Chapter 2-Part II (Sec 2.3, 9.1, 9.5)

## Basic Structures:

- Sets
- Relations \& Functions
- Sequences and Sums
- Cardinality of Sets



## Relations and Their

 PropertiesSection 9.1

## Section Summary

- Relations and Functions
- Properties of Relations
- Reflexive Relations
- Symmetric and Antisymmetric Relations
- Transitive Relations
- Combining Relations


## Binary Relations

## A binary relation $R$ from a set $A$ to a set $B$ is a subset $R \subseteq A \times B$.

## Example:

- Let $A=\{0,1,2\}$ and $B=\{a, b\}$
- $\{(0, a),(0, b),(1, a),(2, b)\}$ is a relation from $A$ to $B$.
- We can represent relations from a set $A$ to a set $B$ graphically or using a table:


| $R$ | $a$ | $b$ |
| :---: | :---: | :---: |
| 0 | $\times$ | $\times$ |
| 1 | $\times$ |  |
| 2 |  | $\times$ |

## Binary Relation on a Set

## A binary relation $R$ on $a$ set $A$ is a subset of $A \times A$ or a relation from $A$ to $A$.

## Example:

- Suppose that $A=\{a, b, c\}$.
- Then $R=\{(a, a),(a, b),(a, c)\}$ is a relation on $A$.
- Let $B=\{1,2,3,4\}$. The ordered pairs in the relation $\mathrm{R}=\{(x, y) \mid x$ divides y$\}$ are

$$
(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3), \text { and }(4,4)
$$

## Binary Relation on a Set (cont.)

Question: How many relations are there on a set $A$ ?

Solution: Because a relation on $A$ is the same thing as a subset of $A \times A$, we count the subsets of $A \times A$. Since $A \times A$ has $|\mathrm{A}|^{2}$ elements; there are $2^{|A|^{2}}$ subsets of $A \times A$.

Therefore, there are $2^{|A|^{2}}$ relations on a set $A$.

## Binary Relations on a Set (cont.)

Example: Consider these relations on the set of integers:

$$
\begin{array}{ll}
R_{1}=\{(a, b) \mid a \leq b\}, & R_{4}=\{(a, b) \mid a=b\}, \\
R_{2}=\{(a, b) \mid a>b\}, & R_{5}=\{(a, b) \mid a=b+1\}, \\
R_{3}=\{(a, b) \mid a=b \text { or } a=-b\}, & R_{6}=\{(a, b) \mid a+b \leq 3\} .
\end{array}
$$

Note that these relations are on an infinite set and each of these relations is an infinite set.

Which of these relations contain each of the pairs
$(1,1),(1,2),(2,1),(1,-1)$, and $(2,2)$ ?

## Solution:

$(1,1)$ is in $R_{1}, R_{3}, R_{4}$, and $R_{6}$
$(1,2)$ is in $R_{1}$ and $R_{6}$
$(2,1)$ is in $R_{2}, R_{5}$, and $R_{6}$
$(1,-1)$ is in $R_{2}, R_{3}$, and $R_{6}$
$(2,2)$ is in $R_{1}, R_{3}$, and $R_{4}$.

## Reflexive Relations

$R$ is reflexive iff $(a, a) \in R$ for every element $a \in \mathrm{~A}$.
R is reflexive iff $\forall x[x \in U \longrightarrow(x, x) \in R]$
Example: The following relations on the integers are reflexive:

$$
\begin{aligned}
& R_{1}=\{(a, b) \mid a \leq b\}, \\
& R_{3}=\{(a, b) \mid a=b \text { or } \mathrm{a}=-\mathrm{b}\}, \\
& R_{4}=\{(a, b) \mid a=b\} .
\end{aligned}
$$

The following relations are not reflexive:

$$
\begin{aligned}
& \left.R_{2}=\{(a, b) \mid a>b\} \quad \text { (note that } 3>3\right), \\
& \left.R_{5}=\{(a, b) \mid a=b+1\} \text { (note that } 3 \neq 3+1\right), \\
& \left.R_{6}=\{(a, b) \mid a+b \leq 3\} \text { (note that } 4+4 \neq 3\right) .
\end{aligned}
$$

## Reflexive Relations

$R$ is reflexive iff $(a, a) \in R$ for every element $a \in \mathrm{~A}$.
R is reflexive iff $\forall x[x \in U \rightarrow(x, x) \in R]$
Example: The following relations on the integers are reflexive:

$$
\begin{aligned}
& R_{1}=\{(a, b) \mid a \leq b\}, \\
& R_{3}=\{(a, b) \mid a=b \text { or } \mathrm{a}=-\mathrm{b}\}, \\
& R_{4}=\{(a, b) \mid a=b\} .
\end{aligned}
$$

The following relations are not r
If $A=\varnothing$ then the empty relation is reflexive vacuously.

