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Basic Structures:  
• Sets 
• Relations & Functions  
• Sequences and Sums 
• Cardinality of Sets

Chapter 2-Part II (Sec 2.3, 9.1, 9.5)



Relations and Their 
Properties
Section 9.1



Section Summary
● Relations and Functions
● Properties of Relations

● Reflexive Relations
● Symmetric and Antisymmetric Relations
● Transitive Relations

● Combining Relations
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Binary Relations

    Example:
● Let A = {0,1,2} and B = {a,b} 
● {(0, a), (0, b), (1,a) , (2, b)} is a relation from A to B. 
● We can represent relations from a set A to a set B 

graphically or using a table:
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A binary relation R from a set A to a set B is a subset R ⊆ A × B.



Binary Relation on a Set
  
   Example:

● Suppose that A = {a,b,c}. 
● Then R = {(a,a),(a,b), (a,c)} is a relation on A. 
● Let  B = {1, 2, 3, 4}. The ordered pairs in the relation                  

R  = {(x,y) | x divides y} are
     (1,1), (1, 2), (1,3), (1, 4), (2, 2), (2, 4), (3, 3), and  (4, 4).
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A binary relation R on a set A is a subset of A × A or a relation from A to A.



Binary Relation on a Set (cont.)
    Question: How many relations are there on a set A? 

Solution:  Because a relation on A is the same thing as a subset 
of A ⨉ A, we count the subsets of A × A. 
Since A × A has |A|2 elements; there are         subsets of  A × A. 

Therefore,  there are        relations on a set A.
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Binary Relations on a Set (cont.)
   Example: Consider these relations on the set of integers:

R1 = {(a,b) | a ≤ b},                            R4 = {(a,b) | a = b},
R2 = {(a,b) | a > b},                            R5 = {(a,b) | a = b + 1},
R3 = {(a,b) | a = b  or a = −b},           R6 = {(a,b) | a + b ≤ 3}.

Which of these relations contain each of the pairs                  
           (1,1), (1, 2), (2, 1), (1, −1), and (2, 2)?

    Solution: 
(1,1) is in R1, R3, R4 , and R6

(1,2) is in R1 and R6 
(2,1) is in R2, R5, and R6 
(1, −1) is in R2, R3, and R6 
(2,2) is in R1, R3, and R4.
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Note that these relations are on an infinite set and each of these relations is an infinite set.



Reflexive Relations
 

   Example: The following relations  on the integers are 
reflexive:
R1 = {(a,b) | a ≤ b},
R3 = {(a,b) | a = b  or a = −b},
R4 = {(a,b) | a = b}.
The following relations are not reflexive:
R2 = {(a,b) | a > b}  (note that  3 ≯ 3),
R5 = {(a,b) | a = b + 1} (note that  3 ≠3 + 1),
R6 = {(a,b) | a + b ≤ 3}  (note that 4  + 4 ≰ 3).
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R is reflexive iff (a,a) ∊ R for every element  a ∊ A. 
R is reflexive iff  ∀x[x∊U ⟶ (x,x) ∊ R]



Reflexive Relations
 

   Example: The following relations  on the integers are 
reflexive:
R1 = {(a,b) | a ≤ b},
R3 = {(a,b) | a = b  or a = −b},
R4 = {(a,b) | a = b}.
The following relations are not reflexive:
R2 = {(a,b) | a > b}  (note that  3 ≯ 3),
R5 = {(a,b) | a = b + 1} (note that  3 ≠3 + 1),
R6 = {(a,b) | a + b ≤ 3}  (note that 4  + 4 ≰ 3).
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If A = ∅  then the empty relation is 
reflexive vacuously. 

That is the empty relation on an 
empty set is reflexive! 

R is reflexive iff (a,a) ∊ R for every element  a ∊ A. 
R is reflexive iff  ∀x[x∊U ⟶ (x,x) ∊ R]



Symmetric Relations

   Example: The following relations  on the integers are symmetric:
R3 = {(a,b) | a = b  or a = −b},
R4 = {(a,b) | a = b},
R6 = {(a,b) | a + b ≤ 3}.
The following are not symmetric:
R1 = {(a,b) | a ≤ b} (note that 3 ≤ 4, but 4 ≰ 3),
R2 = {(a,b) | a > b}  (note that 4 > 3, but 3 ≯ 4),
R5 = {(a,b) | a = b + 1} (note that 4 = 3 + 1, but 3 ≠4 + 1).
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R is symmetric iff (b,a) ∊ R whenever (a,b) ∊ R for all a,b ∊ A. 
R is symmetric iff ∀x∀y [(x,y) ∊R ⟶ (y,x) ∊ R]



Antisymmetric Relations

Example: The following relations  on the integers are antisymmetric:
R1 = {(a,b) | a ≤ b},
R2 = {(a,b) | a > b},
R4 = {(a,b) | a = b},
R5 = {(a,b) | a = b + 1}.
The following relations are not antisymmetric:
R3 = {(a,b) | a = b  or a = −b} 
                    (note that both (1,−1) and (−1,1) belong to R3),
R6 = {(a,b) | a + b ≤ 3} (note that both (1,2) and (2,1) belong to R6).
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For any integer, if a a ≤ b and 
b ≤ a , then a = b. 

