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Chapter Summary
● Mathematical Induction
● Strong Induction
● Well-Ordering
● Recursive Definitions
● Structural Induction
● Recursive Algorithms
● Program Correctness (not yet included in overheads)
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Section 5.1



Section Summary
● Mathematical Induction
● Examples of Proof by Mathematical Induction
● Mistaken Proofs by Mathematical Induction
● Guidelines for Proofs by Mathematical Induction



Climbing an  
Infinite Ladder

Suppose we have an infinite ladder:
1. We can reach the first rung of the ladder.
2. If we can reach a particular rung of the ladder, then we 

can reach the next rung.

From (1), we can reach the first rung. Then by 
applying (2), we can reach the second rung. 
Applying (2) again, the third rung. And so on.  
We can apply (2) any number of times to 
reach any particular rung, no matter how high 
up.

This example motivates proof by 
mathematical induction.



Principle of Mathematical Induction
     Principle of Mathematical Induction: To prove that P(n) is true for all 

positive integers n, we complete these steps:
● Basis Step: Show that P(1) is true.
● Inductive Step: Show that P(k) → P(k + 1)  is true for all positive integers k.

     To complete the inductive step, assuming the inductive hypothesis that 
P(k) holds for an arbitrary integer k, show that  must P(k + 1) be true.

    
     Climbing an Infinite Ladder Example:

● BASIS STEP: By (1), we can reach rung 1.
● INDUCTIVE STEP: Assume the inductive hypothesis that we can reach 

rung k. Then by (2), we can reach rung k + 1.
     Hence, P(k) → P(k + 1) is true for all positive integers k. We can reach 

every rung on the ladder.



Important Points About Using 
Mathematical  Induction
● Mathematical induction can be expressed  as the rule of 

inference
     
    where the domain is the set of positive integers.
● In a proof by mathematical induction, 

● we don’t assume that P(k) is true for all positive 
integers! We show that if we assume that P(k) is true, 
then P(k + 1) must also  be true. 

● Proofs by mathematical induction do not always start at 
the integer 1. In such a case, the basis step begins at a 
starting point b where b is an integer. We will see examples 
of this soon.

  (P(1)  ∧ ∀k (P(k) → P(k + 1))) →  ∀n P(n), 



Remembering How Mathematical 
Induction Works

Consider  an infinite 
sequence  of dominoes, 
labeled 1,2,3, …, where 
each domino is 
standing. 

We know that the first domino 
is knocked down, i.e., P(1) is 
true .

We also know that  if  whenever 
the kth domino is knocked over, 
it knocks over the (k + 1)st 
domino, i.e, P(k) → P(k + 1) is 
true for all positive integers k. 

Let P(n) be the 
proposition that the 
nth domino is 
knocked over. 

Hence, all dominos are knocked over.

P(n) is true for all positive integers n.



Proving a Summation Formula by 
Mathematical Induction
   Example: Show that:  
   Solution:

● BASIS STEP: P(1) is true since 1(1 + 1)/2 = 1.
● INDUCTIVE STEP: Assume true for P(k).

        The inductive hypothesis is
        Under this assumption,   

Note: Once we have this 
conjecture, mathematical 
induction can be used to 
prove it correct.



Conjecturing and Proving Correct a 
Summation Formula
      Example: Conjecture and prove correct a formula for the sum of the first n positive odd integers. Then 

prove your conjecture.
       Solution: We have:   1= 1, 1 + 3 = 4, 1 + 3 + 5 = 9,  1 + 3 + 5 + 7 = 16, 1 + 3 + 5 + 7 + 9 = 25.

● We can conjecture that the sum of the first n positive odd integers is n2, 

● We prove the conjecture with mathematical induction.
● BASIS STEP: P(1) is true since 12 = 1.
● INDUCTIVE STEP: P(k) → P(k + 1) for every positive integer k.

               Assume the inductive hypothesis holds and then show that P(k + 1) holds has well.

● So, assuming P(k), it follows that:

● Hence, we have shown that P(k + 1) follows from P(k). Therefore the sum of the first n positive odd 
integers is n2. 

1 + 3 + 5 + ···+ (2n  − 1) =n2 .  

Inductive Hypothesis: 1 + 3 + 5 + ···+ (2k  − 1)  =k2  

P(k+1) = 1 + 3 + 5 + ···+ (2k  − 1) + (2k + 1) =[1 + 3 + 5 + ···+ (2k  − 1)] + (2k + 1)
                                                                        = k2 + (2k + 1)  (by the inductive hypothesis)
                                                                        = k2 + 2k + 1 
                                                                         = (k + 1) 2 



Proving Inequalities
  Example: Use mathematical induction to prove that      n < 

2n  for all positive integers n.
   Solution: Let P(n) be the proposition that n < 2n. 

