Mathematical Induction

Victor Adamchik

Fall of 2005

Lecture 2 (out of three)

Plan

- 1. Strong Induction
- 2. Faulty Inductions
- 3. Induction and the Least Element Principal

Strong Induction

Fibonacci Numbers

Fibonacci number F_n is defined as the sum of two previous Fibonacci numbers

$$F_n = F_{n-1} + F_{n-2}$$

 $F_1 = 1, \ F_0 = 0$

Claim. Fibonacci numbers are growing exponentially

$$F_n \ge \phi^{n-2}, \ \forall \ n \ge 2$$

where ϕ is the golden ratio

$$\phi = \frac{1 + \sqrt{5}}{2}$$

Proof:

Base case: n = 2

 $F_2 \ge \phi^{2-2} = 1$

Inductive hypothesis: assume the following

$$F_n \ge \phi^{n-2}$$
$$F_{n-1} \ge \phi^{n-3}$$

Note, we need two assumptions. Prove that

$$F_{n+1} \geq \phi^{n-1}$$

We start with the definition

$$F_{n+1} = F_n + F_{n-1}$$

Next we use the inductive hypothesis to obtain

$$F_{n+1} = F_n + F_{n-1} \ge \phi^{n-2} + \phi^{n-3} = \phi^{n-3}(\phi + 1)$$

Now we use the property of the golden ratio (prove this!)

$$\phi^2 = \phi + 1$$

Substituting this into the previous formula, we get

$$F_{n+1} \ge \phi^{n-3}(\phi + 1) = \phi^{n-1}$$

Question. Where would be the proof failed if you attempted to prove $F_n = \phi^{n-2}$.

Formal Definition

The weak form induction is stated as

$$P(n_0) \land \forall n \ge n_0 (P(n) \Longrightarrow P(n+1))$$

Here $P(n_0)$ is a base case and P(n) is the inductive hypothesis. To prove that P(n) is true for $\forall n \ge n_0$, we have to

- 1. show that $P(n_0)$ is true
- 2. show that $P(n) \Longrightarrow P(n+1)$ is true for $\forall n \ge n_0$

A proof by strong induction only differs from the above in the Inductive Hypothesis step

Prove that P(n + 1) *is true whenever* P(k) *is true for all* k *such that* $0 \le k \le n$.

Here is the formal definition

 $P(0) \land (P(1) \land \dots P(n)) \Longrightarrow P(n+1)$

This is called strong induction because you might need some or all previous case to prove the n + 1 case.

Breaking Chocolate Bar

A chocolate bar consists of a number of squares (say, n > 0) arranged in a rectangular pattern. You split the bar into small squares always breaking along the lines between the squares. What is the minimum number of breaks?

Claim: It takes n - 1 breaks.

Proof.

Let P(n) denote the number of breaks needed to split a bar with *n* squares.

Base step: P(1) = 0 is true

Induction step: Assume that P(k) is true for $2 \le k \le n$

Prove that P(n + 1) = n under the above assumption.

Break a bar into two pieces of sizes n_1 and n_2 , so that $n_1 + n_2 = n + 1$. By inductive hypothesis

$$P(n_1) = n_1 - 1$$

 $P(n_2) = n_2 - 1$

Hence, the total number of breaks is

$$1 + (n_1 - 1) + (n_2 - 1) = n$$

How to justify the proof by strong induction?

The proof is by contradiction.

Suppose that some statements in the list P(1), ..., P(n) were actually false. We choose the *first* false statement, say P(m), where m > 0. Now we know that P(0), P(1), ..., P(m - 1) are true. Then by inductive hypothesis, P(m) logically follows from P(0), P(1), ..., P(m - 1). Therefore, P(m) is true. Contradiction.

Binary Search

The number of comparisons used during binary search in a table of size n in the worst case described by the recurrence

$$a_n = a_{\frac{n}{2}} + 1, a_1 = 1$$

with the solution

 $a_n = \log_2 n + 1$

Proof. Base case: $a_1 = \log_2 1 + 1 = 0 + 1 = 1$

Inductive hypothesis: Assume $a_k = \log_2 k + 1$ for k = 2, ..., n - 1.

Inductive step: prove for k = n:

$$a_n = \log_2 n + 1$$

We start with

$$a_n = a_{\frac{n}{2}} + 1$$

and make a use of inductive hypothesis

$$a_{\frac{n}{2}} = \log_2 \frac{n}{2} + 1$$

to obtain

$$a_n = \log_2 \frac{n}{2} + 2$$

Let *n* is even n = 2 p, then

$$a_{2p} = \log_2 p + 2 = \log_2(2p) - \log_2 2 + 2 = \log_2(2p) + 1$$

Let *n* is odd n = 2 p + 1, then

$$a_{2p+1} = \log_2 \frac{2p+1}{2} + 2 = \log_2(2p+1) + 1$$

Faulty Inductions

Example 1

Claim: Every positive integer $n \ge 2$ has a unique prime factorization

Proof. Base step: P(2) is true

Induction step: Assume that P(k) is true for $2 \le k \le n$

Prove that P(n + 1) is true

There are two possibilities:

Case 1: n + 1 is prime. Then we are done.