For all a,b ∊ A  if (a,b) ∊ R and (b,a) ∊ R, then a = b  is called antisymmetric. 
R is antisymmetric iff ∀x∀y [(x,y) ∊R ∧ (y,x) ∊ R ⟶ x = y]



Transitive Relations
   

Example: The following relations  on the integers are transitive:
R1 = {(a,b) | a ≤ b},
R2 = {(a,b) | a > b},
R3 = {(a,b) | a = b  or a = −b},
R4 = {(a,b) | a = b}.
The following are not transitive:
 R5 = {(a,b) | a = b + 1} (note that both (3,2) and (4,3) belong to R5, but not (3,3)),
 R6 = {(a,b) | a + b ≤ 3} (note that both (2,1) and (1,2) belong to R6, but not (2,2)).
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For every integer, a ≤ b 
 and b ≤ c, then a ≤ c.    

A relation R on a set A is called transitive if whenever (a,b) ∊ R and (b,c) ∊ R, then 
(a,c) ∊ R, for all a,b,c ∊ A. 

R is transitive iff ∀x∀y ∀z[(x,y) ∊R ∧ (y,z) ∊ R ⟶ (x,z) ∊ R ]



Combining Relations
● Given two relations R1 and R2, we can combine them using basic set 

operations to form new relations such as R1 ∪ R2, R1 ∩ R2, R1 − R2, and R2 − R1.

● Example: Let A = {1,2,3} and B = {1,2,3,4}. The relations R1 = {(1,1),(2,2),(3,3)} 
and  R2 = {(1,1),(1,2),(1,3),(1,4)} can be combined using basic set operations to 
form new relations:
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R1 ∪ R2 ={(1,1),(1,2),(1,3),(1,4),(2,2),(3,3)} 

R1 ∩ R2 ={(1,1)} 

R1 − R2 ={(2,2),(3,3)} 

R2 − R1 ={(1,2),(1,3),(1,4)} 



Composition
Suppose

● R1 is a relation from a set A to a set B.

● R2 is a relation from B to a set C.

   Then the composition (or composite) of R2  with R1, is a 
relation from A to C where
● if (x,y) is a member of R1  and (y,z)  is a member of R2, 

then (x,z) is a member of R2∘ R1.
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Equivalence Relations
Section 9.5



Equivalence Relations
   Definition 1: 
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A relation on a set A is called an equivalence relation if 
it is reflexive, symmetric, and transitive. 



Equivalence Relations
   Definition 2: 
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Two elements a and b that are related by an 
equivalence relation are called  equivalent.  

The notation a ∼ b is often used to denote that a and b 
are equivalent elements with respect to a particular 
equivalence relation.



Strings
   
     Example: Suppose that R is the relation on the set of strings of English letters 

such that aRb if and only if l(a) = l(b), where l(x) is the length of the string x. 
Is R an equivalence relation? 

    Solution: We show that all of the properties of an equivalence relation hold.
● Reflexivity: Because l(a) = l(a), it follows that aRa for all strings a. 
● Symmetry: Suppose that aRb.  

Since l(a) = l(b), l(b) = l(a) also holds  and bRa. 
● Transitivity: Suppose that aRb and bRc. 

Since l(a) = l(b),and l(b) = l(c), l(a) = l(a) also holds and aRc. 
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Congruence Modulo m
   Example:  Let m be an integer with m > 1. 
   Show that the relation  R = {(a,b) | a ≡ b (mod m)} 
    is an equivalence relation on the set of integers.

   Solution:  Recall that a ≡ b (mod m) if and only if m  divides a − b.
● Reflexivity:  a ≡ a (mod m) since a − a = 0 is divisible by m since   0 = 0 · m.
● Symmetry:  Suppose that a ≡ b (mod m). 

Then a − b is divisible by m, and so a − b = km, where k is an integer. 
It follows that b − a = (− k) m, so b ≡ a (mod m). 

