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Basic Structures: 

• Sets

• Functions 

• Sequences and Sums

• Cardinality of Sets

Chapter 2-Part III (Sec 2.4)



Sequences and Sums
Section 2.4



Section Summary
● Sequences.

● Examples: Geometric Progression, Arithmetic 
Progression

● Recurrence Relations
● Example: Fibonacci Sequence

● Summations
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Introduction
● Sequences are ordered lists of elements. 

●   1, 2, 3, 5, 8
●   1, 3,  9, 27, 81, …….

● Sequences arise throughout mathematics, computer 
science, and in many other disciplines, ranging from 
botany to music.

● We will introduce the  terminology to represent 
sequences and sums of the terms in the sequences.
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Sequences
  Definition: A sequence is a function f from a subset of 

the integers to a set S.
• Domain is usually either the set {0, 1, 2, 3, 4, …..} or   

{1, 2, 3, 4, ….}
• an  is a term of the sequence, denotes the image of 

the integer n
• f(n) = an
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Sequences 
Example: Consider the sequence            where
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Geometric Progression
   Definition: A geometric progression is a sequence of the form:
    
   where the initial term a and the common ratio r are real 

numbers.
   Examples:

1. Let a = 1 and r = −1. Then:

2. Let  a = 2 and r = 5. Then:

3. Let a = 6 and r = 1/3. Then:
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Arithmetic Progression
   Definition: A arithmetic progression is a sequence of the 

form:
    where the initial term a and the common difference  d are real 

numbers.
    Examples:

1. Let a = −1 and d = 4: 

2. Let  a = 7 and d = −3: 

3. Let a = 1 and d = 2: 
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Strings
   Definition: A string is a finite sequence of characters 

from a finite set (an alphabet).
● Sequences of characters or bits  are important in 

computer science.
● The empty string is represented by λ.
● The string  abcde has length 5.
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Recurrence Relations
Definition: A recurrence relation for the sequence {an} is an 

equation that expresses an in terms of one or more of the 
previous terms of the sequence, namely, a0, a1, …, an-1, for all 
integers n with n ≥ n0, where n0 is a nonnegative integer. 

● A sequence is called a solution of a recurrence relation if 
its terms satisfy the recurrence relation.

● The initial conditions for a sequence specify the terms 
that precede the first term where the recurrence relation 
takes effect. 
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Questions
   Example 1: Let {an} be a sequence that satisfies the 

recurrence relation an = an-1 + 3  for n = 1,2,3,4,….  and 
suppose that a0 = 2.  What are a1 ,  a2  and a3? 

     -Note that a0 = 2 is the initial condition.

Solution: From the recurrence relation :
      a1   =  a0  + 3 = 2 + 3 = 5
      a2   = 5 + 3 = 8
      a3   = 8 + 3 = 11
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Questions
   Example 2: Let {an} be a sequence that satisfies the 

recurrence relation an = an-1 – an-2  for n = 2,3,4,….  and 
suppose that a0 = 3 and a1 = 5. What are a2 and a3? 

     
   Solution: From the recurrence relation:
              a2  = a1 - a0  = 5 – 3 = 2

               a3  = a2 – a1  = 2 – 5 = –3
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Fibonacci Sequence
  Definition: Define the  Fibonacci sequence, f0 ,f1 ,f2,…, by:

● Initial Conditions: f0 = 0, f1   = 1
● Recurrence Relation: fn  = fn-1  + fn-2

  Example: Find   f2 ,f3 ,f4 , f5  and f6  .
     
     Answer:
         f2  = f1 + f0   = 1 + 0 = 1,
          f3  = f2  + f1   = 1 + 1 = 2,
          f4  = f3 + f2  = 2 + 1 = 3,
          f5  = f4 + f3   = 3 + 2 = 5,
          f6 = f5 + f4   = 5 + 3 = 8.
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Solving Recurrence Relations
● Finding a formula for the nth term of the sequence 

generated by a recurrence relation is called solving the 
recurrence relation. 

● Such a formula is called a closed formula.
● Various methods for solving recurrence relations will be 

covered in Chapter 8 where recurrence relations will be 
studied in greater depth.

● Here we illustrate by example the method of iteration in 
which we need to guess the formula. The guess can be 
proved correct by the method of induction (Chapter 5).
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Iterative Solution Example
   Method 1: Working upward, forward substitution
   Let {an} be a sequence that satisfies the recurrence relation an = 

an-1 + 3  for n = 2,3,4,….  and suppose that a1 = 2.
      a2   = 2 + 3
      a3   = (2 + 3) + 3 = 2 + 3 · 2 
      a4   =  (2 + 2 · 3) + 3 = 2 + 3 · 3
                    .
                    .
                    .

            an = an-1 + 3  = (2 + 3 · (n – 2)) + 3 = 2 + 3(n – 1)
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Iterative Solution Example
   Method 2: Working downward, backward substitution
    Let {an} be a sequence that satisfies the recurrence relation                    
    an = an-1 + 3  for n = 2,3,4,….  and suppose that a1 = 2.

           an  = an-1 + 3
                  = (an-2 + 3) + 3 = an-2 + 3 · 2 

           = (an-3 + 3 )+ 3 · 2  = an-3 + 3 · 3
                    .
                    .
                    .
       

                  = a2  + 3(n – 2)   
                  = (a1  + 3) + 3(n – 2)  
                  = 2 + 3(n – 1)
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