The Problem

- Given a point set and a rectangular query, find the points enclosed in the query
- We allow insertions/deletions on line
Types of Spatial Data

- **Point Data**
 - Points in a multidimensional space
 - E.g., *Raster data* such as satellite imagery, where each pixel stores a measured value
 - E.g., Feature vectors extracted from text

- **Region Data**
 - Objects have spatial extent with location and boundary
 - DB typically uses geometric approximations constructed using line segments, polygons, etc., called *vector data*.
Types of Spatial Queries

- **Spatial Range Queries**
 - *Find all cities within 50 miles of Madison*
 - Query has associated region (location, boundary)
 - Answer includes overlapping or contained data regions

- **Nearest-Neighbour Queries**
 - *Find the 10 cities nearest to Madison*
 - Results must be ordered by proximity

- **Spatial Join Queries**
 - *Find all cities near a lake*
 - Expensive, join condition involves regions and proximity
Applications of Spatial Data

- Geographic Information Systems (GIS)
 - E.g., ESRI’s ArcInfo; OpenGIS Consortium
 - Geospatial information
 - All classes of spatial queries and data are common

- Computer-Aided Design/Manufacturing
 - Store spatial objects such as surface of airplane fuselage
 - Range queries and spatial join queries are common

- Multimedia Databases
 - Images, video, text, etc. stored and retrieved by content
 - First converted to feature vector form; high dimensionality
 - Nearest-neighbor queries are the most common
B+ trees are fundamentally single-dimensional indexes.

When we create a composite search key B+ tree, e.g., an index on `<age, sal>`, we effectively linearize the 2-dimensional space since we sort entries first by `age` and then by `sal`.

Consider entries:
- `<11, 80>, <12, 10>`
- `<12, 20>, <13, 75>`
Multidimensional Indexes

- A multidimensional index clusters entries so as to exploit “nearness” in multidimensional space.
- Keeping track of entries and maintaining a balanced index structure presents a challenge!

Consider entries:
<11, 80>, <12, 10>
<12, 20>, <13, 75>
Motivation for Multidimensional Indexes

- Spatial queries (GIS, CAD).
 - Find all hotels within a radius of 5 miles from the conference venue.
 - Find the city with population 500,000 or more that is nearest to Kalamazoo, MI.
 - Find all cities that lie on the Nile in Egypt.
 - Find all parts that touch the fuselage (in a plane design).

- Similarity queries (content-based retrieval).
 - Given a face, find the five most similar faces.

- Multidimensional range queries.
 - $50 < \text{age} < 55 \quad \text{AND} \quad 80K < \text{sal} < 90K$
What is the difficulty?

- An index based on spatial location needed.
 - One-dimensional indexes don’t support multidimensional searching efficiently. (Why?)
 - Hash indexes only support point queries; want to support range queries as well.
 - Must support inserts and deletes gracefully.
- Ideally, want to support non-point data as well (e.g., lines, shapes).
- The R-tree meets these requirements, and variants are widely used today.
What’s wrong with B-Trees?

- B-Trees cannot store new types of data

- Specifically, people wanted to store geometrical data and multi-dimensional data

- The R-Tree provided a way to do that (thanx to Guttman ‘84)
The R-tree is a tree-structured index that remains balanced on inserts and deletes.

Each key stored in a leaf entry is intuitively a box, or collection of intervals, with one interval per dimension.

Example in 2-D:
R-Trees

- R-Trees can organize any-dimensional data by representing the data by a minimum bounding box.
- Each node bounds its children. A node can have many objects in it.
- The leaves point to the actual objects (stored on disk probably).
- The height is always log n (it is height balanced).
R Tree Properties

- Leaf entry = \(< n\)-dimensional box, rid >
 - This is Alternative (2), with key value being a box.
 - Box is the tightest bounding box for a data object.

- Non-leaf entry = \(< n\)-dimensional box, ptr to child node >
 - Box covers all boxes in child node (in fact, subtree).

- All leaves at same distance from root.

- Nodes can be kept 50% full (except root).
 - Can choose a parameter \(m \) that is \(\leq 50\% \), and ensure that every node is at least \(m\% \) full.
R-Tree Example

<table>
<thead>
<tr>
<th>name</th>
<th>semester</th>
<th>credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>C</td>
<td>6</td>
<td>35</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>E</td>
<td>6</td>
<td>40</td>
</tr>
<tr>
<td>F</td>
<td>5</td>
<td>45</td>
</tr>
<tr>
<td>G</td>
<td>7</td>
<td>85</td>
</tr>
<tr>
<td>H</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>I</td>
<td>10</td>
<td>70</td>
</tr>
<tr>
<td>J</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>K</td>
<td>8</td>
<td>50</td>
</tr>
<tr>
<td>L</td>
<td>4</td>
<td>50</td>
</tr>
</tbody>
</table>

From http://lacot.org/public/enst/bda/img/schema1.gif
Example of an R-Tree
Example R-Tree (Contd.)
Start at root.
1. If current node is non-leaf, for each entry \(\langle E, \text{ptr}\rangle \), if box \(E \) overlaps \(Q \), search subtree identified by \(\text{ptr} \).
2. If current node is leaf, for each entry \(\langle E, \text{rid}\rangle \), if \(E \) overlaps \(Q \), \(\text{rid} \) identifies an object that might overlap \(Q \).

Note: May have to search several subtrees at each node! (In contrast, a B-tree equality search goes to just one leaf.)
It is convenient to store boxes in the R-tree as approximations of arbitrary regions, because boxes can be represented compactly.

But why not use convex polygons to approximate query regions more accurately?

- Will reduce overlap with nodes in tree, and reduce the number of nodes fetched by avoiding some branches altogether.
- Cost of overlap test is higher than bounding box intersection, but it is a main-memory cost, and can actually be done quite efficiently. Generally a win.
Insert Entry \(<B, \text{ptr}>\)

- Start at root and go down to “best-fit” leaf L.
 - Go to child whose box needs least enlargement to cover B; resolve ties by going to smallest area child.
- If best-fit leaf L has space, insert entry and stop. Otherwise, split L into L1 and L2.
 - Adjust entry for L in its parent so that the box now covers (only) L1.
 - Add an entry (in the parent node of L) for L2. (This could cause the parent node to recursively split.)
The entries in node L plus the newly inserted entry must be distributed between L1 and L2.

Goal is to reduce likelihood of both L1 and L2 being searched on subsequent queries.

Idea: Redistribute so as to minimize area of L1 plus area of L2.

Exhaustive algorithm is too slow; quadratic and linear heuristics are described in the paper.
The R* tree uses the concept of **forced reinserts** to reduce overlap in tree nodes. When a node overflows, instead of splitting:

- Remove some (say, 30% of the) entries and reinsert them into the tree.
- Could result in all reinserted entries fitting on some existing pages, avoiding a split.

R* trees also use a different heuristic, minimizing **box perimeters** rather than **box areas** during insertion.
Indexing High-Dimensional Data

- Typically, high-dimensional datasets are collections of points, not regions.
 - E.g., Feature vectors in multimedia applications.
 - Very sparse
- Nearest neighbor queries are common.
 - R-tree becomes worse than sequential scan for most datasets with more than a dozen dimensions
Deletion consists of searching for the entry to be deleted, removing it, and if the node becomes under-full, deleting the node and then re-inserting the remaining entries.

Overall, works quite well for 2 and 3 D datasets. Several variants (notably, R+ and R* trees) have been proposed; widely used.

Can improve search performance by using a convex polygon to approximate query shape (instead of a bounding box) and testing for polygon-box intersection.