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� Recursive Definitions

Sometimes it is easier to define an object using a self-reference. For example,

A linked list is either empty list or a node followed by a linked list.

A binary tree is either empty tree or a node containing left and right binary trees. 

Sometimes self-referencing leads to paradoxes:

The set of all sets which aren't elements of themselves.

The  process  of  defining  an  object  using  a  self-reference  is  called  recursion.  A  primitive

recursion is a restricted way of defining f �n � 1� in terms of f �n�. A recursive function is a

function that calls itself in order to return an answer. A recursive definition of a function is

given in two parts

1. a set of base values (or initial values)

2. a rule for calculating f �n� in terms of previous values
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This is a typical example of recursive definition (or inductive definition)

f �0� � 5
f �n � 1� � f �n� � 1

Here is another example,

GCD�0, b� � b
GCD�a, b� � GCD�b, a�, if a � b
GCD�a, b� � GCD�b mod a, a�

A palindrome is an expression that reads the same backwards and forwards. For example,

Rats live on no evil star

Madam I'm Adam

Let us define a palindrome over �a, b, c, d� alphabet recursively.

Initial values:

P0 � ��

P1 � �a, b, c, d�

General rule:

Pn�1 � �a � a, b � b, c � c, d � d � � � Pn�1�, n � 1

� Recursively Defined Sets

We start with an example,

2 � S

if a � S � b � S � a � b � S

Claim. The above set is a set of positive even integers.

Proof. Let E be a set of ALL positive even integers. We have to prove 
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1. E 	 S

2. S 	 E

Prove 1). We need to prove that EVERY even positive integer belongs to S. The proof is by

induction. Let P�n� :� 2
n � S.

It's easy to see that the basis step holds: P�1� � 2 � S.

Assume that P�n� is true. What can we say about P�n � 1�?

P�n � 1� � 2
�n � 1� � 2
n � 2 � S

since 2
n � S and 2 � S.

Prove 2).  We need to prove S 	 E, namely that any element in S  is divisible by 2. We use

the recursive definition of S:

if a � S � b � S � a � b � S

Let us choose any element x � S. By the above rule

x � a � b � �a1 � b1� � �a2 � b2� � ...

We continue splitting until we get 

x � 2 � 2 � ... � 2

which means that x is divivible by 2. Hence, S 	 E.

Set of Strings

Given an alphabet �. We define a set �� of all strings over this alphabet:

1. empty string ��� 

2. � x � �� if � � �� and x � �
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The second rule says that new strings are generated by concatenation. The length of a string

L��� is defined by

1. L�empty� � 0

2. L�� x� � L��� � 1,   x � �

Based on the above two definition we prove

L��1 �2� � L��1� � L��2�,  �1 � ��, �2 � ��

Proof (by induction on �2)

Basis step: �2 � empty. By the definition of the length of a string, 

L��1 �2� � L��1�

L��1� � L��2� � L��1� � 0

Inductive step: we assume that

L��1 �2� � L��1� � L��2�,  �1 � ��, �2 � ��

for all  1  L��2�  n.  We have to prove the above formula for L��2� � n � 1. Note that by

recursive definition, 

�2 � �
�

x,  �
�
� ��, x � �

Therefore,

L��1 �2� � L��1
�
�

x� � L��1
�
�
� � 1 �

by I H
L��1�� L��

�
� � 1 � L��1�� L��

�
x�

which concludes the proof.
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� Program Correctness

How can we be sure that a particular algorithm implementation is correct?

int prod = 1;

for(int k=1; k<=n; k++)

     prod *= k;

return prod;

The idea is to use a loop invariant - an assertion that is true before and after each execution

of the body of the loop. 

[precondition]

while (guard) { loop-body }

[postcondition]

In the above example, a loop invariant is the following proposition

P :� prod � k � � 1  k  n

A loop invariant  should serve two purposes:  to state what the loop is  supposed to accom-

plish and to help in proving the algorithm correctness.

To prove that P is a loop invariant we use a mathematical induction. First we note that P is

true before the loop is entered, since prod � 1 �. Next we assume that P is true for 1  k � n,

namely after  n � 1  loop  executions.  In  the  next  execution,  k  is  incremented  by 1  (thus,  it

becomes  n)  and  prod �� k.  Since  by  inductive  hypothesis   the  previous  value  of  prod  is

�k � 1��,  we conclude that  prod � n �.  Therefore,  P  remains  true.  Finally,  we need to show

that the program terminates, which is trivial in our case.
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Fast Exponentiation

The following program computes an, where n is nonnegative integer, n � �.

int x = a, y = n, z = 1;

while (y > 0)

    if (y%2 == 0) {

        x *= x; y = y/2;}

    else {

        y -= 1; z *= x; }

return z;

Note, often the hardest part of a loop invariant proof is identifying the invariant. We intro-

duce the following proposition

P :� z � xy � an � y � �

and prove (by induction) that it is a loop invariant.

Basis step. P is true before the loop starts, because x � a, y � n and z � 1:

z � xy � 1 � an

Inductive  step.  We  assume  that  P  is  true  after  some  iterations.  We  must  show  that  P

remains true after the next pass. Let variables with hats x�, y� , z�  be the values after the loop

body was computed. Therefore, we have to prove 

z� � x� y�
� an � y � �

is true.We consider two cases:

1) y is even. After the execution of the loop body, we have

x� � x2, y� � y 	 2, z� � z

z� � x� y�
� z � �x2�y	2

� z � xy �
by I H

an

1) y is odd. After the execution of the loop body, we have
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x� � x, y� � y� 1, z� � z � x

z� � x� y�
� z � x � xy�1 � z � xy �

by I H
an

Note, in this case we decrement y by one. Is it true that y� � 0? Yes, it is, because the loop

condition is y � 0.

Finally, we must prove that the above program terminates. It follows from the fact that the

loop invariant is true when the loop terminates and the loop condition is false

z � xy � an � y � � � y  0

This  means  that  y � 0 and  z � x0 � z � an.  So,  we prove that  the algorithm terminates  and

returns z � an.

Fibonacci Numbers

The following program computes n-th Fibonacci number, n � �.

int prev = 1, cur = 1;

if (n==0 || n ==1) return n;

if (n ==2) return 1;

for(int k=3; k<= n; k++) {

    int tmp = cur;

    cur += prev;

    prev = tmp; }

return cur;

We introduce the following proposition

P :� cur � Fk � prev � Fk�1 � k � 2

Exercise. Prove (by induction) that it is a loop invariant.
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