That is the empty relation on an empty set is reflexive!
$R_{2}=\{(a, b) \mid a>b\}$ (note that $3 \ngtr 3$ ),
$R_{5}=\{(a, b) \mid a=b+1\}$ (note that $3 \neq 3+1$ ),
$R_{6}=\{(a, b) \mid a+b \leq 3\}$ (note that $4+4 \not \leq 3$ ).

## Symmetric Relations

$R$ is symmetric iff $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$. $R$ is symmetric iff $\forall x \forall y[(x, y) \in R \rightarrow(y, x) \in R]$

Example: The following relations on the integers are symmetric:

$$
\begin{aligned}
& R_{3}=\{(a, b) \mid a=b \text { or } \mathrm{a}=-\mathrm{b}\}, \\
& R_{4}=\{(a, b) \mid a=b\}, \\
& R_{6}=\{(a, b) \mid a+b \leq 3\} .
\end{aligned}
$$

The following are not symmetric:
$R_{1}=\{(a, b) \mid a \leq b\}$ (note that $3 \leq 4$, but $4 \not \leq 3$ ),
$R_{2}=\{(a, b) \mid a>b\}$ (note that $4>3$, but $3 \ngtr 4$ ),
$R_{5}=\{(a, b) \mid a=b+1\}$ (note that $4=3+1$, but $3 \neq 4+1$ ).

## Antisymmetric Relations

For all $a, b \in A$ if $(a, b) \in R$ and $(b, a) \in R$, then $a=b$ is called antisymmetric. $R$ is antisymmetric iff $\forall x \forall y[(x, y) \in R \wedge(y, x) \in R \longrightarrow x=y]$

Example: The following relations on the integers are antisymmetric:

$$
\begin{array}{l|l}
R_{1}=\{(a, b) \mid a \leq \mathrm{b}\}, \\
R_{2}=\{(a, b) \mid a>\mathrm{b}\},
\end{array} \quad \begin{aligned}
& \text { For any integer, if } \mathrm{a} a \leq \mathrm{b} \text { and } \\
& b \leq \mathrm{a}, \text { then } \mathrm{a}=\mathrm{b} .
\end{aligned}
$$

$$
R_{4}=\{(a, b) \mid a=b\}
$$

$$
R_{5}=\{(a, b) \mid a=b+1\} .
$$

The following relations are not antisymmetric:

$$
\begin{aligned}
& R_{3}=\{(a, b) \mid a=\mathrm{b} \text { or } \mathrm{a}=-\mathrm{b}\} \\
& \left.\quad \text { (note that both }(1,-1) \text { and }(-1,1) \text { belong to } R_{3}\right), \\
& \left.R_{6}=\{(a, b) \mid a+b \leq 3\} \text { (note that both }(1,2) \text { and }(2,1) \text { belong to } R_{6}\right) .
\end{aligned}
$$

## Transitive Relations

A relation $R$ on a set $A$ is called transitive if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in A$.
$R$ is transitive iff $\forall x \forall y \forall z[(x, y) \in R \wedge(y, z) \in \mathrm{R} \longrightarrow(x, z) \in R]$

Example: The following relations on the integers are transitive:

$$
\begin{aligned}
& R_{1}=\{(a, b) \mid a \leq b\}, \quad \longleftarrow \\
& R_{2}=\{(a, b) \mid a>b\}, \\
& R_{3}=\{(a, b) \mid a=b \text { or } a=-b\}, \\
& R_{4}=\{(a, b) \mid a=b\} .
\end{aligned} \quad \text { For every integer, } a \leq b
$$

