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� Strong Induction

Fibonacci Numbers

Fibonacci number Fn is defined as the sum of two previous Fibonacci numbers

Fn � Fn�1 � Fn�2

F1 � 1, F0 � 0

Claim. Fibonacci numbers are growing exponentially

Fn � �n�2, � n � 2

where � is the golden ratio

� � 1������5���������������2

Proof:

Base case:  n � 2

F2 � �2�2 � 1
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Inductive hypothesis: assume the following 

Fn � �n�2

Fn�1 � �n�3

Note, we need two assumptions. Prove that

Fn�1 � �n�1

We start with the definition

Fn�1 � Fn � Fn�1

Next we use the inductive hypothesis to obtain

Fn�1 � Fn � Fn�1 � �n�2 � �n�3 � �n�3�� � 1�

Now we use the property of the golden ratio (prove this!)

�2 � � � 1

Substituting this into the previous formula, we get

Fn�1 � �n�3�� � 1� � �n�1

Question. Where would be the proof failed if you attempted to prove Fn � �n�2.

Formal Definition

The weak form induction is stated as

P�n0� � � n � n0 � P�n� �P�n � 1� �

Here P�n0� is a base case and P�n� is the inductive hypothesis. To prove that P�n� is true for

� n � n0, we have to

1. show that P�n0�  is true

2. show that P�n��P�n � 1� is true for � n � n0
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A proof by strong induction only differs from the above in the Inductive Hypothesis step

Prove that P�n� 1� is true whenever P�k� is true for all k such that 0 	 k 	 n.

Here is the formal definition

P�0� � �P�1� � ...
P�n���P�n � 1�

This is called strong induction because you might need some or all previous case to prove

the n � 1 case. 

Breaking Chocolate Bar

A  chocolate  bar  consists  of  a  number  of  squares  (say,  n � 0)  arranged  in  a  rectangular

pattern.  You  split  the  bar  into  small  squares  always  breaking along  the  lines  between  the

squares. What is the minimum number of breaks?

Claim: It takes n � 1 breaks.

Proof. 

Let P�n� denote the number of breaks needed to split a bar with n squares.

Base step: P�1� � 0 is true

Induction step: Assume that P�k� is true for 2 	 k 	 n

Prove that P�n � 1� � n  under the above assumption.

Break  a  bar  into  two  pieces  of  sizes  n1  and  n2,  so  that  n1 � n2 � n � 1.  By  inductive

hypothesis

P�n1� � n1 � 1

P�n2� � n2 � 1

Hence, the total number of breaks is

1 � �n1 � 1�� �n2 � 1� � n
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How to justify the proof by strong induction?

The proof is by contradiction.

Suppose that some statements in the list P�1�, ..., P�n� were actually false. We choose the 

first false statement, say P�m�, where m � 0. Now we know that  P�0�, P�1�, ..., P�m � 1� 
are true. Then by inductive hypothesis, P�m� logically follows from 

P�0�, P�1�, ..., P�m � 1�. Therefore, P�m� is true. Contradiction.

Binary Search

The number of comparisons used during binary search in a table of size n in the worst case

described by the recurrence 

an � a n����2
� 1, a1 � 1

with the solution

an � log2 n � 1

Proof. Base case: a1 � log2
1 � 1 � 0 � 1 � 1

Inductive hypothesis: Assume ak � log2
k � 1 for k � 2, ..., n � 1.

Inductive step: prove for k � n:

an � log2
n � 1

We start with

an � a n����2
� 1

and make a use of inductive hypothesis

a n����2
� log2


n
�����
2
� 1

to obtain
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an � log2

n
�����
2
� 2

Let n is even n � 2 p, then

a2 p � log2
p � 2 � log2�2 p�� log2
2 � 2 � log2�2 p�� 1

Let n is odd n � 2 p � 1, then

a2 p�1 � log2

2 p � 1
���������������������

2
� 2 � log2�2 p � 1� � 1

� Faulty Inductions

Example 1

Claim: Every positive integer n � 2 has a unique prime factorization

Proof. Base step: P�2� is true

Induction step: Assume that P�k� is true for 2 	 k 	 n

Prove that P�n � 1� is true

There are two possibilities: 

Case 1:  n � 1 is prime. Then we are done. 

