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Chapter Summary
● Graphs and Graph Models
● Graph Terminology and Special Types of Graphs
● Representing Graphs and Graph Isomorphism
● Connectivity (next week)
● Euler and Hamiltonian Graphs (next week)



Graphs and Graph Models
Section 10.1



Section Summary
● Introduction to Graphs
● Graph Taxonomy
● Graph Models



Graphs
   Definition: A graph G = (V, E) consists of  a nonempty set V of vertices (or nodes) and a set 

E of edges. Each edge has either one or two vertices associated with it, called its 
endpoints.  An edge is said to connect its endpoints.

   Remarks: 
● The graphs we study here are unrelated to graphs of functions studied in Chapter 2. 
● We have a lot of freedom when we draw a picture of a graph.   All that matters is the connections made by the edges, not 

the particular geometry depicted.   For example, the lengths of edges, whether edges cross, how vertices are depicted, 
and so on, do not matter

● A graph with an infinite vertex set  is called an infinite graph. A graph with a finite vertex set is called a finite graph. We 
(following the text) restrict our attention to finite graphs.
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Example:
This is a graph 
with four 
vertices and five 
edges.



Some Terminology
● In a simple graph each edge connects two different vertices and no two 

edges connect the same pair of vertices.
● Multigraphs may have multiple edges connecting the same two 

vertices. When m different edges connect the vertices u and v, we say 
that {u,v} is an edge of multiplicity m. 

● An edge that connects a vertex to itself is called a loop.
● A pseudograph may include loops, as well as multiple edges 

connecting the same pair of vertices.

Remark: There is no standard 
terminology for graph theory. So, it is 
crucial that you understand the 
terminology being used whenever 
you read material about graphs.

Example: 
This pseudograph 
has both multiple 
edges and a loop.
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Directed Graphs
   Definition: A directed graph  (or digraph) G = (V, E) 

consists of  a nonempty set V of vertices (or nodes) and 
a set E of directed edges (or arcs). Each edge is 
associated with an ordered pair of vertices.  The 
directed edge associated with the ordered pair (u,v) is 
said to start at u and end at v. 

   Remark: 
● Graphs where the end points of an edge are not 

ordered are said to be undirected graphs.



Some Terminology (continued)
● A simple directed graph has no loops and no multiple edges.

● A directed multigraph may have multiple directed edges.  When there 
are m directed edges from the vertex u to the vertex v,  we say that  
(u,v) is an edge of multiplicity m.
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a bIn this directed multigraph the 
multiplicity of (a,b) is 1 and the 
multiplicity of (b,c) is 2.

Example:
This is a directed graph with 
three vertices and four edges.

Example:



Graph Models:  
Computer Networks
● When we build a graph model, we use the appropriate type of graph 

to capture the important features of the application. 
● We illustrate this process using graph models of different types of 

computer networks. In all these graph models, the vertices represent 
data centers and the edges represent communication links.

●  Assume we want to model whether two data centers are connected 
by a communications link, we use a simple graph. 

● This is the appropriate type of graph when we only care 
whether two data centers are directly linked (and not how 
many links there may be) and all communications links work in 
both directions.

 
  



Graph Models:  
Computer Networks (continued)

• To model  a computer network where we care about the number of 
links between data centers, we use a multigraph. 



Graph Models:  
Computer Networks (continued)

• To model a computer network with diagnostic links at data centers, we 
use a pseudograph, as loops are needed. 



Graph Models:  
Computer Networks (continued)
• To model a network with multiple one-way links, we use a directed 

multigraph.   
• Note that we could use a directed graph without multiple edges if we 

only care whether there is at least one link from a data center to 
another data center.



Graph Terminology: Summary
● To understand the structure of a graph and to build a graph 

model, we ask these questions:
•  Are the edges of the graph undirected or directed  (or both)?
•  If the edges are undirected, are multiple edges present that 

connect the same pair of vertices? 
• If the edges are directed, are multiple directed edges present?
•  Are loops present?

 

  



Other Applications of Graphs
● We will illustrate how graph theory can be used in models of:

● Social networks
● Communications networks
● Information networks
● Software design
● Transportation networks
● Biological networks
● Graph neural networks

● It’s a challenge to find a subject to which graph theory has 
not yet been applied.  Can you find an area without 
applications of graph theory?