The following are not transitive:

$$
\left.R_{5}=\{(a, b) \mid a=b+1\} \text { (note that both }(3,2) \text { and }(4,3) \text { belong to } R_{5} \text {, but not }(3,3)\right),
$$

$$
\left.R_{6}=\{(a, b) \mid a+b \leq 3\} \text { (note that both }(2,1) \text { and }(1,2) \text { belong to } R_{6} \text {, but not }(2,2)\right) .
$$

## Combining Relations

- Given two relations $R_{1}$ and $R_{2}$, we can combine them using basic set operations to form new relations such as $R_{1} \cup R_{2^{\prime}} R_{1} \cap R_{2}, R_{1}-R_{2^{\prime}}$ and $R_{2}-R_{1}$.
- Example: Let $A=\{1,2,3\}$ and $B=\{1,2,3,4\}$. The relations $R_{1}=\{(1,1),(2,2),(3,3)\}$ and $R_{2}=\{(1,1),(1,2),(1,3),(1,4)\}$ can be combined using basic set operations to form new relations:

$$
\begin{aligned}
& R_{1} \cup R_{2}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(3,3)\} \\
& R_{1} \cap R_{2}=\{(1,1)\} \\
& R_{1}-R_{2}=\{(2,2),(3,3)\} \\
& R_{2}-R_{1}=\{(1,2),(1,3),(1,4)\}
\end{aligned}
$$

## Composition

## Suppose

- $R_{1}$ is a relation from a set $A$ to a set $B$.
- $R_{2}$ is a relation from $B$ to a set $C$.

Then the composition (or composite) of $R_{2}$ with $R_{1}$, is a relation from $A$ to $C$ where

- if $(x, y)$ is a member of $R_{1}$ and $(y, z)$ is a member of $R_{2}$, then $(x, z)$ is a member of $R_{2} \circ R_{1}$.


## Equivalence Relations

Section 9.5

## Equivalence Relations

## Definition 1:

A relation on a set $A$ is called an equivalence relation if it is reflexive, symmetric, and transitive.

## Equivalence Relations

## Definition 2:

Two elements $a$ and $b$ that are related by an equivalence relation are called equivalent.

The notation $a \sim b$ is often used to denote that $a$ and $b$ are equivalent elements with respect to a particular equivalence relation.

## Strings

Example: Suppose that $R$ is the relation on the set of strings of English letters such that $a R b$ if and only if $l(a)=l(b)$, where $l(x)$ is the length of the string $x$.

Is $R$ an equivalence relation?

Solution: We show that all of the properties of an equivalence relation hold.

- Reflexivity: Because $l(a)=l(a)$, it follows that $a$ Ra for all strings $a$.
- Symmetry: Suppose that $a R b$.

Since $l(a)=l(b), l(b)=l(a)$ also holds and $b R a$.

- Transitivity: Suppose that aRb and $b R c$.

Since $l(a)=l(b)$,and $l(b)=l(c), l(a)=l(a)$ also holds and $a R c$.

## Congruence Modulo m

Example: Let $m$ be an integer with $m>1$.
Show that the relation $R=\{(a, b) \mid a \equiv b(\bmod m)\}$ is an equivalence relation on the set of integers.

Solution: Recall that $a \equiv b(\bmod m)$ if and only if $m$ divides $a-b$.

- Reflexivity: $a \equiv a(\bmod m)$ since $a-a=0$ is divisible by $m$ since $0=0 \cdot m$.
- Symmetry: Suppose that $a \equiv b(\bmod m)$.

Then $a-b$ is divisible by $m$, and so $a-b=k m$, where $k$ is an integer.
It follows that $b-a=(-k) m$, so $b \equiv a(\bmod m)$.

- Transitivity: Suppose that $a \equiv b(\bmod m)$ and $b \equiv c(\bmod m)$.

Then $m$ divides both $a-b$ and $b-c$.
Hence, there are integers $k$ and $l$ with $a-b=k m$ and $b-c=l m$.
We obtain by adding the equations:

$$
a-c=(a-b)+(b-c)=k m+l m=(k+l) m .
$$

Therefore, $a \equiv c(\bmod m)$.

## Divides

Example: Show that the "divides" relation on the set of positive integers is not an equivalence relation.

## Solution:

- Reflexivity: a $\mid$ a for all $a$.
- Not Symmetric: For example, $2 \mid 4$, but $4 \nmid 2$.

Hence, the relation is not symmetric.

- Transitivity: Suppose that $a$ divides $b$ and $b$ divides $c$.