● BASIS STEP: P(1) is true since 1 < 21 = 2.
● INDUCTIVE STEP: Assume P(k) holds, i.e., k < 2k, for an 

arbitrary positive integer k.
● Must show that P(k + 1) holds. Since by the inductive 

hypothesis, k < 2k, it follows that:
       k + 1 < 2k + 1  ≤ 2k  + 2k  = 2 · 2k  = 2k+1  

    Therefore n < 2n  holds for all positive integers n.



Proving Inequalities
   Example: Use mathematical induction to prove that 2n < n!, 

for every integer n ≥ 4.
   Solution: Let P(n) be the proposition that 2n  < n!. 

● BASIS STEP: P(4) is true since 24  = 16  < 4! = 24.
● INDUCTIVE STEP: Assume P(k) holds, i.e., 2k  < k!  for an 

arbitrary integer k ≥ 4. To show that P(k + 1) holds: 
                2k+1 = 2·2k  

                                    < 2· k!          (by the inductive hypothesis)
                                    < (k + 1)k!
                        = (k + 1)!
 Therefore, 2n  < n!  holds, for every integer n ≥ 4.

Note that here the basis step is P(4), since P(0), P(1), P(2),  and P(3) are all false.  



Proving Divisibility Results
   Example: Use mathematical induction to prove that n3 − n is 

divisible by 3, for every positive integer n.
   Solution: Let P(n) be the proposition that n3 − n is divisible by 3. 

● BASIS STEP: P(1) is true since 13 − 1 = 0, which is divisible by 3.
● INDUCTIVE STEP: Assume P(k) holds, i.e., k3 − k is divisible by 3, 

for an arbitrary positive integer k. To show that P(k + 1) follows: 
                (k + 1)3 − (k + 1) = (k3 + 3k2 + 3k + 1) − (k + 1) 
                                               = (k3 − k) + 3(k2 + k) 
    By the inductive hypothesis, the first term (k3 − k) is divisible by 3 

and the second term is divisible by 3 since it is an integer multiplied 
by 3. So by part (i) of Theorem 1 in Section 4.1 , (k + 1)3 − (k + 1)  is 
divisible by 3. 

 Therefore, n3 − n is divisible by 3, for every integer positive integer n.



Number of Subsets of a Finite Set
   Example: Use mathematical induction to show that if S 

is a finite set with n elements, where n is a nonnegative 
integer, then S has 2n subsets.

        (Chapter 6 uses combinatorial methods to prove this result.)

   Solution: Let P(n) be the proposition that a set with n 
elements has 2n subsets.
● Basis Step: P(0) is true, because the empty set has only 

itself as a subset and  20 = 1.
● Inductive Step: Assume P(k) is true for an arbitrary 

nonnegative integer k. continued → 



Number of Subsets of a Finite Set

● Let T be a set with k + 1 elements. Then T = S ∪ {a}, where a ∈ T and S 
= T − {a}.  Hence |S| = k.

● For each subset X of S, there are exactly two subsets of T, i.e., X and           
X ∪ {a}. 

● By the inductive hypothesis S  has 2k subsets. Since there are two subsets 
of T  for each subset of S, the number of subsets of T  is           2 ·2k = 
2k+1 .

Inductive Hypothesis: For an arbitrary nonnegative integer k, 
every set with k elements has 2k subsets.



Tiling Checkerboards
    Example: Show that every 2n ×2n checkerboard with one square removed can 

be tiled using right triominoes.

    
     Solution: Let P(n) be the proposition that every 2n ×2n checkerboard with one 

square removed can be tiled using right triominoes. Use mathematical 
induction to prove that P(n) is true for all positive integers n.
● BASIS STEP:  P(1) is true, because each of the four 2 ×2 checkerboards with one 

square removed can be tiled using one right triomino.

 
continued → 

A right triomino is an L-shaped tile which covers 
three squares at a time.



Tiling Checkerboards

● INDUCTIVE STEP:  Assume that  P(k) is true for every  2k ×2k checkerboard, for some 
positive integer k.

● Consider a 2k+1 ×2k+1 checkerboard with one square removed. Split this checkerboard into four 
checkerboards of size 2k ×2k,by dividing it in half in both directions.

● Remove a square from one of the four 2k ×2k checkerboards. By the inductive hypothesis, this board 
can be tiled.  Also by the inductive hypothesis, the other three boards can be tiled with the square 
from the corner of the center of the original board removed. We can then cover the three adjacent 
squares with a triominoe. 

● Hence, the entire 2k+1 ×2k+1 checkerboard with one square removed can be tiled using right triominoes.

Inductive Hypothesis: Every 2k ×2k checkerboard, for some positive 
integer k,  with one square removed can be tiled using right triominoes.