Graph Models: Social Networks
● Graphs can be used to model social structures based on different kinds 

of relationships between people or groups. 
● In a social network, vertices represent individuals or organizations and 

edges represent relationships between them.
● Useful graph models of social networks include:

● friendship graphs - undirected graphs where two people are 
connected if they are friends (in the real world, on Facebook, or in 
a particular virtual world, and so on.)

● collaboration graphs - undirected graphs where two people are 
connected if they collaborate in a specific way

● influence graphs - directed graphs where there is an edge from one 
person to another if the first person can influence the second 
person

  



Graph Models: Social Networks 
(continued)

  

Example: A friendship 
graph where two people 
are connected if they are 
Facebook friends.

Example: An 
influence graph

Next Slide: Collaboration Graphs



Examples of  Collaboration Graphs
● The Hollywood graph models the collaboration of actors in films.

● We represent actors by vertices and we connect two vertices if the 
actors they represent have appeared in the same movie.

● An academic collaboration graph models the collaboration of 
researchers who have jointly written a paper in a particular 
subject.
●  We represent researchers in a particular academic discipline using 

vertices.
● We connect the vertices representing two researchers in this 

discipline if they are coauthors of a paper.



Applications to Information Networks 
● Graphs can be used to model different types of networks 

that link different types of information.
● In a web graph, web pages are represented by vertices and 

links are represented by directed edges.
●  A web graph models the web at a particular time.

● In a citation network: 
●  Research papers in a particular discipline are represented 

by vertices.
● When a paper cites a second paper as a reference,  there is 

an edge from the vertex representing this paper to the vertex 
representing the second paper.



Transportation Graphs
● Graph models are extensively used in the study of  

transportation networks.
● Airline networks can be modeled using directed multigraphs 

where
● airports are represented by vertices
● each flight is represented by  a directed edge from the vertex 

representing the departure airport to the vertex representing the 
destination airport

● Road networks can be modeled using graphs where
● vertices represent intersections and edges represent roads.
● undirected edges represent two-way roads and directed edges 

represent one-way roads.



Software Design Applications
● Graph models are extensively used in software design. We will introduce two 

such models here; 
● one representing the dependency between the modules of a software 

application,
● the other representing restrictions in the execution of statements in 

computer programs.



Software Design Applications
● Designing software top-down: 

● the system is divided into modules; each performing a specific task.    
● We use a module dependency graph;

● to represent the dependency between these modules.  
● In a module dependency graph vertices represent software modules and there is an 

edge from one module to another if the second module depends on the first.

 
Example: The dependencies between the 
seven modules in the design of a web 
browser are represented by this module 
dependency graph.



● We can use a directed graph called a precedence graph to 
represent which statements must have already been executed 
before we execute each statement.
●  Vertices represent statements in a computer program
● There is a directed edge from a vertex to a second vertex if the 

second vertex cannot be executed before the first

  
 

Software Design Applications 
(continued)

Example: This precedence 
graph shows which statements 
must be executed before we can 
execute each of the six 
statements in the program.



Biological Applications
● Graph models are used extensively in many areas of the 

biological science.  We will describe two such models, one 
to ecology and the other to molecular biology.

● Niche overlap graphs model competition between species in 
an ecosystem
● Vertices represent species and an edge connects two vertices 

when they represent species who compete for food resources.

 

Example: This is the 
niche overlap graph 
for a forest ecosystem 
with nine species.



Biological Applications (continued)
● We can model the interaction of proteins in a cell using a protein 

interaction network.
● In a protein interaction graph, vertices represent proteins  and vertices 

are connected by an edge if the proteins they represent interact.
● Protein interaction graphs can be huge and can contain more than 

100,000 vertices, each representing a different protein, and more than 
1,000,000 edges, each representing an interaction between proteins

● Protein interaction graphs are often split into smaller graphs, called 
modules,  which represent the interactions between proteins involved 
in a particular function.

 

Example:  This is a module of 
the protein interaction graph 
of proteins that degrade RNA 
in a human cell.



