least  4105 different  sequences of bases in the DNA of 
bacteria and 4108 different sequences of bases in the DNA of mammals. 

 The human genome includes approximately 23,000 genes, each with 
1,000 or more links. 

 Biologists, mathematicians, and computer scientists all work on  
determining the DNA sequence (genome) of different organisms.  



Basic Counting Principles:  The Sum Rule 
   The Sum Rule: If a task can be done either in one of n1 

ways or in one of  n2, where none of the set of n1 ways is the 
same as any of the  n2 ways,  then there are n1 + n2 ways  to 
do the task. 

    Example:  The mathematics department must choose 
either a student or a faculty member as a representative for 
a university committee. How many choices are there for 
this representative if there are 37 members of the 
mathematics faculty and 83 mathematics majors and no 
one is both a faculty member and a student. 

    Solution: By the sum rule it follows that there are                    
37 + 83 = 120 possible ways to pick a representative. 

 

 



The Sum Rule in terms of sets. 
 The sum rule can be phrased in terms of sets. 

          |A ∪ B|= |A| + |B| as long as A and B are disjoint 
sets. 

 Or more generally, 

 

 

 

 The case where the sets have elements in common will 
be discussed when we consider the subtraction rule 
and taken up fully in Chapter 8. 

 

|A1 ∪ A2 ∪ ∙∙∙ ∪ Am |= |A1| + |A2| + ∙∙∙ + |Am|   
              when Ai ∩ Aj  = ∅ for all i, j. 
  



Combining the Sum and Product 
Rule 
   Example: Suppose statement labels in a programming 

language can be either a single letter or a letter 
followed by a digit. Find the number of possible labels. 

    Solution:  Use the product rule. 

         26 + 26 ∙ 10 = 286 



Counting Passwords 
 Combining the sum and product rule allows us to solve more complex problems. 
      Example: Each user on a computer system has a password, which is six to eight 

characters long, where each character is an uppercase letter or a digit. Each password 
must contain at least one digit. How many possible passwords are there? 

 
      Solution:  Let P be the total number of passwords, and let P6, P7, and P8 be the 

passwords of length 6, 7, and 8.  
 By the sum rule P = P6 + P7 +P8.  
 To find each of P6, P7, and P8 , we find the number of passwords of the specified length 

composed of letters and digits and subtract the number composed only of letters. We find 
that: 
      

           P6 = 366 − 266  =2,176,782,336 − 308,915,776 =1,867,866,560. 
           P7 = 367 − 267  = 
                        78,364,164,096 − 8,031,810,176 =  70,332,353,920. 
           P8 = 368 − 268  = 
                       2,821,109,907,456 − 208,827,064,576 =2,612,282,842,880. 
 
Consequently, P = P6 + P7 +P8 = 2,684,483,063,360. 



Internet Addresses 
 Version 4 of the Internet Protocol (IPv4) uses 32 bits. 

 
 
 
 
 
 Class A Addresses: used for the largest networks, a 0,followed by a 7-bit netid 

and a 24-bit hostid. 
 Class B Addresses: used for the medium-sized networks, a 10,followed by a 

14-bit netid and a 16-bit hostid. 
 Class C Addresses: used for the smallest networks, a 110,followed by a 21-bit 

netid and a 8-bit hostid. 
 Neither Class D nor Class E addresses are assigned as the address of a computer 

on the internet. Only Classes A, B, and C are available.  
 1111111 is not available as the netid of a Class A network. 
 Hostids consisting of all 0s and all 1s are not available in any network.  



