
Basic Structures:  
• Sets 
• Functions 
• Sequences and Sums 
• Cardinality of Sets

Chapter 2-Part I (Sec 2.1, 2.2)



Sets
Section 2.1



Sets
● A set is an unordered collection of objects.

●  the students in this class
●  the chairs in this room

● The objects in a set are called the elements, or members 
of the set. A set is said to contain its elements.

● The notation  a ∈ A  denotes that a is an element of 
the set A.

● If a is not a member of A, write a ∉ A 
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Describing a Set:  
Roster Method
● S = {a,b,c,d}
● Order not important 
         S = {a,b,c,d} = {b,c,a,d}
● Each distinct object is either a member or not; listing 

more than once does not change the set.
      S = {a,b,c,d} = {a,b,c,b,c,d}
● Elipses (…) may be used to describe a set without listing 

all of the members when the pattern is clear.
          S = {a,b,c,d,…,z }
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Roster Method Examples
● Set of all vowels in the English alphabet:
              V = {a,e,i,o,u}
● Set of all  odd positive integers less than 10:
             O = {1,3,5,7,9}
● Set of all positive integers less than 100:
              S = {1,2,3,…,99}
● Set of all integers less than 0:
               S = {…, -3,-2,-1}
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Some Important Sets
N = natural numbers = {0,1,2,3….}
Z = integers = {…,-3,-2,-1,0,1,2,3,…}
Z⁺ = positive integers = {1,2,3,…..}
R = set of real numbers
R+ = set of positive real numbers
C =  set of complex numbers.
Q = set of rational numbers
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Set-Builder Notation
● Specify the property or properties that all members must 

satisfy:
     S = {x | x is a positive integer less than 100}
     O = {x | x is an odd positive integer less than 10}
     O = {x ∈ Z⁺ | x is odd and x < 10}
● A predicate may be used: 
                 S = {x | P(x)}
● Example: S = {x | Prime(x)}
● Positive rational numbers:
        Q+ = {x ∈ R | x = p/q, for some positive integers p,q, where q≠0}
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Interval Notation

   [a,b] = {x | a ≤ x ≤ b}
   [a,b) = {x | a ≤ x < b}  
   (a,b] = {x | a < x ≤ b}
   (a,b) = {x | a < x < b}

  closed interval  [a,b]
  open interval     (a,b)
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Universal Set and Empty Set
● The universal set U is the set containing everything 

currently under consideration. 
● Contents depend on the context.

● The empty set is the set with no
      elements.

• Symbolized by ∅ or {}.
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John Venn (1834-1923)
Cambridge, UK



Russell’s Paradox
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Naive set theory (NST) (1895, George Cantor):
Using objects in the definition of sets, without specifying what an object is
This intuitive definition of a set leads to paradoxes (logical inconsistencies). 
Defines a set that can not exist!

the logical flaw of the naive set theory

Bertrand Russell (1872-1970)
Cambridge, UK
Nobel Prize Winner

http://mathworld.wolfram.com/NaiveSetTheory.html


Russell’s Paradox
● Let S be the set of all sets which are not members of 

themselves. 
● A paradox results from trying to answer the 

question “Is S a member of itself?”
● Related Paradox:

●  Henry is a barber who shaves all people who do not 
shave themselves. A paradox results from trying to 
answer the question “Does Henry shave himself?”
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Bertrand Russell (1872-1970)
Cambridge, UK
Nobel Prize Winner

Defines a set that can not exist!

who shaves the barber?



Russell’s Paradox
● Henry is a barber who shaves all people who do not 

shave themselves. A paradox results from trying to 
answer the question “Does Henry shave himself?”
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Defines a set that can not exist!

who shaves the barber?

The barber cannot shave himself as he only shaves those who do not shave themselves. 
As such, if he shaves himself he ceases to be the barber.



Russell’s Paradox
● Henry is a barber who shaves all people who do not 

shave themselves. A paradox results from trying to 
answer the question “Does Henry shave himself?”
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Defines a set that can not exist!

who shaves the barber?

The barber cannot shave himself: he only shaves those who do not shave themselves.

If the barber does not shave himself, he needs to be shaved by a barber; so, he must shave 
himself —> paradox!

the logical flaw of the naive set theory

This paradox depicts the need to set better definitions, a set of axioms that clarify the 
case. (Shows the lacking of naive set theory.)

http://mathworld.wolfram.com/NaiveSetTheory.html


Russell’s Paradox
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Naive set theory (NST) (1895, George Cantor):
Using objects in the definition of sets, without specifying what an object is
This intuitive definition of a set leads to paradoxes (logical inconsistencies). 
Defines a set that can not exist!

the logical flaw of the naive set theory

Axiomatic set theory (AST) (1902, Bertrand Russell):
Russell’s paradox depicts the need to set better definitions, a set of axioms that 
clarify the case.