Biological Applications (continued)
● We can model the interaction of proteins in a cell using a protein 

interaction network.
● In a protein interaction graph, vertices represent proteins  and vertices 

are connected by an edge if the proteins they represent interact.
● Protein interaction graphs can be huge and can contain more than 

100,000 vertices, each representing a different protein, and more than 
1,000,000 edges, each representing an interaction between proteins

● Protein interaction graphs are often split into smaller graphs, called 
modules,  which represent the interactions between proteins involved 
in a particular function.

 

Example:  This is a module of 
the protein interaction graph 
of proteins that degrade RNA 
in a human cell.



Graph Neural Networks
A

B

D

C

F

E

GNN
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Loss 
Function

Examples:
• Recommender systems

User-item interactions
• Representing Program structure as graphs

Parsed program components and their relations



Graph Neural Networks
GNN

Opt 

• Neural message passing from 
neighboring nodes

• State updates at each node at time t

Image credit: An Introduction to Graph Neural Networks: Models and Applications
For more details: https://www.youtube.com/watch?v=zCEYiCxrL_0

Network parameters are shared

https://www.youtube.com/watch?v=zCEYiCxrL_0


Graph Neural Networks
GNN

Opt 

• Neural message passing from 
neighboring nodes

• State updates at each node at time t

Image credit: An Introduction to Graph Neural Networks: Models and Applications
For more details: https://www.youtube.com/watch?v=zCEYiCxrL_0

Parameters of each node are 
updated simultaneously at time t
• At each time step the graph is in 
a different state

https://www.youtube.com/watch?v=zCEYiCxrL_0


Graph Terminology and 
Special Types of Graphs

Section 10.2



Section Summary
● Basic Terminology
● Some Special Types of Graphs
● Bipartite Graphs
● Bipartite Graphs and Matchings (not currently 

included in overheads)
● Some Applications of Special Types of Graphs (not 

currently included in overheads)
● New Graphs from Old



Basic Terminology
Definition 1. Two vertices u, v in  an undirected graph G are 
called adjacent (or neighbors)  in G if there is an edge e between u 
and v. 
• Such an edge e is called incident with the vertices u and v and 
• e is said to connect u and v. 



Basic Terminology

Definition 2. The set of all neighbors of a vertex v of G = (V, E), 
denoted by N(v), is called the neighborhood of v. 

If A is a subset of V, we denote by N(A) the set of all vertices 
in G that are adjacent to at least one vertex in A. So,

 



Basic Terminology
 
Definition 3. The degree of a vertex in a undirected graph is the 
number of edges incident with it, 

• except that a loop at a vertex contributes two to the 
degree of that vertex. 

• The degree of the vertex v is denoted by deg(v).



Degrees and Neighborhoods of 
Vertices

Example:  What are the  degrees  and neighborhoods of the 
vertices in the graphs G and H?



Degrees and Neighborhoods of 
Vertices

Example:  What are the  degrees  and neighborhoods of the vertices in 
the graphs G and H?

Solution: 
G:    deg(a) = 2, deg(b) = deg(c) = deg(f ) = 4, deg(d ) = 1,  
        deg(e) = 3, deg(g) = 0.	
									N(a) = {b, f }, N(b) = {a, c, e, f }, N(c) = {b, d, e, f }, N(d) = {c},  	
         N(e) = {b, c , f }, N(f) = {a, b, c, e}, N(g) = ∅ . 
H:    deg(a) = 4, deg(b) = deg(e) = 6,  deg(c) = 1, deg(d) = 5.		
										N(a) = {b, d, e},  N(b) = {a, b, c, d, e}, N(c) = {b}, 	
         N(d) = {a, b, e},  N(e) = {a, b ,d}. 



Degrees of Vertices
Theorem 1	(Handshaking Theorem):  If  G = (V,E) is  an undirected graph 
with m edges, then

    Proof:
    Each edge contributes twice to the degree count of all vertices. Hence, both 

the left-hand and right-hand sides of this equation equal twice the number 
of edges.

      Think about the graph where vertices represent the people at a party and an edge 
connects two people who have shaken hands.

2𝑚 = ∑𝑣∈𝑉
deg(𝑣)



Handshaking Theorem
We now give two examples illustrating the usefulness of the 
handshaking theorem.