Counting Internet Addresses 
    Example: How many different IPv4 addresses are available for 

computers on the internet? 
    Solution: Use both the sum and the product rule. Let x be the number 

of available addresses, and let xA, xB, and xC denote the number of 
addresses for the respective classes. 
 To find, xA: 27 − 1 = 127 netids. 224 − 2 = 16,777,214 hostids.  
                   xA = 127∙ 16,777,214 = 2,130,706,178. 
 To find, xB: 214 = 16,384 netids. 216 − 2 = 16,534 hostids.  
                   xB = 16,384 ∙ 16, 534 = 1,073,709,056. 
 To find, xC: 221 = 2,097,152 netids. 28 − 2 = 254 hostids.  
                   xC = 2,097,152 ∙ 254 = 532,676,608. 
 Hence, the total number of available IPv4 addresses is 
            x = xA +  xB  + xC  
              = 2,130,706,178 + 1,073,709,056 + 532,676,608 
               = 3, 737,091,842. Not Enough Today !! 

The newer IPv6 protocol solves the problem 
of too few addresses. 



Basic Counting Principles: 
Subtraction Rule 
   Subtraction Rule: If a task can be done either in one 

of n1 ways or in one of  n2 ways, then the total number 
of ways to do the task is  n1 + n2 minus the number of 
ways  to do the task that are common to the two 
different ways. 

 Also known as, the principle of inclusion-exclusion: 



Counting Bit Strings 
   Example: How many bit strings of length eight either 

start with a 1 bit or end with the two bits 00? 

   Solution:  Use the subtraction rule. 

 Number of bit strings of length eight                                    
that start with a 1 bit:  27 = 128 

 Number of bit strings of length eight                                    
that end with bits 00:  26 = 64 

 Number of bit strings of length eight                                
that start with a 1 bit and end with bits 00 :  25 = 32 

    Hence, the number is 128 + 64 − 32 = 160. 

 

 



Basic Counting Principles: Division 
Rule 
    Division Rule: There are n/d ways to do a task if it can be done using a procedure that can 

be carried out in n ways, and for every way w, exactly d of the n ways correspond to way 
w.  

 Restated in terms of sets: If the finite set A is the union of n pairwise disjoint subsets 
each with d elements, then n = |A|/d. 

 In terms of functions: If f is a function from A to B, where both are finite sets, and for 
every value y ∈ B there are exactly d values x ∈ A such that f(x) = y, then   |B| = |A|/d. 

 

     Example: How many ways are there to seat four people around a circular table, where two 
seatings are considered the same when each person has the same left  and right 
neighbor? 

     Solution: Number the seats around the table from 1 to 4 proceeding clockwise. There are 
four ways to select the person for seat 1, 3 for seat 2, 2, for seat 3, and one way for seat 4. 
Thus there are 4! = 24 ways to order the four people. But since two seatings are the same 
when each person has the same left and right neighbor, for every choice for seat 1, we get 
the same seating.  

       
      Therefore, by the division rule, there are 24/4 = 6 different seating arrangements.  



Tree Diagrams 
 Tree Diagrams:  We can solve many counting problems through the 

use of tree diagrams, where   a branch represents a possible choice and 
the leaves represent possible outcomes.  

 Example: Suppose that “I Love Discrete Math” T-shirts come in five 
different sizes: S,M,L,XL, and XXL. Each size comes in four colors 
(white, red, green, and black), except XL, which comes only in red, 
green, and black, and XXL, which comes only in green and black. What 
is the minimum number of shirts that the campus book store needs to 
stock to have one of each size and color available? 

 Solution: Draw the tree diagram. 
 
 
 
 
 The store must stock 17 T-shirts. 
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The Pigeonhole Principle 
 If a flock of 20 pigeons roosts in a set of  19 pigeonholes, one of 

the pigeonholes must have more than 1 pigeon. 
 

 
 
 
 

    Pigeonhole Principle: If k is a positive integer and k + 1 objects 
are placed into k boxes, then at least one box contains two or 
more objects.  

    Proof: We use a proof  by contraposition. Suppose none of the k 
boxes has more than one object. Then the total number of 
objects would be at most k. This contradicts the statement that 
we have k + 1 objects. 



The Pigeonhole Principle 
   Corollary 1: A function f from a set with k + 1 

elements to a set with k elements is not one-to-one. 

   Proof: Use the pigeonhole principle. 

 Create a box for each element y in the codomain of f . 

 Put in the box for y all of the elements x from the 
domain such that f(x) = y.   

