Chapter 2-Part IV (Sec 2.5)

Basic Structures:

- Sets
- Functions,
- Sequences and Sums
- Cardinality of Sets

Cardinality of Sets

Section 2.5

Cardinality

Definition: The cardinality of a set A is equal to the cardinality of a set B, denoted

$$
|A|=|\mathrm{B}|
$$

if and only if there is a one-to-one correspondence (i.e., a bijection) from A to B.

- If there is a one-to-one function (i.e., an injection) from A to B, the cardinality of A is less than or the same as the cardinality of B and we write $\quad|A| \leq|B|$.
- When $|A| \leq|B|$ and A and B have different cardinality, we say that the cardinality of A is less than the cardinality of B and write $|A|<|B|$.

Cardinality

- Definition: A set that is either finite or has the same cardinality as the set of positive integers (\mathbf{Z}^{+}) is called countable. A set that is not countable is uncountable.
- The set of real numbers \mathbf{R} is an uncountable set.
- When an infinite set is countable (countably infinite) its cardinality is \aleph_{0}.
- We write $|S|=\aleph_{0}$ and say that S has cardinality "aleph null."
(\aleph is aleph: the $1^{\text {st }}$ letter of the Hebrew alphabet)

Showing that a Set is Countable

```
An infinite set is countable if and only if it is possible to list the elements of the set in a sequence (indexed by the positive integers)
```

The reason for this is that a one-to-one correspondence f from the set of positive integers to a set S can be expressed in terms of a sequence:
$a_{1}, a_{2}, \ldots, a_{n}, \ldots$ where $a_{1}=f(1), a_{2}=f(2), \ldots, a_{n}=f(n), \ldots$

Hilbert's Grand Hotel
 David Hilbert

The Grand Hotel (example due to David Hilbert) has countably infinite number of rooms, each occupied by a guest. We can always accommodate a new guest at this hotel. How is this possible?

Hilbert's Grand Hotel David thleen

The Grand Hotel (example due to David Hilbert) has countably infinite number of rooms, each occupied by a guest. We can always accommodate a new guest at this hotel. How is this possible?

Because the rooms of Grand Hotel are countable, we can list them as Room 1, Room 2, Room 3 , and so on.

When a new guest arrives, we move the guest in Room 1 to Room 2, the guest in Room 2 to Room 3, and in general the guest in Room n to Room $n+1$, for all positive integers n.

This frees up Room 1, which we assign to the new guest, and all the current guests still have rooms.

Showing that a Set is Countable

Example 1: Show that the set of positive even integers E is countable set.
Solution: Let $f(x)=2 x$.

Then $f(n)=2 n$ is a bijection from \mathbf{N} to E since f is both one-toone and onto.

- To show that it is one-to-one, suppose that $f(n)=f(m)$. Then $2 \mathrm{n}=2 \mathrm{~m}$, and so $\mathrm{n}=\mathrm{m}$.
- To see that it is onto, suppose that t is an even positive integer. Then $t=2 k$ for some positive integer k and $f(k)=t .{ }_{8} \varangle$

Showing that a Set is Countable

Example 2: Show that the set of integers Z is countable.

Solution: Can list in a sequence:

$$
0,1,-1,2,-2,3,-3
$$

Or can define a bijection from \mathbf{N} to \mathbf{Z} :

- When n is even: $f(n)=n / 2$
- When n is odd: $f(\mathrm{n})=-(n-1) / 2$
$0,1,-1,2,-2,3,-3$
$\downarrow \uparrow \uparrow \uparrow \downarrow \uparrow \downarrow \downarrow$
$1,2, \quad 3,4, \quad 5, \quad 6, \quad 7, \ldots \ldots \ldots \ldots$

The Positive Rational Numbers are Countable

- Definition: A rational number can be expressed as the ratio of two integers p and q such that $q \neq 0$.
- $3 / 4$ is a rational number
- $\sqrt{ } 2$ is not a rational number.

Example 3: Show that the positive rational numbers are countable.
Solution:The positive rational numbers are countable since they can be arranged in a sequence:

$$
r_{1}, r_{2}, r_{3}, \ldots
$$

The next slide shows how this is done.

The Positive Rational Numbers are Countable

Constructing the List
First row $q=1$.
Second row $q=2$.
etc.

First list p / q with $p+q=2$. Next list p / q with $p+q=3$

Terms not circled are not listed because they repeat previously listed terms

And so on.

$$
1,1 / 2,2,3,1 / 3,1 / 4,2 / 3, \ldots .
$$

Strings

Example 4: Show that the set of finite strings S over a finite alphabet A is countably infinite.

Assume an alphabetical ordering of symbols in A
Solution: Show that the strings can be listed in a sequence. First list

1. All the strings of length 0 in alphabetical order.
2. Then all the strings of length 1 in lexicographic (as in a dictionary) order.
3. Then all the strings of length 2 in lexicographic order.
4. And so on.

This implies a bijection from \mathbf{N} to S and hence it is a countably infinite set.