Example: How many edges are there in a graph with 10 
vertices of degree six?
Solution: Because the sum of the degrees of the vertices is                
6	⋅ 10	= 60, the handshaking theorem tells us that 2m = 60.													
So	the	number	of	edges	m	=	30.



Handshaking Theorem
We now give two examples illustrating the usefulness of the 
handshaking theorem.

Example: If a graph has 5 vertices, can each vertex have degree 
3?
Solution: This is not possible by the handshaking theorem, 
because the sum of the degrees of the vertices 3	⋅		5	=	15	is odd.



Degree of Vertices (continued)
Theorem 2: An undirected graph has an even number of 
vertices of odd degree.
Proof: Let V1 be the vertices of even degree and V2 be the 
vertices of odd degree in an undirected graph G = (V, E) with 
m edges. Then 
       

      
   

must be even 
since deg(v) 
is even for 
each v ∈ V1

even

This sum must be even because 2m 
is even and the sum of the degrees 
of the vertices of even degrees is 
also even. Because this is the sum 
of the degrees of all vertices of odd 
degree in the graph, there must be 
an even number of such vertices.



Directed Graphs

Definition: A directed graph G = (V, E) consists of V, a 
nonempty set of vertices (or nodes), and E, a set of directed 
edges or arcs. Each edge is an ordered pair of vertices.  
The directed  edge (u,v) is said to start at u and end at v.

Definition:  Let (u,v) be an edge in G. Then u is the 
initial vertex of this edge and is adjacent to v and v is the 
terminal (or end) vertex of this edge and is adjacent from u. 
The initial and terminal vertices of a loop are the same.

Recall the definition of a directed graph.



Directed Graphs (continued)
Definition:  The in-degree of a vertex v, denoted        
deg−(v), is the number of edges which terminate at v. 
The out-degree of v, denoted deg+(v), is the number of 
edges with v as their initial vertex. 
• Note that a loop at a vertex contributes 1	to both 

the in-degree and the out-degree of the vertex.
Example:  In the graph G we have

deg−(a) = 2,	deg−(b) = 2, deg−(c) = 3,	deg−(d) = 2, 
    deg−(e) = 3, deg−(f) = 0.

deg+(a) = 4,	deg+(b) = 1, deg+(c) = 2,	deg+(d) = 2, 
    deg+ (e) = 3, deg+(f) = 0.



Directed Graphs (continued)
Definition:  The in-degree of a vertex v, denoted        deg−(v), is the number of edges 
which terminate at v. The out-degree of v, denoted deg+(v), is the number of edges 
with v as their initial vertex. 
• Note that a loop at a vertex contributes 1	to both the in-degree and the out-

degree of the vertex.

Example:  In the graph G we have
deg−(a) = 2,	deg−(b) = 2, deg−(c) = 3,	
deg−(d) = 2,  deg−(e) = 3, deg−(f) = 0.

deg+(a) = 4,	deg+(b) = 1, deg+(c) = 2,	
deg+(d) = 2, deg+ (e) = 3, deg+(f) = 0.



Directed Graphs (continued)
Theorem 3: Let G = (V, E) be a graph with directed edges. 
Then:

Proof: The first sum counts the number of outgoing edges 
over all vertices and the second sum counts the number of 
incoming edges over all vertices. It follows that both sums 
equal the number of edges in the graph.



Special Types of Simple Graphs: 
Complete Graphs

A complete graph on n vertices, denoted by Kn, is the 
simple graph that contains exactly one edge between 
each pair of distinct vertices. 



Special Types of Simple Graphs: Cycles 
and Wheels

A cycle Cn for n ≥  3	consists of n vertices v1, v2 ,… , vn, 
and edges {v1, v2}, {v2, v3} ,… , {vn-1, vn}, {vn, v1}.



Special Types of Simple Graphs: Cycles 
and Wheels

A wheel Wn is obtained by adding an additional vertex 
to a cycle Cn for n ≥  3	and connecting this new vertex 
to each of the n vertices in Cn by new edges.



Special Types of Simple Graphs:        
n-Cubes

An n-dimensional hypercube, or n-cube, Qn, is a graph 
with 2n vertices representing all bit strings of length 
n, where there is an edge between two vertices that 
differ in exactly one bit position.