Then there are positive integers $k$ and $l$ such that $b=a k$ and $c=b l$.
Hence, $c=a(k l)$, so $a$ divides $c$.
Therefore, the relation is transitive.
The properties of reflexivity, and transitivity do hold, but the relation is not symmetric. Hence, "divides" is not an equivalence relation.

## Functions

Section 2.3

## Functions

Let $A$ and $B$ be nonempty sets.

- A function f from $A$ to $B$, denoted $\mathrm{f}: A \rightarrow B$ is $a n$ assignment of each element of $A$ to exactly one element of $B$.
- We write $f(a)=b$ if $b$ is the unique element of $B$ assigned by the function f to the element $a$ of $A$.
- Ex: f(Jalen Williams) = B



## Functions

- A function $f: A \rightarrow B$ is a subset of $A \times B$ (a relation).
- Restriction: a relation where no two elements of the relation have the same first element.
- Specifically, $f: A \rightarrow B$ contains one, and only one ordered pair $(a, b)$ for every element $a \in A$.

$$
\forall x[x \in A \rightarrow \exists y[y \in B \wedge(x, y) \in f]]
$$

and

$$
\forall x, y_{1}, y_{2}\left[\left[\left(x, y_{1}\right) \in f \wedge\left(x, y_{2}\right) \in f\right] \rightarrow y_{1}=y_{2}\right]
$$

## Functions

Given a function $f: A \rightarrow B$ :

- We say f maps $A$ to $B$ or $f$ is a mapping from $A$ to $B$.

- The range of $f$ is the set of all images of points in A under $f$. We denote it by $f(A)$.
- Two functions are equal when;
- they have the same domain,
- same codomain
- map each element of the domain to the same element of the codomain.


## Representing Functions

- Functions may be specified in different ways:
- An explicit statement of the assignment.

Students and grades example.

- A formula.
$f(x)=x+1$
- A computer program.
- A Java program that when given an integer $n$, produces the $n$th Fibonacci Number.


## Questions

$$
f(\mathrm{a})=?
$$

The image of $d$ is ?
The domain of f is ?
The codomain of f is?
The preimage of y is?

$f(A)=$ ?
The preimage(s) of z is (are) ?

## Questions

$$
f(\mathrm{a})=?
$$

Z
The image of $d$ is ?
Z
The domain of f is ? $\quad A$
The codomain of f is? $B$
The preimage of y is? b

$f(A)=? \quad\{y, z\}$
The preimage(s) of z is (are) ? $\quad\{a, c, d\}$

## Question

- If $f: A \rightarrow B$ and S is a subset of A , then

$$
f(S)=\{f(s) \mid s \in S\}
$$

$$
f\{a, b, c\} \text { is ? }
$$

$$
f\{\mathrm{c}, \mathrm{~d}\} \text { is ? }
$$



## Question on Functions and Sets

- If $f: A \rightarrow B$ and S is a subset of A , then

$$
\begin{aligned}
& f(S)=\{f(s) \mid s \in S\} \\
& f\{\mathrm{a}, \mathrm{~b}, \mathrm{c},\} \text { is ? } \\
& f\{\mathrm{c}, \mathrm{~d}\} \text { is ? }
\end{aligned}
$$

$$
A
$$

B

## Injections

Definition: A function f is said to be one-to-one, or injective, if and only if $f(a)=f(b)$ implies that $a=b$ for all $a$ and $b$ in the domain of $f$.

- A function is said to be an injection if it is one-toone.



## Surjections

Definition: A function $f$ from $A$ to $B$ is called onto or surjective, if and only if for every element $b \in B$ there is an element $a \in A$ with $f(a)=b$.

- A function $f$ is called a surjection if it is onto.



## Bijections

Definition: A function f is a one-to-one correspondence, or a bijection, if it is both one-to-one and onto (surjective and injective).


## Showing that $\boldsymbol{f}$ is one-to-one or onto

Example 1: Let $f$ be the function from $\{a, b, c, d\}$ to $\{1,2,3\}$ defined by $f(a)=3, f(b)=2, f(c)=1$, and $f(d)=3$. Is $f$ an onto function?

Solution: Yes, $f$ is onto since all three elements of the codomain are images of elements in the domain.

- If the codomain were changed to $\{1,2,3,4\}, f$ would not be onto.