Bertrand Russell (1872-1970)
Cambridge, UK
Nobel Prize Winner

All the examples we will study in this course 
can be represented with Cantor’s naive set 
theory. Hence, we’ll study NST.

http://mathworld.wolfram.com/NaiveSetTheory.html


Some things to remember
● Sets can be elements of sets.
         {{1,2,3},a, {b,c}}
          {N, Z, Q, R}
● The empty set is different from a set containing the 

empty set.
       ∅  ≠ { ∅ } 
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Set Equality

● Therefore if A and B are sets, then A and B are equal iff                                         

● We write A = B if A and B are equal sets.
                {1,3,5}   = {3, 5, 1}
                  {1,5,5,5,3,3,1} = {1,3,5}
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Two sets are equal if and only if they have the same elements. 



Subsets

● A ⊆ B  : A is a subset of the set B. 
● A ⊆ B   holds iff                                            is true. 

1. Because a ∈ ∅  is  always false, ∅ ⊆ S ,for every  set S.     
2. Because a ∈ S → a ∈ S, S ⊆ S, for every  set S. 
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The set A is a subset of B, iff every element of A is also an element of B. 



Subset Relation
● Showing  that A is a Subset of B (A ⊆ B):
● if x belongs to A, then x also belongs to B.

● Showing that A is not a Subset of B (A ⊈ B):
●  find an element x ∈ A with x ∉ B.  
●  such an x is a counterexample to the claim that x ∈ A 

implies x ∈ B.
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Equality of Sets Revisited
● Recall that two sets A and B are equal, denoted by         

A = B, iff

● Using logical equivalences we have that A = B iff

●  This is equivalent to
                     A ⊆ B and B ⊆ A 
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Proper Subsets (A ⊂ B)
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If A ⊆ B, but A ≠ B, then we say A is a proper subset of B, denoted by A ⊂ B.

U
B

A



Set Cardinality
•    |A|: the cardinality of set A.

• The number of distinct elements in A
•  If there are exactly n distinct elements in S, (|S|=n), where n is a 

nonnegative integer, we say that S is finite. Otherwise it is infinite. 
 
   Examples:
1. |ø| = 0
2. Let S be the letters of the English alphabet. Then |S| = 26
3. |{1,2,3}| = 3
4. |{ø}| = 1
5. The set of integers is infinite.
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Power Sets (P(A))

   Example: If A = {a,b} then 
              P(A) = {ø, {a},{b},{a, b}}

● If a set has n elements, then the cardinality of the 
power set is 2ⁿ. why?
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The set of all subsets of A is called Power Set of A



Tuples
● The ordered n-tuple   (a1,a2,…..,an): The ordered 

collection that has  a1 as its first element and  a2  as its 
second element and so on until an  as its last element.

● Two n-tuples are equal if and only if their 
corresponding elements are equal.

● 2-tuples are called ordered pairs.
● The ordered pairs (a,b) and (c,d) are equal if and only 

if a = c and b = d.
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Cartesian Product
 

   
Example:
   A = {a,b}   B = {1,2,3}
   A × B = {(a,1),(a,2),(a,3), (b,1),(b,2),(b,3)}
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René Descartes 
(1596-1650)

The Cartesian Product of two sets A and B, denoted by   A × B is the set of 
ordered pairs (a,b) where a ∈ A   and b ∈ B .



Cartesian Product
 

   
Example:
   A = {a,b}   B = {1,2,3}
   A × B = {(a,1),(a,2),(a,3), (b,1),(b,2),(b,3)}
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René Descartes 
(1596-1650)

The Cartesian Product of two sets A and B, denoted by   A × B is the set of 
ordered pairs (a,b) where a ∈ A   and b ∈ B .

A subset R of the Cartesian product A × B is called a relation 
from the set A to the set B.



Cartesian Product 
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Cartesian Product 
•    The cartesian products of the sets A1,A2,……,An, denoted by 

A1 × A2 × …… × An , is the set of ordered n-tuples 
(a1,a2,……,an)  where   ai   belongs to Ai for i = 1, … n. 
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Cartesian Product 
•    The cartesian products of the sets A1,A2,……,An, denoted by 

A1 × A2 × …… × An , is the set of ordered n-tuples 
(a1,a2,……,an)  where   ai   belongs to Ai for i = 1, … n. 

  Example: What is A × B × C where A = {0,1}, B = {1,2} and    
C = {0,1,2}
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Cartesian Product 
•    The cartesian products of the sets A1,A2,……,An, denoted by 

A1 × A2 × …… × An , is the set of ordered n-tuples 
(a1,a2,……,an)  where   ai   belongs to Ai for i = 1, … n. 

  Example: What is A × B × C where A = {0,1}, B = {1,2} and    
C = {0,1,2}

  Solution: A × B × C = {(0,1,0), (0,1,1), (0,1,2),(0,2,0), (0,2,1), 
(0,2,2),(1,1,0), (1,1,1), (1,1,2), (1,2,0), (1,2,1), (1,2,2)}
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Truth Sets of Quantifiers
● Truth set of P to be the set of elements in D for which 

P(x) is true. The truth set of P(x) is denoted by 

● Example: The truth set of P(x): “|x| = 1” where the 
domain is the integers :{-1,1}
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Set Operations
Section 2.2



Boolean Algebra

● The operators in set theory are analogous to the 
corresponding operators in propositional calculus.
● They are both instances of Boolean algebra.