An Incorrect “Proof” by Mathematical 
Induction
   Example: Let P(n) be the statement that every set of n lines in 

the plane, no two of which are parallel, meet in a common 
point. Here is a “proof” that P(n) is true for all positive integers 
n ≥ 2.  
● BASIS STEP: The statement P(2) is true because any two lines in 

the plane that are not parallel meet in a common point.
● INDUCTIVE STEP: The inductive hypothesis is the statement that 

P(k) is true for the positive integer  k ≥ 2, i.e., every set of k lines in 
the plane, no two of which are parallel, meet in a common point.

● We must show that if P(k) holds, then P(k + 1) holds, i.e.,  if every 
set of k lines in the plane, no two of which are parallel, k ≥ 2, meet 
in a common point, then every set of k + 1 lines in the plane, no 
two of which are parallel, meet in a common point. 

continued → 



An Incorrect “Proof” by Mathematical 
Induction

● Consider a set  of k + 1 distinct lines in the plane, no two parallel. By the inductive 
hypothesis, the first k of these lines must meet in a common point p1. By the 
inductive hypothesis, the last k of these lines meet in a common point p2. 

● If p1  and p2 are different points, all lines containing both of them must be the same 
line since two points determine a line. This contradicts the assumption that the 
lines are distinct. Hence, p1 = p2   lies on all k + 1 distinct lines, and therefore P(k + 
1) holds. Assuming that  k ≥2, distinct lines meet in a common point, then every   k + 1 
lines meet in a common point.

● There must be an error in this proof  since the conclusion is absurd. But where is the error?

Inductive Hypothesis: Every set of k lines in the plane, where    k ≥ 2, no two 
of which are parallel, meet in a common point.



An Incorrect “Proof” by Mathematical 
Induction

● Consider a set  of k + 1 distinct lines in the plane, no two parallel. By the inductive 
hypothesis, the first k of these lines must meet in a common point p1. By the 
inductive hypothesis, the last k of these lines meet in a common point p2. 

● If p1  and p2 are different points, all lines containing both of them must be the same 
line since two points determine a line. This contradicts the assumption that the 
lines are distinct. Hence, p1 = p2   lies on all k + 1 distinct lines, and therefore P(k + 
1) holds. Assuming that  k ≥2, distinct lines meet in a common point, then every   k + 1 
lines meet in a common point.

● There must be an error in this proof  since the conclusion is absurd. But where is the error?
● Answer: P(k)→ P(k + 1) only holds for  k ≥3. It is not the case that P(2) implies P(3). The first 

two lines must meet in a common point p1 and the second two must meet in a common 
point p2. They do not have to be the same point since only the second line is common to 
both sets of lines.

Inductive Hypothesis: Every set of k lines in the plane, where    k ≥ 2, no two 
of which are parallel, meet in a common point.



                      Guidelines: 
     Mathematical Induction Proofs



Strong Induction and 
Well-Ordering

Section 5.2



Section Summary
● Strong Induction
● Example Proofs using Strong Induction
● Using Strong Induction in Computational Geometry 

(not yet included in overheads)
● Well-Ordering Property



Strong Induction
● Strong Induction: To prove that P(n) is true for all 

positive integers n, where P(n) is a propositional 
function, complete two steps:
● Basis Step: Verify that the proposition P(1) is true.
● Inductive Step: Show the conditional statement                

[P(1) ∧ P(2) ∧··· ∧ P(k)] → P(k + 1) holds for all 
positive integers k. 

Strong Induction is sometimes called the 
second principle of mathematical induction or 
complete induction.



Strong Induction and   
the Infinite Ladder

Strong induction tells us that we can reach all rungs if:
1. We can reach the first rung of the ladder.
2. For every integer k, if we can reach the first k rungs, then 

we can reach the (k + 1)st rung. 

To conclude that we can reach every rung by strong 
induction:
• BASIS STEP:  P(1) holds
• INDUCTIVE STEP:  Assume P(1) ∧ P(2) ∧··· ∧ 
P(k)
   holds for an arbitrary integer k, and show that  
    P(k + 1) must also hold.
We  will have then shown by strong induction that 
for every positive integer n, P(n) holds, i.e., we can 
reach the nth rung of the ladder.



Proof using Strong Induction
   Example: Suppose we can reach the first and second rungs of an 

infinite ladder, and we know that if we can reach a rung, then 
we can reach two rungs higher. Prove that we can reach every 
rung.

   (Try this with mathematical induction.)
    Solution: Prove the result using strong induction.

● BASIS STEP: We can reach the first step.
● INDUCTIVE STEP:  The inductive hypothesis is that we can reach 

the first k rungs, for any k ≥ 2. We can reach two rungs higher; so we 
can reach (k + 2)nd rung. How about (k + 1)st? We can reach the (k + 1)st 
rung since we can reach the (k − 1)st rung by the inductive hypothesis.