 Because there are k + 1 elements and only k boxes, at 
least one box has two or more elements.  

    Hence, f can’t be one-to-one. 



Pigeonhole Principle 
   Example: Among any group of 367 people, there must be at least 

two with the same birthday, because there are only 366 possible 
birthdays. 

 

    Example (optional): Show that for every integer n there is a 
multiple of n that has only 0s and 1s in its decimal expansion.  

    Solution: Let n be a positive integer. Consider the n + 1 integers 
1, 11, 111, …., 11…1 (where the last has n + 1 1s). There are n 
possible remainders when an integer is divided by n. By the 
pigeonhole principle, when each of the n + 1 integers is divided 
by n, at least two must have the same remainder. Subtract the 
smaller from the larger and the result is a multiple of n that has 
only 0s and 1s in its decimal expansion.  



The Generalized Pigeonhole Principle 
    The Generalized Pigeonhole Principle: If N objects are 

placed into k boxes, then there is at least one box 
containing at least ⌈N/k⌉ objects. 

    Proof: We use a proof by contraposition. Suppose that 
none of the boxes contains more than ⌈N/k⌉ − 1 objects. 
Then the total number of objects is at most 

 
 
    where the inequality ⌈N/k⌉ < ⌈N/k⌉ + 1 has been used. This 

is a contradiction because there are a total of n objects. 
 
   Example: Among 100 people there are at least           

⌈100/12⌉ = 9 who were born in the same month. 



The Generalized Pigeonhole Principle 
    Example:  a) How many cards must be selected from a standard 

deck of 52 cards to guarantee that at least three cards of the 
same suit are chosen?  

    b) How many must be selected to guarantee that at least three 
hearts are selected? 

    Solution: a) We assume four boxes; one for each suit. Using the 
generalized pigeonhole principle, at least one box contains at 
least ⌈N/4⌉ cards. At least three cards of one suit are selected if 
⌈N/4⌉ ≥3. The smallest integer N such that ⌈N/4⌉ ≥3 is                            
N = 2 ∙ 4 + 1 = 9. 

     b) A deck contains 13 hearts and 39 cards which are not hearts. 
So, if we select 41 cards, we may have 39 cards which are not 
hearts along with 2 hearts. However, when we select 42 cards, we 
must have at least three hearts. (Note that the generalized 
pigeonhole principle is not used here.) 
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Permutations 
   Definition: A permutation of a set of distinct objects 

is an ordered arrangement of these objects. An ordered 
arrangement of r elements of a set is called an                      
r-permuation. 

   Example: Let S = {1,2,3}.  
 The ordered arrangement 3,1,2 is a permutation of S. 

 The ordered arrangement 3,2 is a 2-permutation of S. 

 The number of r-permuatations of a set with n 
elements is denoted by P(n,r). 
 The 2-permutations of S = {1,2,3} are 1,2; 1,3; 2,1; 2,3; 

3,1; and 3,2. Hence, P(3,2) = 6. 



A Formula for the Number of 
Permutations 
    Theorem 1: If n is a positive integer and r is an integer with            

1 ≤ r ≤ n, then there are 

         P(n, r) = n(n −  1)(n −  2) ∙∙∙  (n −  r + 1) 

    r-permutations of a set with n distinct elements. 

    Proof: Use the product rule. The first element can be chosen in n 
ways. The second in n −  1 ways, and so on until there are             
(n − ( r − 1)) ways to choose the last element. 

 Note that P(n,0) = 1, since there is only one way to order zero 
elements. 

    Corollary 1: If n and r are integers with 1 ≤ r ≤ n, then 

 

  



Solving Counting Problems by 
Counting Permutations 
   Example: How many ways are there to select a first-

prize winner, a second prize winner, and a third-prize 
winner from 100 different people who have entered a 
contest? 