Special Types of Graphs and Computer 
Network Architecture
     Various special graphs play an important role in the design of computer networks.

● Some local area networks use a star topology, which is a complete bipartite graph K1,n ,as 
shown in (a). All devices are connected to a central control device.

● Other local networks are based on a ring topology, where each device is connected to 
exactly two  others using Cn ,as illustrated in (b). Messages may be sent around the 
ring. 

● Others, as illustrated in (c), use a Wn – based topology, combining the features of a star 
topology and a ring topology. 

●



Special Types of Graphs and Computer 
Network Architecture
     Various special graphs also play a role in parallel processing where processors need to 
be interconnected as one processor may need the output generated by another. 

●  The n-dimensional hypercube, or n-cube,  Qn, is a common way to connect processors in 
parallel, e.g., Intel Hypercube. 

● Another common method is the mesh network, illustrated here                                                  
for 16 processors. 



Definition: A simple graph G is bipartite if V can be 
partitioned into two disjoint subsets V1 and V2 such that every 
edge connects a vertex in V1 and a vertex in V2. 
• In other words, there are no edges which connect two 

vertices in V1 or in V2.

Bipartite Graphs



Bipartite Graphs
Definition: A simple graph G is bipartite if V can be partitioned into two disjoint 
subsets V1 and V2 such that every edge connects a vertex in V1 and a vertex in V2. 
• In other words, there are no edges which connect two vertices in V1 or in V2.

Equivalent definition of a bipartite graph: if it is possible to 
color the vertices to red or blue so that no two adjacent vertices 
are the same color.

 

  

G is  
bipartite

H is  not bipartite
since if we color a 
red, then the 
adjacent vertices f 
and b must both 
be blue.



Bipartite Graphs (continued)
Example:  Show that C6 is bipartite.
Solution: We can partition the vertex set into                         V1 = 
{v1, v3, v5} and V2 = {v2, v4, v6} so that every edge of C6 connects a 
vertex in V1 and V2 .

Example:  Show that C3 is not bipartite.
Solution:  If we divide the vertex set of C3 into two nonempty sets, 
one of the two must contain two vertices. But in C3  every vertex is 
connected to every other vertex. Therefore, the two vertices in the 
same partition are connected. Hence, C3 is not bipartite.



Complete Bipartite Graphs
Definition:  A complete bipartite graph, Km,n, is a graph 
that has its vertex set partitioned into two subsets           
V1 of size m and V2 of size n such that there is an edge 
from every vertex in V1 to every vertex in V2.
Example: We display four complete bipartite graphs 
here.



New Graphs from Old 
Definition: A subgraph of a graph  G = (V, E)  is a graph H = (W, F),  where  W ⊂ V and 
F ⊂ E. 

• A subgraph H of G is a proper subgraph of G if H ≠ G.

Example: Here we show K5 and                                                                                              
one of its subgraphs.

Definition:  Let G = (V, E) be a simple graph.  The  subgraph induced  by a subset W  
of the vertex set V is the graph   (W, F),  where  the edge set F  contains an edge in E if 
and only if both endpoints are in W. 

Example: Here we show  K5		and	the	subgraph	induced	by	W	=	{a,b,c,e}.

      



Bipartite Graphs and Matchings
● Bipartite graphs are used to model applications that involve matching 

the elements of one set to elements in another, for example:
● Job assignments - vertices represent the jobs and the employees, edges 

link employees with those jobs they have been trained to do. A 
common goal is to match jobs to employees so that the most jobs are 
done.

● Marriage - vertices represent the men and the women and edges link a 
a man and a woman if they are an acceptable spouse.  We may wish 
to find the largest number of possible marriages.

   See the text for more about matchings in bipartite graphs.



New Graphs from Old (continued)
Definition: The union of two simple graphs                     
G1 = (V1, E1) and G2 = (V2, E2) is the simple graph 
with vertex set V1 ⋃ V2 and edge set E1 ⋃ E2. The 
union of G1 and G2 is denoted by G1 ⋃ G2.