● Transitivity: Suppose that a ≡ b (mod m) and b ≡ c (mod m). 
Then m divides both a − b and b − c. 
Hence, there are integers k and l with  a − b = km  and b − c = lm. 
We obtain by adding the equations: 

               a − c = (a − b)  + (b − c)  = km + lm = (k + l) m.
    Therefore, a ≡ c (mod m).
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Divides
   Example:  Show that the “divides” relation on the set of positive integers is not 

an equivalence relation.

   Solution:
● Reflexivity:  a ∣ a for all a. 
● Not Symmetric: For example, 2 ∣ 4, but 4 ∤ 2. 

Hence, the relation is not symmetric. 
● Transitivity:  Suppose that a divides b and b divides c. 

Then there are positive integers k and l such that b = ak and c = bl. 
Hence, c = a(kl), so a divides c. 
Therefore, the relation is transitive. 

The properties of reflexivity, and transitivity do hold, but the relation is not 
symmetric. Hence, “divides” is not an equivalence relation.
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Functions
Section 2.3



Functions
Let A and B be nonempty sets. 
• A function f  from A to B, denoted  f: A → B is an 

assignment of each element of A to exactly one element of B.  
• We write  f(a) = b  if b is the unique element of B assigned by 

the function f to the element a of A. 

•Ex: f(Jalen Williams) = B
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Functions 
● A function f: A → B  is a subset of A×B (a relation). 
● Restriction: a relation where no two elements of 

the relation have the same first element. 
● Specifically, f: A → B contains one, and only one 

ordered pair (a, b) for every element a∈ A. 

 
and
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Functions
Given a function f: A → B: 
● We say f maps A to B or 
        f is a mapping from  A to B.

● The range of f is the set of all images of points in A under f. We 
denote it by f(A).

● Two functions are equal when; 
● they have the same domain, 
● same codomain 
● map each element of the domain to the same element of the 

codomain. 
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Domain Codomain

image of apreimage of b



Representing Functions
● Functions may be specified in different ways:

● An explicit statement of the assignment.
Students and grades example.

● A formula. 
f(x) = x + 1

● A computer program.
● A Java program that when given an integer n, produces the 

nth Fibonacci Number.
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Questions
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f(a) = ? A B
a

b

c

d

x

y

z

The image of d is ?

The domain of f is ?

The codomain of f is ?

The preimage of y is ?

f(A) = ?

The preimage(s) of z is (are) ?



Questions
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f(a) = ? A B
a

b

c

d

x

y

z

z

The image of d is ? z

The domain of f is ? A

The codomain of f is ? B
The preimage of y is ? b
f(A) = ?

{a,c,d}The preimage(s) of z is (are) ?

{y,z}



Question 
● If                         and  S is a subset of A, then 
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Question on Functions and Sets 
● If                         and  S is a subset of A, then 
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Injections
   Definition: A function f is said to be one-to-one ,  or 

injective, if and only if f(a) = f(b) implies that  a = b for all 
a and b in the domain of f. 
• A function is said to be an injection if it is one-to-

one.
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Surjections
  Definition: A function f from A to B is called onto or 

surjective, if and only if for every element               
there is an element               with                   .  
• A function f is called a surjection if it is onto.
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Bijections
   Definition: A function f is a one-to-one correspondence, 

or a bijection, if it is both one-to-one and onto 
(surjective and injective).
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Showing that f is one-to-one or onto
   Example 1: Let f be the function from {a,b,c,d} to 

{1,2,3} defined by f(a) = 3, f(b) = 2, f(c) = 1, and f(d) = 3. 
Is f an onto function?

    
   Solution: Yes, f is onto since all three elements of the 

codomain are images of elements in the domain. 
• If the codomain were changed to {1,2,3,4}, f  

would not be onto. 
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Showing that f is one-to-one or onto
   Example 2: Is the function  f(x) = x2    from the set of 

integers to the set of integers onto?  
   
Solution: No, f is  not onto because there is no integer x 

with x2  = −1, for example. 
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Inverse Functions
   Definition: Let f be a bijection from A to B. Then the 

inverse of f, denoted          , is the function from B to A 
defined as
•    No inverse exists unless f is a bijection. Why?
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Inverse Functions 
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Questions
   Example 1: Let f be the function from {a,b,c} to {1,2,3} 

such that f(a) = 2, f(b) = 3, and f(c) = 1. Is f invertible 
and if so what is its inverse?
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Questions
   Example 1: Let f be the function from {a,b,c} to {1,2,3} 

such that f(a) = 2, f(b) = 3, and f(c) = 1. Is f invertible 
and if so what is its inverse?
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Solution: The function f is invertible because it is a bijection (one-
to-one and onto). The inverse function f-1  reverses the 
correspondence given by f, so; 

f-1 (1) = c,    f-1 (2) = a,  and f-1 (3) = b.



