Chapter 2-Part III (Sec 2.4)

Basic Structures:

- Sets
- Functions
- Sequences and Sums
- Cardinality of Sets

Sequences and Sums

Section 2.4

Section Summary

- Sequences.
- Examples: Geometric Progression, Arithmetic Progression
- Recurrence Relations
- Example: Fibonacci Sequence
- Summations

Introduction

- Sequences are ordered lists of elements.
- $1,2,3,5,8$
- $1,3,9,27,81, \ldots \ldots$.
- Sequences arise throughout mathematics, computer science, and in many other disciplines, ranging from botany to music.
- We will introduce the terminology to represent sequences and sums of the terms in the sequences.

Sequences

Definition: A sequence is a function f from a subset of the integers to a set S.

- Domain is usually either the set $\{0,1,2,3,4, \ldots .$.$\} or$ $\{1,2,3,4, \ldots$.
- a_{n} is a term of the sequence, denotes the image of the integer n
- $f(n)=a_{\mathrm{n}}$

Sequences

Example: Consider the sequence $\left\{a_{n}\right\}$ where

$$
\begin{gathered}
a_{n}=\frac{1}{n} \quad\left\{a_{n}\right\}=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\} \\
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \ldots
\end{gathered}
$$

Geometric Progression

Definition: A geometric progression is a sequence of the form:

$$
a, a r, a r^{2}, \ldots, a r^{n}, \ldots
$$

where the initial term a and the common ratio r are real numbers.
Examples:

1. Let $a=1$ and $r=-1$. Then:

$$
\left\{b_{n}\right\}=\left\{b_{0}, b_{1}, b_{2}, b_{3}, b_{4}, \ldots\right\}=\{1,-1,1,-1,1, \ldots\}
$$

2. Let $a=2$ and $r=5$. Then:

$$
\left\{c_{n}\right\}=\left\{c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, \ldots\right\}=\{2,10,50,250,1250, \ldots\}
$$

3. Let $a=6$ and $r=1 / 3$. Then:

$$
\left\{d_{n}\right\}=\left\{d_{0}, d_{1}, d_{2}, d_{3}, d_{4}, \ldots\right\}=\left\{6,2, \frac{2}{3}, \frac{2}{9}, \frac{2}{27}, \ldots\right\}
$$

Arithmetic Progression

Definition: A arithmetic progression is a sequence of the form: $\quad a, a+d, a+2 d, \ldots, a+n d, \ldots$
where the initial term a and the common difference d are real numbers.
Examples:

1. Let $a=-1$ and $d=4$:

$$
\left\{s_{n}\right\}=\left\{s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, \ldots\right\}=\{-1,3,7,11,15, \ldots\}
$$

2. Let $a=7$ and $d=-3$:

$$
\left\{t_{n}\right\}=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, \ldots\right\}=\{7,4,1,-2,-5, \ldots\}
$$

3. Let $a=1$ and $\mathrm{d}=2$:

$$
\left\{u_{n}\right\}=\left\{u_{0}, u_{1}, u_{2}, u_{3}, u_{4}, \ldots\right\}=\{1,3,5,7,9, \ldots\}
$$

Strings

Definition: A string is a finite sequence of characters from a finite set (an alphabet).

- Sequences of characters or bits are important in computer science.
- The empty string is represented by λ.
- The string abcde has length 5.

Recurrence Relations

Definition: A recurrence relation for the sequence $\left\{a_{n}\right\}$ is an equation that expresses a_{n} in terms of one or more of the previous terms of the sequence, namely, $a_{0}, a_{1}, \ldots, a_{n-1}$, for all integers n with $n \geq n_{0}$, where n_{0} is a nonnegative integer.

- A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.
- The initial conditions for a sequence specify the terms that precede the first term where the recurrence relation takes effect.