Case 2:  n � 1 is composite. 

Let  n � 1 � p �q  where  1  p, q  n � 1.  By  inductive  hypothesis,   p  and  q  have  unique

factorizations. Since the product of two unique factorizations is again unique, we conclude

the proof. QED

Explanation. n � 1 � p �q is NOT unique.

Example 2

Claim. 6 n � 0 for all n � 0.

Base step: Clearly 6*0 = 0.
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Induction step: Assume that 6 k � 0 for all 0 	 k 	 n.

We need to show that 6 �n � 1� is 0.

Write n � 1 � a � b,  where a � 0 and b � 0 are natural  numbers  less that n � 1. By IH, we

have

6 a � 0 and  6 b � 0

Therefore,

6 �n � 1� � 6 a � 6 b � 0 � 0 � 0.

Explanation. We cannot write 1 as the sum of two natural numbers.

Example 3

Claim: All Fibonacci numbers are even

Proof by strong induction.

Base step: Clearly F0 � 0 which is even

IH: Assume that Fk are even for all 0	 k 	 n.

IS: We need to show that Fn�1 is even

It is easy.  By definition

Fn�1 � Fn � Fn�1

Fn and Fn�1 are even  -  by inductive hypothesis. Thus, Fn �1 is even. QED.

Explanation. Fn�1 � Fn � Fn�1 is not valid for n � 0.

V. Adamchik 21-127: Concepts of Mathematics



� Induction and the Least Element Principal

Weak vs. Strong

These  two  forms  of  induction  are  equivalent.  They  only  differ  from  each  other  from  the

point of view of writing a proof. It is always possible to convert a proof using one form of

induction into the other.

The conversion from weak to strong form is trivial, because a weak form is already a strong

form.

The conversion from a strong form into a weak form is more interesting. Here are two forms

P�n0� � � n � n0 � P�n� �P�n � 1� �

P�n0� � � n � n0 � P�n0� � P�n0 � 1� � ...
P�n� �P�n � 1� �

We introduce a new hypothesis Q�n� defined by

Q�n� :� P�n0� � P�n0 � 1� � ...
P�n�

The base step is identical in both cases, namely Q�n0�.

The inductive step is

Q�n� �P�n � 1�

Since Q�n� implies itself, we rewrite the above statement as

Q�n� �Q�n� � P�n � 1�

which is equivalent (by definition of Q)

Q�n� �Q�n � 1�

Therefore, the strong induction in P can be written as a weak induction in Q

Q�n0� � � n � n0 �Q�n� �Q�n � 1� �
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Inductions vs. the Least Principal Element

Least Element Principal or Least Number Principal or Well-Ordering Principle:

Each non-empty subset of �  has a least element.

In this section we prove the following 

Theorem. Induction and the Least Element Principal are logically equivalent.

Proof.  We prove that strong induction implies the least element principal. The proof is  by

contrapositive.

Negate

|S| � 0 � �min. element

to get

 �min. element �|S| = 0

Suppose S is a subset of � with no minimal element. Define proposition P by

P�n� :� n � S

We will show that P satisfies all conditions of strong induction.

Clearly P�0� is true. Assume that P�0�, P�1�, ..., P�n� are all true. This means that none of

1, 2, ..., n is in S. What about P�n � 1�? It is true as well, because othewise, we would have

that  n � 1 � S  and,  therefore,  S  would  have  a  minimal  element.  So,  now all  conditions  of

strong induction are satisfied. It follows then that P�n� is true for all n � 0, hence S is empty.

Exercise 1.

Prove that every positive integer has a unique representation of the form

n � Fp � Fp�1 � ... � Fq�1 � Fq

where Fk are Fibonacci numbers.
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For example,

1000000 � F30 �
F26 � F24 � F12 � F10

Exercise 2.

Show that for any fixed integer p � 1 the sequence:

2, 22, 222
, ... �mod p�

converges to an integer. (Hint: think of the Euler-Fermat theorem and ��n�)
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