Example:



Representing Graphs and 
Graph Isomorphism

Section 10.3



Section Summary
● Adjacency Lists
● Adjacency Matrices
● Incidence Matrices
● Isomorphism of Graphs



Representing Graphs:  
Adjacency Lists

Definition: An adjacency list can be used to represent 
a graph with no multiple edges by specifying the 
vertices that are adjacent to each vertex of the graph.
Example:

Example:



Representation of Graphs:  
Adjacency Matrices

Definition: Suppose that G = (V, E) is a simple graph 
where |V| = n. 
• Arbitrarily list the vertices of G as  v1, v2, … , vn. 

• The adjacency matrix  AG of G, with respect to the 
listing of vertices, is the n × n zero-one matrix; 
formally:

●         AG = [aij], then



Adjacency Matrices (continued)
Example:  

The ordering of 
vertices is a, b, c, d.

The ordering of 
vertices is a, b, c, d.

Note: The adjacency matrix of a simple graph is symmetric, i.e., aij = aji 

Also,   since there are no loops, each diagonal  entry aij  for i = 1, 2, 3, …, n, is 0.

 But for a dense graph, 
which includes a high 
percentage of possible 
edges, an adjacency matrix 
is preferable.

When a graph is sparse, that is, it has few 
edges relatively to the total number of 
possible edges, it is much more efficient to  
represent the graph using an adjacency list 
than an adjacency matrix. 



Adjacency Matrices (continued)
● Adjacency matrices can also be used to represent graphs with 

loops and multiple edges. 
● A loop at the vertex vi is represented by a 2 at the (i, i)th position 

of the matrix. 
● When multiple edges connect the same pair of vertices vi and vj, 

(or if multiple loops are present at the same vertex), the (i, j)th 
entry equals the number of edges connecting the pair of vertices. 
Example: We give the adjacency matrix  of the pseudograph 
shown here using the ordering of vertices a, b, c, d.  

  
  
  

each loop adds 2, not 1! [Ref]
Notice this correction above also

Ref: https://en.wikipedia.org/wiki/Adjacency_matrix



Adjacency Matrices (continued)
● Adjacency matrices can also be used to represent 

directed graphs. In other words, if the graphs 
adjacency matrix is  AG = [aij], then:

● The adjacency matrix for a directed graph does not have to be 
symmetric, why? 

● To represent directed multigraphs, the value of aij is the number 
of edges connecting vi to vj. 

● When there is a loop, corresponding aii term contains 1 this time:
The in-degrees of a vertex can be computed by summing the entries of the corresponding 
column and the out-degree of vertex by summing the entries of the corresponding row.

https://en.wikipedia.org/wiki/Directed_graph#Indegree_and_outdegree


Representation of Graphs:  
Incidence Matrices

Definition: Let  G = (V, E) be an undirected graph 
with vertices where v1, v2, … vn  and edges                        
e1, e2, … em.  The incidence matrix with respect to the 
ordering of V and E is the n × m  matrix M = [mij], 
where



Incidence Matrices (continued)
Example:  Simple Graph and Incidence Matrix

The rows going from top to 
bottom represent v1 through v5 
and the columns going from 
left to right represent e1 
through e6.

Example:  Pseudograph and Incidence Matrix

The rows going from top to 
bottom represent v1 through v5 
and the columns going from 
left to right represent e1 
through e8.



Isomorphism of Graphs
Definition: The simple graphs G1 = (V1, E1) and             
G2 = (V2, E2) are isomorphic if there is a one-to-one and 
onto function f from V1 to V2 with the property that a 
and b are adjacent in G1 if and only if f(a) and f(b) are 
adjacent in G2 , for all a and b in V1 . 

• Such a function f is called an isomorphism. Two simple 
graphs that are not isomorphic are called 
nonisomorphic.



Isomorphism of Graphs (cont.)
Example: Show that the graphs G =(V, E) and                           
H = (W, F) are isomorphic.

Solution: The function f with f(u1) = v1,
f(u2) = v4, f(u3) = v3, and f(u4) = v2  is a 
one-to-one correspondence between V and W.               
Note that adjacent vertices in G are u1 and u2, u1 and u3, u2 
and u4, and u3 and u4. Each of the pairs f(u1) = v1 and f(u2) = 
v4, f(u1) = v1 and f(u3) = v3 , f(u2) = v4 and f(u4) = v2 , and f(u3) 
= v3 and f(u4) = v2  consists of two adjacent vertices in H.