## Showing that $\boldsymbol{f}$ is one-to-one or onto

Example 2: Is the function $f(x)=x^{2}$ from the set of integers to the set of integers onto?

Solution: No, $f$ is not onto because there is no integer $x$ with $x^{2}=-1$, for example.

## Inverse Functions

Definition: Let $f$ be a bijection from $A$ to $B$. Then the inverse of $f$, denoted $f^{-1}$, is the function from $B$ to $A$ defined as $\quad f^{-1}(y)=x$ iff $f(x)=y$

- No inverse exists unless $f$ is a bijection. Why?



## Inverse Functions



## Questions

Example 1: Let $f$ be the function from $\{a, b, c\}$ to $\{1,2,3\}$ such that $f(a)=2, f(b)=3$, and $f(c)=1$. Is $f$ invertible and if so what is its inverse?

## Questions

Example 1: Let $f$ be the function from $\{a, b, c\}$ to $\{1,2,3\}$ such that $f(a)=2, f(b)=3$, and $f(c)=1$. Is $f$ invertible and if so what is its inverse?

Solution: The function $f$ is invertible because it is a bijection (one-to-one and onto). The inverse function $f^{1}$ reverses the correspondence given by $f$, so;
$f^{1}(1)=c, \quad f^{1}(2)=a$, and $f^{1}(3)=b$.

## Questions

Example 2: Let $f: \mathbf{Z} \rightarrow \mathbf{Z}$ be such that $f(x)=x+1$. Is $f$ invertible, and if so, what is its inverse?

## Questions

Example 2: Let $f: \mathbf{Z} \rightarrow \mathbf{Z}$ be such that $f(x)=x+1$. Is $f$ invertible, and if so, what is its inverse?

Solution: The function $f$ is invertible because it is a one-to-one correspondence. The inverse function $f^{1}$ reverses the correspondence so $f^{1}(y)=y-1$.

## Questions

Example 3: Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be such that $f(x)=x^{2}$. Is $f$ invertible, and if so, what is its inverse?

## Questions

## Example 3: Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be such that $f(x)=x^{2}$. Is $f$

 invertible, and if so, what is its inverse?Solution: The function $f$ is not invertible because it
is not one-to-one. $\mathrm{f}(-1)=\mathrm{f}(1)=1$

## Composition

- Definition: Let $f: B \rightarrow C, g: A \rightarrow B$. The composition of $f$ with $g$, denoted $f \circ g$ is the function from $A$ to $C$ defined by

$$
f \circ g(x)=f(g(x))
$$



## Composition



## Composition

Example 1: If $\quad f(x)=x^{2}$ and $g(x)=2 x+1$,
then

$$
f(g(x))=(2 x+1)^{2}
$$

and

$$
g(f(x))=2 x^{2}+1
$$

## Composition Questions

Example 2: Let $g$ be the function from the set $\{a, b, c\}$ to itself such that $g(a)=b$, $g(b)=c$, and $g(c)=a$. Let $f$ be the function from the set $\{a, b, c\}$ to the set $\{1,2,3\}$ such that $f(a)=3, f(b)=2$, and $f(c)=1$.

What is the composition of $f$ and $g$, and what is the composition of $g$ and $f$.
Solution: The composition $f_{\mathrm{g}} \mathrm{g}$ is defined by

$$
\begin{aligned}
& f \circ g(a)=f(g(a))=f(b)=2 . \\
& f \circ g(b)=f(\mathrm{~g}(\mathrm{~b}))=\mathrm{f}(\mathrm{c})=1 . \\
& \mathrm{f} \circ \mathrm{~g}(\mathrm{c})=\mathrm{f}(\mathrm{~g}(\mathrm{c}))=\mathrm{f}(\mathrm{a})=3 .
\end{aligned}
$$

$\odot$ Note that $g \circ f$ is not defined, because the range of $f$ is not a subset of the domain of $g$.

## Composition Questions

Example 2: Let f and g be functions from the set of integers to the set of integers defined by $f(x)=2 x+3$ and $g(x)=3 x+2$.

What is the composition of $f$ and $g$, and also the composition of $g$ and $f$ ?