Questions
   Example 2: Let f: Z → Z be such that f(x) = x + 1. Is f 

invertible, and if so, what is its inverse? 
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Questions
   Example 2: Let f: Z → Z be such that f(x) = x + 1. Is f 

invertible, and if so, what is its inverse? 
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Solution: The function f is invertible because it is a 
one-to-one correspondence. The inverse function f-1  
reverses the correspondence  so f-1 (y) = y – 1.   



Questions
   Example 3: Let f: R → R be such that                    .    Is f 

invertible, and if so, what is its inverse? 
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Questions
   Example 3: Let f: R → R be such that                    .    Is f 

invertible, and if so, what is its inverse? 
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Solution: The function f is not invertible because it 
is not one-to-one . f(-1) = f(1) = 1



Composition
● Definition: Let f: B → C, g: A → B. The composition of f with g, 

denoted            is the function from A to C defined by
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Composition 
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Composition
   Example 1: If                         and                                  , 

then 

and  
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Composition Questions
   Example 2: Let g be the function from the set {a,b,c} to itself such that g(a) = b, 
g(b) = c, and g(c) = a. Let  f be the function from the set {a,b,c} to the set {1,2,3} 
such that     f(a) = 3, f(b) = 2, and f(c) = 1.
    
What is the composition of f and g, and what is the composition of g and f.
    
Solution:  The composition f∘g  is defined by 

f∘g  (a)= f(g(a)) = f(b) = 2. 
f∘g  (b)= f(g(b)) = f(c) = 1. 
f∘g  (c)= f(g(c)) = f(a) = 3. 

Note that g∘f  is not defined, because the range of f is not a subset of the domain 
of g. 
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Composition Questions

   Example 2: Let f and g be functions from the set of integers to the set of 
integers defined by  f(x) = 2x + 3 and g(x) = 3x + 2. 
   
What is the composition of f and g, and also the composition of g and f ?

     Solution:
f∘g  (x)= f(g(x)) = f(3x + 2) = 2(3x + 2) + 3 = 6x + 7
g∘f  (x)= g(f(x)) = g(2x + 3) = 3(2x + 3) + 2 = 6x + 11 
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Graphs of Functions

Let f be a function from the set A to the set B. The graph of the function f is the 
set of ordered pairs   {(a,b) | a ∈A and f(a) = b}.
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Graph of f(n) = 2n + 1 
    from Z to Z

Graph of f(x) = x2 
    from Z to Z



Some Important Functions
● The floor function, denoted
 is the largest integer less than or equal to x.

● The ceiling function, denoted
 is the smallest integer greater than or  equal to x
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Example:



Floor and Ceiling Functions 
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Graph of (a) Floor and (b) Ceiling Functions 
    



Floor and Ceiling Functions 
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Proving Properties of Functions 
   Example: Prove that x is a real number, then
                          ⌊2x⌋= ⌊x⌋ + ⌊x + 1/2⌋
    Solution: Let x = n + ε, where n is an integer and 0 ≤ ε< 1. 
  Case 1:    0 ≤ ε < ½

● 2x = 2n + 2ε  and  ⌊2x⌋ = 2n, since 0 ≤ 2ε< 1.
● ⌊x + 1/2⌋ = n, since x + ½ = n + (1/2 + ε ) and 0 ≤ ½ +ε < 1. 
● Hence, ⌊2x⌋ = 2n and ⌊x⌋ + ⌊x + 1/2⌋ = n + n  = 2n.

  Case 2:   ½  ≤ ε < 1 
● 2x = 2n + 2ε =  (2n + 1) +(2ε  − 1). Because  0 ≤ 2 ε - 1< 1, it follows 

that⌊2x⌋ =2n + 1,                  
● ⌊x + 1/2⌋ = ⌊ n + (1/2 + ε)⌋ = ⌊ n + 1 - 1 +  (1/2+ ε)⌋ = ⌊ n+1+(ε-1/2)⌋=

 n + 1 since   0 ≤ ε – 1/2< 1. 
● Hence,  ⌊2x⌋ = 2n + 1 and ⌊x⌋ + ⌊x + 1/2⌋ = n + (n + 1)  = 2n + 1.           
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Factorial Function 

   Definition:  f: N → Z+ , denoted by f(n) = n! is the product of the first n 
positive integers when n is a nonnegative integer.

        f(n) = 1 · 2 ··· (n – 1) · n,         f(0)  = 0! = 1
   
Examples:
      f(1) = 1!  = 1

        f(2) = 2! =  1 · 2 = 2
       f(6)  = 6! =  1 · 2 · 3· 4· 5 · 6 = 720
       f(20) = 2,432,902,008,176,640,000.
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