Isomorphism of Graphs (cont.)
● It is difficult to determine whether two simple graphs are isomorphic 

using brute force because there are n! possible one-to-one 
correspondences between the vertex sets of two simple graphs with n 
vertices. 

● The best algorithms for determining weather two graphs are 
isomorphic have quasi-polynomial worst case complexity in terms of 
the number of vertices of the graphs.

● Sometimes it is not hard to show that two graphs are not isomorphic. 
We can do so by finding a property, preserved by isomorphism, that 
only one of the two graphs has. Such a property is called graph 
invariant. 

Next slide..



Isomorphism of Graphs (cont.)
● Sometimes it is not hard to show that two graphs are not isomorphic. 

We can do so by finding a property, preserved by isomorphism, that 
only one of the two graphs has. Such a property is called graph 
invariant. 

● There are many different useful graph invariants that can be used to 
distinguish nonisomorphic graphs, such as:
●  the number of vertices, 
● the number of edges, 
● the degree sequence (list of the degrees of the vertices in 

nonincreasing order).  

● We will encounter others in later sections of this chapter.



Isomorphism of Graphs (cont.)
Example: Determine whether these two graphs                                                                              
are isomorphic.

Solution:  Both graphs have eight vertices and ten edges.
They also both have four vertices of degree two and four of degree three. 

However, G and H are not isomorphic. Note that since deg(a) = 2 in G, a must 
correspond to t, u, x, or y in H, because these are the vertices of degree 2. But each of 
these vertices is adjacent to another vertex of degree two in H, which is not true for a 
in G.

Alternatively, note that the subgraphs of G and H made up of vertices of 
degree three and the edges connecting them must be isomorphic. 
But the subgraphs, as shown at the right, are not isomorphic.  
 

 



Isomorphism of Graphs (cont.)
Example: Determine whether these two graphs                                                                                           
are isomorphic.



Isomorphism of Graphs (cont.)
Example: Determine whether these two graphs                                                                                               are 
isomorphic.

Solution:  Both graphs have six vertices and seven edges.
They also both have four vertices of degree two and two of degree three. 
The subgraphs of G and H consisting of all the vertices of degree two and the edges connecting them are 
isomorphic. So, it is reasonable to try to find an isomorphism f. 

We define an injection f from the vertices of G to the vertices of H that preserves the degree of vertices.   We will 
determine whether it is an isomorphism.

The function f with f(u1) = v6, f(u2) = v3, f(u3) = v4, and f(u4) = v5 , f(u5) = v1, and  f(u6) = v2  is a one-to-one 
correspondence between G and H. Showing that this correspondence preserves edges is straightforward, so we 
will omit the details here.  Because f is an isomorphism, it follows that G and H are isomorphic graphs.

See the text for an illustration of how adjacency matrices can be used for this verification.



Algorithms for Graph Isomorphism
● The best algorithms known for determining whether two 

graphs are isomorphic have quasi-polynomial worst-case time 
complexity (in the number of vertices of the graphs).

● However,  there are algorithms with linear average-case time 
complexity. 

● You can use a public domain program called NAUTY to 
determine in less than a second whether two graphs with as 
many as 100 vertices are isomorphic.

● Graph isomorphism is a problem of special interest because it 
is one of a few NP problems not known to be either tractable 
or NP-complete (see Section 3.3).



Applications of Graph Isomorphism 
● Isomorphic graphs plays an important role in applications of 

graph theory. For example, 
● chemists use molecular graphs to model chemical compounds. 

Vertices represent atoms and edges represent chemical bonds. 
When a new compound is synthesized, a database of molecular 
graphs is checked to determine whether the graph representing the 
new compound is isomorphic to the graph of a compound that this 
already known. 

● Electronic circuits are modeled as graphs in which the vertices 
represent components and the edges represent connections 
between them. Graph isomorphism is the basis for 
● the verification that a particular layout of a circuit corresponds 

to the design’s original schematics. 
● determining whether a chip from one vendor includes the 

intellectual property of another vendor. 