Case 2: n + 1 is composite.

Let n + 1 = p * q where 1 < p, q < n + 1. By inductive hypothesis, p and q have unique factorizations. Since the product of two unique factorizations is again unique, we conclude the proof. QED

Explanation. n + 1 = p * q is NOT unique.

Example 2

Claim. 6 n = 0 for all $n \ge 0$.

Base step: Clearly 6*0 = 0.

Induction step: Assume that 6k = 0 for all $0 \le k \le n$.

We need to show that 6(n + 1) is 0.

Write n + 1 = a + b, where a > 0 and b > 0 are natural numbers less that n + 1. By IH, we have

$$6a = 0$$
 and $6b = 0$

Therefore,

$$6(n+1) = 6a + 6b = 0 + 0 = 0.$$

Explanation. We cannot write 1 as the sum of two natural numbers.

Example 3

Claim: All Fibonacci numbers are even

Proof by strong induction.

Base step: Clearly $F_0 = 0$ which is even

IH: Assume that F_k are even for all $0 \le k \le n$.

IS: We need to show that F_{n+1} is even

It is easy. By definition

$$F_{n+1} = F_n + F_{n-1}$$

 F_n and F_{n-1} are even - by inductive hypothesis. Thus, F_{n+1} is even. QED.

Explanation. $F_{n+1} = F_n + F_{n-1}$ is not valid for n = 0.

Induction and the Least Element Principal

Weak vs. Strong

These two forms of induction are equivalent. They only differ from each other from the point of view of writing a proof. It is always possible to convert a proof using one form of induction into the other.

The conversion from weak to strong form is trivial, because a weak form is already a strong form.

The conversion from a strong form into a weak form is more interesting. Here are two forms

$$P(n_0) \land \forall n \ge n_0 (P(n) \Longrightarrow P(n+1))$$

$$P(n_0) \land \forall n \ge n_0 (P(n_0) \land P(n_0 + 1) \land \dots P(n) \Longrightarrow P(n + 1))$$

We introduce a new hypothesis Q(n) defined by

$$Q(n) := P(n_0) \wedge P(n_0 + 1) \wedge ... P(n)$$

The base step is identical in both cases, namely $Q(n_0)$.

The inductive step is

$$Q(n) \Longrightarrow P(n+1)$$

Since Q(n) implies itself, we rewrite the above statement as

$$Q(n) \Longrightarrow Q(n) \land P(n+1)$$

which is equivalent (by definition of Q)

$$Q(n) \Longrightarrow Q(n+1)$$

Therefore, the strong induction in P can be written as a weak induction in Q

$$Q(n_0) \land \forall n \ge n_0 (Q(n) \Longrightarrow Q(n+1))$$

Inductions vs. the Least Principal Element

Least Element Principal or Least Number Principal or Well-Ordering Principle:

Each non-empty subset of N has a least element.

In this section we prove the following

Theorem. Induction and the Least Element Principal are logically equivalent.

Proof. We prove that strong induction implies the least element principal. The proof is by contrapositive.

Negate

$$|S| \neq 0 \implies \exists min. element$$

to get

 \nexists min. element \implies |S| = 0

Suppose *S* is a subset of \mathbb{N} with no minimal element. Define proposition *P* by

$$P(n) := n \notin S$$

We will show that *P* satisfies all conditions of strong induction.

Clearly P(0) is true. Assume that P(0), P(1), ..., P(n) are all true. This means that none of 1, 2, ..., *n* is in *S*. What about P(n + 1)? It is true as well, because othewise, we would have that $n + 1 \in S$ and, therefore, *S* would have a minimal element. So, now all conditions of strong induction are satisfied. It follows then that P(n) is true for all $n \ge 0$, hence *S* is empty.

Exercise 1.

Prove that every positive integer has a unique representation of the form

$$n = F_p + F_{p-1} + \dots + F_{q-1} + F_q$$

where F_k are Fibonacci numbers.

For example,

$$1000000 = F_{30} + F_{26} + F_{24} + F_{12} + F_{10}$$

Exercise 2.

Show that for any fixed integer $p \ge 1$ the sequence:

2,
$$2^2$$
, 2^{2^2} , ... (mod p)

converges to an integer. (Hint: think of the Euler-Fermat theorem and $\phi(n)$)