## Solution:

$$
\begin{aligned}
& f \circ g(x)=f(g(x))=f(3 x+2)=2(3 x+2)+3=6 x+7 \\
& g \cdot f(x)=g(f(x))=g(2 x+3)=3(2 x+3)+2=6 x+11
\end{aligned}
$$

## Graphs of Functions



## Some Important Functions

- The floor function, denoted $f(x)=\lfloor x\rfloor$ is the largest integer less than or equal to $x$.
- The ceiling function, denoted $f(x)=\lceil x\rceil$ is the smallest integer greater than or equal to $x$ Example:

$$
\begin{array}{cl}
\lceil 3.5\rceil=4 & \lfloor 3.5\rfloor=3 \\
\lceil-1.5\rceil=-1 & \lfloor-1.5\rfloor=-2
\end{array}
$$

## Floor and Ceiling Functions



Graph of (a) Floor and (b) Ceiling Functions

## Floor and Ceiling Functions

## ( $n$ is an integer, $\boldsymbol{x}$ is a real number)

(1a) $\lfloor x\rfloor=n$ if and only if $n \leq x<n+1$
(1b) $\lceil x\rceil=n$ if and only if $n-1<x \leq n$
(1c) $\lfloor x\rfloor=n$ if and only if $x-1<n \leq x$
(1d) $\lceil x\rceil=n$ if and only if $x \leq n<x+1$
(2) $x-1<\lfloor x\rfloor \leq x \leq\lceil x\rceil<x+1$
(3a) $\lfloor-x\rfloor=-\lceil x\rceil$
(3b) $\lceil-x\rceil=-\lfloor x\rfloor$
(4a) $\lfloor x+n\rfloor=\lfloor x\rfloor+n$
(4b) $\lceil x+n\rceil=\lceil x\rceil+n$

## Proving Properties of Functions

Example: Prove that $x$ is a real number, then

$$
\lfloor 2 x\rfloor=\lfloor x\rfloor+\lfloor x+1 / 2\rfloor
$$

Solution: Let $x=n+\varepsilon$, where $n$ is an integer and $0 \leq \varepsilon<1$.
Case 1: $0 \leq \varepsilon<1 / 2$

- $2 x=2 n+2 \varepsilon$ and $\lfloor 2 x\rfloor=2 n$, since $0 \leq 2 \varepsilon<1$.
- $\lfloor x+1 / 2\rfloor=n$, since $x+1 / 2=n+(1 / 2+\varepsilon)$ and $0 \leq 1 / 2+\varepsilon<1$.
- Hence, $\lfloor 2 \mathrm{x}\rfloor=2 \mathrm{n}$ and $\lfloor\mathrm{x}\rfloor+\lfloor\mathrm{x}+1 / 2\rfloor=\mathrm{n}+\mathrm{n}=2 \mathrm{n}$.

Case 2: $1 / 2 \leq \varepsilon<1$

- $2 \mathrm{x}=2 \mathrm{n}+2 \varepsilon=(2 \mathrm{n}+1)+(2 \varepsilon-1)$. Because $0 \leq 2 \varepsilon-1<1$, it follows that $\lfloor 2 \mathrm{x}\rfloor=2 \mathrm{n}+1$,
- $\lfloor x+1 / 2\rfloor=\lfloor n+(1 / 2+\varepsilon)\rfloor=\lfloor n+1-1+(1 / 2+\varepsilon)\rfloor=\lfloor n+1+(\varepsilon-1 / 2)\rfloor=$ $\mathrm{n}+1$ since $0 \leq \varepsilon-1 / 2<1$.
- Hence, $\lfloor 2 \mathrm{x}\rfloor=2 \mathrm{n}+1$ and $\lfloor\mathrm{x}\rfloor+\lfloor\mathrm{x}+1 / 2\rfloor=\mathrm{n}+(\mathrm{n}+1)=2 \mathrm{n}+1$.


## Factorial Function

Definition: $f: \mathrm{N} \rightarrow \mathrm{Z}^{+}$, denoted by $f(n)=n!$ is the product of the first $n$ positive integers when $n$ is a nonnegative integer.

$$
f(n)=1 \cdot 2 \cdots(n-1) \cdot n, \quad f(0)=0!=1
$$

## Examples:

$$
\begin{aligned}
& f(1)=1!=1 \\
& f(2)=2!=1 \cdot 2=2 \\
& f(6)=6!=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6=720 \\
& f(20)=2,432,902,008,176,640,000 .
\end{aligned}
$$