Questions

Example 1: Let $\left\{a_{n}\right\}$ be a sequence that satisfies the recurrence relation $a_{n}=a_{n-1}+3$ for $n=1,2,3,4, \ldots$ and suppose that $a_{0}=2$. What are a_{1}, a_{2} and a_{3} ?
-Note that $a_{0}=2$ is the initial condition.

Solution: From the recurrence relation :

$$
\begin{aligned}
& a_{1}=a_{0}+3=2+3=5 \\
& a_{2}=5+3=8 \\
& a_{3}=8+3=11
\end{aligned}
$$

Questions

Example 2: Let $\left\{a_{n}\right\}$ be a sequence that satisfies the recurrence relation $a_{n}=a_{n-1}-a_{n-2}$ for $n=2,3,4, \ldots$ and suppose that $a_{0}=3$ and $a_{1}=5$. What are a_{2} and a_{3} ?

Solution: From the recurrence relation:

$$
\begin{aligned}
& a_{2}=a_{1}-a_{0}=5-3=2 \\
& a_{3}=a_{2}-a_{1}=2-5=-3
\end{aligned}
$$

Fibonacci Sequence

Definition: Define the Fibonacci sequence, $f_{0}, f_{1}, f_{2}, \ldots$, by:

- Initial Conditions: $f_{0}=0, f_{1}=1$
- Recurrence Relation: $f_{n}=f_{n-1}+f_{n-2}$

Example: Find $f_{2}, f_{3}, f_{4}, f_{5}$ and f_{6}.
Answer:

$$
\begin{aligned}
& f_{2}=f_{1}+f_{0}=1+0=1, \\
& f_{3}=f_{2}+f_{1}=1+1=2, \\
& f_{4}=f_{3}+f_{2}=2+1=3, \\
& f_{5}=f_{4}+f_{3}=3+2=5, \\
& f_{6}=f_{5}+f_{4}=5+3=8 .
\end{aligned}
$$

Solving Recurrence Relations

- Finding a formula for the nth term of the sequence generated by a recurrence relation is called solving the recurrence relation.
- Such a formula is called a closed formula.
- Various methods for solving recurrence relations will be covered in Chapter 8 where recurrence relations will be studied in greater depth.
- Here we illustrate by example the method of iteration in which we need to guess the formula. The guess can be proved correct by the method of induction (Chapter 5).

Iterative Solution Example

Method 1: Working upward, forward substitution
Let $\left\{a_{n}\right\}$ be a sequence that satisfies the recurrence relation $a_{n}=$ $a_{n-1}+3$ for $\mathrm{n}=2,3,4, \ldots$ and suppose that $a_{1}=2$.

$$
\begin{aligned}
& a_{2}=2+3 \\
& a_{3}=(2+3)+3=2+3 \cdot 2 \\
& a_{4}=(2+2 \cdot 3)+3=2+3 \cdot 3
\end{aligned}
$$

$$
a_{\mathrm{n}}=a_{n-1}+3=(2+3 \cdot(n-2))+3=2+3(n-1)
$$

Iterative Solution Example

Method 2: Working downward, backward substitution
Let $\left\{a_{n}\right\}$ be a sequence that satisfies the recurrence relation
$a_{n}=a_{n-1}+3$ for $n=2,3,4, \ldots$ and suppose that $a_{1}=2$.

$$
\begin{aligned}
a_{\mathrm{n}}= & a_{\mathrm{n}-1}+3 \\
= & \left(a_{\mathrm{n}-2}+3\right)+3=a_{\mathrm{n}-2}+3 \cdot 2 \\
= & \left(a_{\mathrm{n}-3}+3\right)+3 \cdot 2=a_{\mathrm{n}-3}+3 \cdot 3 \\
& \cdot \\
& \cdot \\
& \cdot \\
= & a_{2}+3(\mathrm{n}-2) \\
= & \left(a_{1}+3\right)+3(\mathrm{n}-2) \\
= & 2+3(\mathrm{n}-1)
\end{aligned}
$$