● Hence, we can reach all rungs of the ladder. 



Which Form of Induction Should Be 
Used?
● We can always use strong induction instead of  

mathematical induction. But there is no reason to use 
it if it is simpler to use mathematical induction. (See 
page 335 of text.)

● In fact, the principles of mathematical induction, 
strong induction, and the well-ordering property are 
all equivalent. (Exercises 41-43)

● Sometimes it is clear how to proceed using one of the 
three methods, but not the other two. 



Completion of the proof of the 
Fundamental Theorem of Arithmetic
   Example: Show that if n is an integer greater than 1, then n can be 

written as the product of primes.
   Solution: Let P(n) be the proposition that n can be written as a product 

of primes.
● BASIS STEP: P(2) is true since 2 itself is prime.
● INDUCTIVE STEP: The inductive hypothesis is P(j) is true for all integers 

j with 2 ≤ j  ≤ k. To show that P(k + 1) must be true under this assumption, 
two cases need to be considered:
● If k + 1  is prime, then P(k + 1) is true.
● Otherwise, k + 1  is composite and can be written as the product of two 

positive integers a and b with 2 ≤ a  ≤ b < k + 1. By the inductive hypothesis a 
and b can be written as the product of primes and therefore k + 1 can also be 
written as the product of those primes.

    Hence, it has been shown that every integer greater than 1 can be written as the product of primes.
          (uniqueness proved in Section 4.3) 



Proof using Strong Induction
   Example: Prove that every amount of postage of 12 cents or more can 

be formed using just 4-cent and 5-cent stamps. 
   Solution: Let P(n) be the proposition that postage of n cents can be 

formed using 4-cent and 5-cent stamps.
● BASIS STEP: P(12), P(13), P(14), and P(15) hold.

● P(12) uses three 4-cent stamps.
● P(13) uses two 4-cent stamps and one 5-cent stamp.
● P(14) uses one 4-cent stamp and two 5-cent stamps.
● P(15) uses three 5-cent stamps.

● INDUCTIVE STEP: The inductive hypothesis  states that P(j) holds for 
12 ≤ j ≤ k, where k ≥ 15.  Assuming the inductive hypothesis,  it can be shown that 
P(k + 1) holds. 
● Using the inductive hypothesis, P(k − 3) holds since k − 3 ≥ 12.  To form 

postage of  k + 1 cents, add a 4-cent stamp to the postage for k − 3 cents. 
    Hence, P(n) holds for all n ≥ 12.



Proof of Same Example using 
Mathematical Induction
   Example: Prove that every amount of postage of 12 cents or more 

can be formed using just 4-cent and 5-cent stamps. 
   Solution: Let P(n) be the proposition that postage of n cents can 

be formed using 4-cent and 5-cent stamps.
● BASIS STEP: Postage of 12 cents can be formed using three 4-cent 

stamps. 
● INDUCTIVE STEP: The inductive hypothesis P(k) for any positive 

integer k is that postage of k cents can be formed using 4-cent and 5-
cent stamps. To show P(k + 1) where   k ≥ 12 , we consider two cases:
● If at least one 4-cent stamp has been used, then a 4-cent stamp can be replaced 

with a 5-cent stamp to yield a total of k + 1 cents.
● Otherwise, no  4-cent stamp have been used and at least three 5-cent stamps 

were used. Three 5-cent stamps can be replaced by four 4-cent stamps to yield 
a total of k + 1 cents.

    Hence, P(n) holds for all n ≥ 12.



Well-Ordering Property
● Well-ordering property: Every nonempty set of nonnegative 

integers has a least element.
● The well-ordering property is one of the axioms of the 

positive integers listed in Appendix 1. 
● The well-ordering property can be used directly in proofs, 

as the next example illustrates.
● The well-ordering property can be generalized. 

● Definition: A set is well ordered if every subset has a least 
element.
● N is well ordered under ≤.
● The set of finite strings over an alphabet using lexicographic 

ordering is well ordered.



Well-Ordering Property
    Example: Use the well-ordering property to prove the 

division algorithm, which states that if a is an integer and d 
is a positive integer, then there are unique integers q and r 
with 0 ≤ r < d, such that   a = dq + r.

    Solution: Let S be the set of nonnegative integers of the 
form  a − dq, where q  is an integer. The set is nonempty since  
−dq can be made as large as needed. 
● By the well-ordering property, S has a least element  r = a − dq0. 

The integer r is nonnegative. It also must be the case that r < d. 
If it were not, then there would be a smaller nonnegative 
element in S, namely,   a − d(q0 + 1) = a − dq0 − d = r − d  > 0.

● Therefore, there are integers q and r with 0 ≤ r < d.
                (uniqueness of q and r is Exercise 37)