 

    Solution:  

            P(100,3) = 100 ∙ 99 ∙ 98 = 970,200 



Solving Counting Problems by 
Counting Permutations (continued) 
   Example: Suppose that a saleswoman has to visit eight 

different cities. She must begin her trip in a specified 
city, but she can visit the other seven cities in any order 
she wishes. How many possible orders can the 
saleswoman use when visiting these cities? 

 

    Solution: The first city is chosen, and the rest are 
ordered arbitrarily. Hence the orders are: 

            7! = 7 ∙ 6 ∙ 5 ∙ 4 ∙ 3 ∙ 2 ∙ 1 = 5040 

    If she wants to find the tour with the shortest path that 
visits all the cities, she must consider 5040 paths! 



Solving Counting Problems by 
Counting Permutations (continued) 
   Example: How many permutations of the letters 

ABCDEFGH contain the string ABC ? 

 

    Solution: We solve this problem by counting the 
permutations of six objects, ABC, D, E, F, G, and H. 

 

             6! = 6 ∙ 5 ∙ 4 ∙ 3 ∙ 2 ∙ 1 = 720 



Combinations 
   Definition: An r-combination of elements of a set is an 

unordered selection of r elements from the set. Thus, an    
r-combination is simply a subset of the set with r elements. 

 The number of r-combinations of a set with n distinct 
elements is denoted by C(n, r). The notation          is also 
used and is called a binomial coefficient. (We will see the 
notation again in the binomial theorem in Section 6.4.) 

   Example: Let S be the set {a, b, c, d}. Then {a, c, d} is a 3-
combination from S. It is the same as {d, c, a} since the 
order listed does not matter. 

 C(4,2) = 6 because the 2-combinations of {a, b, c, d} are the 
six subsets {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, and {c, d}.  



Combinations 
   Theorem 2: The number of r-combinations of a set 

with n elements, where n ≥ r ≥ 0, equals 

 

 

    Proof:  By the product rule P(n, r) = C(n,r) ∙ P(r,r). 
Therefore,  



Combinations 
   Example: How many poker hands of five cards can be dealt 

from a standard deck of 52 cards? Also, how many ways are 
there to select 47 cards from a deck of 52 cards? 

   Solution: Since the order in which the cards are dealt does 
not matter, the number of five card hands is: 

 

 

 

 The different ways to select 47 cards from 52 is 

 

     

This is a special case of a general result. → 



Combinations 
   Corollary 2: Let n and r be nonnegative integers with     

r ≤ n. Then C(n, r) = C(n, n − r). 

   Proof: From Theorem 2, it follows that 

 

     and  

 

   Hence, C(n, r) = C(n, n − r). 

This result can be proved without using algebraic manipulation. → 



Combinatorial Proofs 
 Definition 1: A combinatorial proof of an identity is a 

proof that  uses one of the following methods. 

 A double counting proof uses counting arguments to 
prove that both sides of an identity count the same 
objects, but in different ways. 

 A bijective proof  shows  that there is a bijection between 
the sets of objects counted by the two sides of the 
identity. 



Combinatorial Proofs 
 Here are two combinatorial proofs that  
                    C(n, r) = C(n, n − r)  
    when r and n are nonnegative integers with r < n: 

 Bijective Proof: Suppose that S is a set with n elements. The 
function that maps a subset A of S to      is a bijection between 
the subsets of S with r elements and the subsets with n − r 
elements. Since there is a bijection between the two sets, they 
must have the same number of elements.     

 Double Counting Proof: By definition the number of subsets 
of S with r elements is C(n, r). Each subset A of S can also be 
described by specifying which elements are not in A, i.e., 
those which are  in     . Since the complement of a subset of S 
with r elements has n − r  elements, there are also C(n, n − r) 
subsets of S with r elements. 



Combinations 
   Example: How many ways are there to select five players 

from a 10-member tennis team to make a trip to a match at 
another school. 

   Solution: By Theorem 2, the number of combinations is 
 
 
   Example: A group of 30 people have been trained as 

astronauts to go on the first mission to Mars. How many 
ways are there to select a crew of six people to go on this 
mission? 

   Solution: By Theorem 2, the number of possible crews is 
  

 
 


