

Chapter 2-Part III (Sec 2.4)

Basic Structures:

- Sets
- Functions
- Sequences and Sums
- Cardinality of Sets

Section 2.4

Section Summary

- Sequences.
 - Examples: Geometric Progression, Arithmetic Progression
- Recurrence Relations
 - Example: Fibonacci Sequence
- Summations

Introduction

- Sequences are ordered lists of elements.
 - 1, 2, 3, 5, 8
 - 1, 3, 9, 27, 81,
- Sequences arise throughout mathematics, computer science, and in many other disciplines, ranging from botany to music.
- We will introduce the terminology to represent sequences and sums of the terms in the sequences.

Sequences

- **Definition**: A *sequence* is a function *f* from a subset of the integers to a set *S*.
 - Domain is usually either the set {0, 1, 2, 3, 4,} or {1, 2, 3, 4,}
 - *a_n* is a *term* of the sequence, denotes the image of the integer *n*

•
$$f(n) = a_n$$

Sequences

Example: Consider the sequence $\{a_n\}$ where

$$a_n = \frac{1}{n}$$
 $\{a_n\} = \{a_1, a_2, a_3, \ldots\}$

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \dots$$

Geometric Progression

Definition: A *geometric progression* is a sequence of the form: $a, ar, ar^2, \ldots, ar^n, \ldots$

where the *initial term a* and the *common ratio r* are real numbers.

Examples:

1. Let a = 1 and r = -1. Then:

$$\{b_n\} = \{b_0, b_1, b_2, b_3, b_4, \dots\} = \{1, -1, 1, -1, 1, \dots\}$$

2. Let a = 2 and r = 5. Then:

$$\{c_n\} = \{c_0, c_1, c_2, c_3, c_4, \dots\} = \{2, 10, 50, 250, 1250, \dots\}$$

3. Let a = 6 and r = 1/3. Then: $\{d_n\} = \{d_0, d_1, d_2, d_3, d_4, \dots\} = \{6, 2, \frac{2}{3}, \frac{2}{9}, \frac{2}{27}, \dots\}$

Arithmetic Progression

Definition: A *arithmetic progression* is a sequence of the form: $a, a + d, a + 2d, \dots, a + nd, \dots$

where the *initial term a* and the *common difference d* are real numbers.

Examples:

1. Let a = -1 and d = 4:

$$\{s_n\} = \{s_0, s_1, s_2, s_3, s_4, \dots\} = \{-1, 3, 7, 11, 15, \dots\}$$

2. Let a = 7 and d = -3:

$$\{t_n\} = \{t_0, t_1, t_2, t_3, t_4, \dots\} = \{7, 4, 1, -2, -5, \dots\}$$

3. Let a = 1 and d = 2: $\{u_n\} = \{u_0, u_1, u_2, u_3, u_4, \dots\} = \{1, 3, 5, 7, 9, \dots\}$

Strings

- **Definition**: A *string* is a finite sequence of characters from a finite set (an alphabet).
- Sequences of characters or bits are important in computer science.
- The *empty string* is represented by λ .
- The string *abcde* has *length* 5.

Recurrence Relations

- **Definition:** A *recurrence relation* for the sequence $\{a_n\}$ is an equation *that expresses* a_n *in terms of* one or more of the *previous terms of the sequence*, namely, $a_0, a_1, ..., a_{n-1}$, for all integers n with $n \ge n_0$, where n_0 is a nonnegative integer.
- A sequence is called a *solution* of a recurrence relation if its terms satisfy the recurrence relation.
- The *initial conditions* for a sequence specify the terms that precede the first term where the recurrence relation takes effect.

Questions

Example 1: Let $\{a_n\}$ be a sequence that satisfies the recurrence relation $a_n = a_{n-1} + 3$ for n = 1,2,3,4,... and suppose that $a_0 = 2$. What are a_1 , a_2 and a_3 ?

-Note that $a_0 = 2$ is the initial condition.

Solution: From the recurrence relation :

$$a_1 = a_0 + 3 = 2 + 3 = 5$$

 $a_2 = 5 + 3 = 8$
 $a_3 = 8 + 3 = 11$

Questions

Example 2: Let $\{a_n\}$ be a sequence that satisfies the recurrence relation $a_n = a_{n-1} - a_{n-2}$ for n = 2,3,4,... and suppose that $a_0 = 3$ and $a_1 = 5$. What are a_2 and a_3 ?

Solution: From the recurrence relation:

$$a_2 = a_1 - a_0 = 5 - 3 = 2$$

 $a_3 = a_2 - a_1 = 2 - 5 = -3$

Fibonacci Sequence

Definition: Define the *Fibonacci sequence*, f_0 , f_1 , f_2 , ..., by:

- Initial Conditions: $f_0 = 0, f_1 = 1$
- Recurrence Relation: $f_n = f_{n-1} + f_{n-2}$

Example: Find f_2, f_3, f_4, f_5 and f_6 .

Answer:

$$\begin{split} f_2 &= f_1 + f_0 = 1 + 0 = 1, \\ f_3 &= f_2 + f_1 = 1 + 1 = 2, \\ f_4 &= f_3 + f_2 = 2 + 1 = 3, \\ f_5 &= f_4 + f_3 = 3 + 2 = 5, \\ f_6 &= f_5 + f_4 = 5 + 3 = 8. \end{split}$$

Solving Recurrence Relations

- Finding a formula for the *n*th term of the sequence generated by a recurrence relation is called *solving the recurrence relation*.
- Such a formula is called a *closed formula*.
- Various methods for solving recurrence relations will be covered in Chapter 8 where <u>recurrence relations will be</u> <u>studied in greater depth</u>.
- Here we illustrate by example the method of iteration in which we need to guess the formula. The guess can be proved correct by the method of induction (Chapter 5).

Iterative Solution Example

Method 1: Working upward, forward substitution Let $\{a_n\}$ be a sequence that satisfies the recurrence relation $a_n = a_{n-1} + 3$ for n = 2,3,4,... and suppose that $a_1 = 2$.

$$a_{2} = 2 + 3$$

$$a_{3} = (2 + 3) + 3 = 2 + 3 \cdot 2$$

$$a_{4} = (2 + 2 \cdot 3) + 3 = 2 + 3 \cdot 3$$

$$\vdots$$

$$a_{n} = a_{n-1} + 3 = (2 + 3 \cdot (n - 2)) + 3 = 2 + 3(n - 1)$$

Iterative Solution Example

Method 2: Working downward, backward substitution Let $\{a_n\}$ be a sequence that satisfies the recurrence relation $a_n = a_{n-1} + 3$ for n = 2,3,4,... and suppose that $a_1 = 2$.