
Mathematical Induction
Victor Adamchik

Fall of 2005

Lecture 3 (out of three)

� Plan

1. Recursive Definitions

2. Recursively Defined Sets

3. Program Correctness

� Recursive Definitions

Sometimes it is easier to define an object using a self-reference. For example,

A linked list is either empty list or a node followed by a linked list.

A binary tree is either empty tree or a node containing left and right binary trees.

Sometimes self-referencing leads to paradoxes:

The set of all sets which aren't elements of themselves.

The process of defining an object using a self-reference is called recursion. A primitive

recursion is a restricted way of defining f �n � 1� in terms of f �n�. A recursive function is a

function that calls itself in order to return an answer. A recursive definition of a function is

given in two parts

1. a set of base values (or initial values)

2. a rule for calculating f �n� in terms of previous values

V. Adamchik 21-127: Concepts of Mathematics

This is a typical example of recursive definition (or inductive definition)

f �0� � 5
f �n � 1� � f �n� � 1

Here is another example,

GCD�0, b� � b
GCD�a, b� � GCD�b, a�, if a � b
GCD�a, b� � GCD�b mod a, a�

A palindrome is an expression that reads the same backwards and forwards. For example,

Rats live on no evil star

Madam I'm Adam

Let us define a palindrome over �a, b, c, d� alphabet recursively.

Initial values:

P0 � ��

P1 � �a, b, c, d�

General rule:

Pn�1 � �a � a, b � b, c � c, d � d � � � Pn�1�, n � 1

� Recursively Defined Sets

We start with an example,

2 � S

if a � S � b � S � a � b � S

Claim. The above set is a set of positive even integers.

Proof. Let E be a set of ALL positive even integers. We have to prove

V. Adamchik 21-127: Concepts of Mathematics

1. E 	 S

2. S 	 E

Prove 1). We need to prove that EVERY even positive integer belongs to S. The proof is by

induction. Let P�n� :� 2
n � S.

It's easy to see that the basis step holds: P�1� � 2 � S.

Assume that P�n� is true. What can we say about P�n � 1�?

P�n � 1� � 2
�n � 1� � 2
n � 2 � S

since 2
n � S and 2 � S.

Prove 2). We need to prove S 	 E, namely that any element in S is divisible by 2. We use

the recursive definition of S:

if a � S � b � S � a � b � S

Let us choose any element x � S. By the above rule

x � a � b � �a1 � b1� � �a2 � b2� � ...

We continue splitting until we get

x � 2 � 2 � ... � 2

which means that x is divivible by 2. Hence, S 	 E.

Set of Strings

Given an alphabet �. We define a set �� of all strings over this alphabet:

1. empty string ���

2. � x � �� if � � �� and x � �

V. Adamchik 21-127: Concepts of Mathematics

The second rule says that new strings are generated by concatenation. The length of a string

L��� is defined by

1. L�empty� � 0

2. L�� x� � L��� � 1, x � �

Based on the above two definition we prove

L��1 �2� � L��1� � L��2�, �1 � ��, �2 � ��

Proof (by induction on �2)

Basis step: �2 � empty. By the definition of the length of a string,

L��1 �2� � L��1�

L��1� � L��2� � L��1� � 0

Inductive step: we assume that

L��1 �2� � L��1� � L��2�, �1 � ��, �2 � ��

for all 1 L��2� n. We have to prove the above formula for L��2� � n � 1. Note that by

recursive definition,

�2 � �
�

x, �
�
� ��, x � �

Therefore,

L��1 �2� � L��1
�
�

x� � L��1
�
�
� � 1 �

by I H
L��1�� L��

�
� � 1 � L��1�� L��

�
x�

which concludes the proof.

V. Adamchik 21-127: Concepts of Mathematics

� Program Correctness

How can we be sure that a particular algorithm implementation is correct?

int prod = 1;

for(int k=1; k<=n; k++)

 prod *= k;

return prod;

The idea is to use a loop invariant - an assertion that is true before and after each execution

of the body of the loop.

[precondition]

while (guard) { loop-body }

[postcondition]

In the above example, a loop invariant is the following proposition

P :� prod � k � � 1 k n

A loop invariant should serve two purposes: to state what the loop is supposed to accom-

plish and to help in proving the algorithm correctness.

To prove that P is a loop invariant we use a mathematical induction. First we note that P is

true before the loop is entered, since prod � 1 �. Next we assume that P is true for 1 k � n,

namely after n � 1 loop executions. In the next execution, k is incremented by 1 (thus, it

becomes n) and prod �� k. Since by inductive hypothesis the previous value of prod is

�k � 1��, we conclude that prod � n �. Therefore, P remains true. Finally, we need to show

that the program terminates, which is trivial in our case.

V. Adamchik 21-127: Concepts of Mathematics

Fast Exponentiation

The following program computes an, where n is nonnegative integer, n � �.

int x = a, y = n, z = 1;

while (y > 0)

 if (y%2 == 0) {

 x *= x; y = y/2;}

 else {

 y -= 1; z *= x; }

return z;

Note, often the hardest part of a loop invariant proof is identifying the invariant. We intro-

duce the following proposition

P :� z � xy � an � y � �

and prove (by induction) that it is a loop invariant.

Basis step. P is true before the loop starts, because x � a, y � n and z � 1:

z � xy � 1 � an

Inductive step. We assume that P is true after some iterations. We must show that P

remains true after the next pass. Let variables with hats x�, y� , z� be the values after the loop

body was computed. Therefore, we have to prove

z� � x� y�
� an � y � �

is true.We consider two cases:

1) y is even. After the execution of the loop body, we have

x� � x2, y� � y 	 2, z� � z

z� � x� y�
� z � �x2�y	2

� z � xy �
by I H

an

1) y is odd. After the execution of the loop body, we have

V. Adamchik 21-127: Concepts of Mathematics

x� � x, y� � y� 1, z� � z � x

z� � x� y�
� z � x � xy�1 � z � xy �

by I H
an

Note, in this case we decrement y by one. Is it true that y� � 0? Yes, it is, because the loop

condition is y � 0.

Finally, we must prove that the above program terminates. It follows from the fact that the

loop invariant is true when the loop terminates and the loop condition is false

z � xy � an � y � � � y 0

This means that y � 0 and z � x0 � z � an. So, we prove that the algorithm terminates and

returns z � an.

Fibonacci Numbers

The following program computes n-th Fibonacci number, n � �.

int prev = 1, cur = 1;

if (n==0 || n ==1) return n;

if (n ==2) return 1;

for(int k=3; k<= n; k++) {

 int tmp = cur;

 cur += prev;

 prev = tmp; }

return cur;

We introduce the following proposition

P :� cur � Fk � prev � Fk�1 � k � 2

Exercise. Prove (by induction) that it is a loop invariant.

V. Adamchik 21-127: Concepts of Mathematics