● As always there must be a universal set  U. 
● All sets are assumed to be subsets of U.
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Union
● The union of the sets A and B, denoted by A ∪ B,  is 

the set:

● Example: What is   {1,2,3}  ∪ {3, 4, 5}?
Solution: {1,2,3,4,5}
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Intersection
● The intersection of sets A and B, denoted by   A ∩ B,  is

● For A and B are disjoint sets, if their intersection is 
empty

● Example: What is?  {1,2,3} ∩ {3,4,5} ? 
             Solution:   {3}
● Example:What is?  
                {1,2,3} ∩ {4,5,6} ?    
      Solution: ∅
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Complement
 The complement of a set A (with respect to U), 

denoted by Ā is the set  U - A
                       Ā = {x ∈ U | x ∉ A}
  (The complement of A is sometimes denoted by Ac .)

  Example: If U is the positive integers less than 100, 
what is the complement of {x | x > 70} 

            Solution: {x | x ≤ 70} 
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Difference
• The difference of the sets A and B, denoted by A – B, is 

the set containing the elements of A that are not in B. 
• The difference of A and B is also called the 

complement of B with respect to A.
               A – B = {x | x ∈ A ∧ x ∉ B}  =   A ∩�B
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The Cardinality of the Union of Two 
Sets
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• Inclusion-Exclusion
 |A ∪ B| = |A| + | B| − |A ∩ B|

• Example: Let A be the math majors in your class and B be the CS majors. To 
count the number of students who are either math majors or CS majors, add 
the number of math majors and the number of CS majors, and subtract the 
number of joint CS/math majors.
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Review Questions
Example: U = {0,1,2,3,4,5,6,7,8,9,10}  A = {1,2,3,4,5},    B ={4,5,6,7,8}

1. A ∪ B             
 Solution: ?   

2. A ∩ B            
 Solution: ? 

3. Ā                  
  Solution: ?

4.                         
 Solution: ?

5. A – B            
  Solution: ?

6. B – A               
Solution: ?
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Review Questions
Example: U = {0,1,2,3,4,5,6,7,8,9,10}  A = {1,2,3,4,5},    B ={4,5,6,7,8}

1. A ∪ B             
 Solution: {1,2,3,4,5,6,7,8}     

2. A ∩ B            
 Solution: {4,5} 

3. Ā                  
  Solution: {0,6,7,8,9,10}

4.                         
 Solution: {0,1,2,3,9,10}

5. A – B            
  Solution: {1,2,3} 

6. B – A               
Solution: {6,7,8} 
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Symmetric Difference
 The symmetric difference of A and B, denoted by                   

is the set

 Example:
U = {0,1,2,3,4,5,6,7,8,9,10}  
A = {1,2,3,4,5}   B ={4,5,6,7,8}
What is             :   
● Solution: ?
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Symmetric Difference
 The symmetric difference of A and B, denoted by                   

is the set

 Example:
U = {0,1,2,3,4,5,6,7,8,9,10}  
A = {1,2,3,4,5}   B ={4,5,6,7,8}
What is             :   
● Solution: {1,2,3,6,7,8}
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Set Identities
● Identity laws
                                           
● Domination laws
                                            
● Idempotent laws
                                           
● Complementation law
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Continued on next slide !



Set Identities
● Commutative laws
                                           
● Associative laws
    
                                                                         
● Distributive laws
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Continued on next slide !



Set Identities
● De Morgan’s laws

                                 
● Absorption laws
    
                                                                         
● Complement laws
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Proving Set Identities
● 3 Different ways to prove set identities:

1. Prove that each set (each side of the identity) is a subset of 
the other.

2. Use set builder notation and propositional logic.
3. Membership Tables: Verify that elements in the same 

combination of sets always either belong or do not 
belong to the same side of the identity.  

• Use 1 to indicate it is in the set and a 0 to indicate 
that it is not.

45



Proof of Second De Morgan Law 
Using Subset Relation
Example: Prove that
Solution:   We prove this identity by showing that:
  
        1)                                           and

     
         2)
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Continued on next slide !



Proof of Second De Morgan Law 
    These steps show that:                                       
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Continued on next slide !



Proof of Second De Morgan Law 
   These steps show that:                                       
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Proof of Second De Morgan Law 
Using Set-Builder Notation 
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Using Membership Table
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A B C

1 1 1 1 1 1 1 1

1 1 0 0 1 1 1 1

1 0 1 0 1 1 1 1

1 0 0 0 1 1 1 1

0 1 1 1 1 1 1 1

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 0

Example:

Solution:

Construct a membership table to show that the distributive law 
holds.



Generalized Unions and Intersections
● Let A1, A2 ,…, An be an indexed collection of sets.
    We define:

   
   These are well defined, since union and intersection are 

associative.
● For i = 1,2,…, let Ai  = {i, i + 1, i + 2, ….}. Then,
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