Ints are not Integers

BIL 220 – Introduction to Systems Programming
Spring 2012

Instructors:
Aykut & Erkut Erdem

Acknowledgement: The course slides are adapted from the slides prepared by R.E. Bryant, D.R. O’Hallaron, G. Kesden and Markus Püschel of Carnegie-Mellon Univ.
Today: Integers

- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

Summary
Encoding Integers

Unsigned

\[B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \]

Two’s Complement

\[B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \]

C short 2 bytes long

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>(y)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>

Sign Bit

- For 2’s complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative
Encoding Example (Cont.)

Example:

- **x = 15213**: 00111011 01101101
- **y = -15213**: 11000100 10010011

Table:

<table>
<thead>
<tr>
<th>Weight</th>
<th>15213</th>
<th>-15213</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>128</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>256</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>512</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1024</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2048</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4096</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8192</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16384</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-32768</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Sum:
- **15213**: 00111011 01101101
- **-15213**: 11000100 10010011
Numeric Ranges

■ Unsigned Values
 - $UMin = 0$
 - $000...0$
 - $UMax = 2^w - 1$
 - $111...1$

■ Two’s Complement Values
 - $TMin = -2^{w-1}$
 - $100...0$
 - $TMax = 2^{w-1} - 1$
 - $011...1$

■ Other Values
 - Minus 1
 - $111...1$

Values for $W = 16$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>$UMax$</td>
<td>65535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>$TMax$</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>$TMin$</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Values for Different Word Sizes

<table>
<thead>
<tr>
<th>W</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>255</td>
<td>65,535</td>
<td>4,294,967,295</td>
<td>18,446,744,073,709,551,615</td>
</tr>
<tr>
<td>Tmax</td>
<td>127</td>
<td>32,767</td>
<td>2,147,483,647</td>
<td>9,223,372,036,854,775,807</td>
</tr>
<tr>
<td>Tmin</td>
<td>-128</td>
<td>-32,768</td>
<td>-2,147,483,648</td>
<td>-9,223,372,036,854,775,808</td>
</tr>
</tbody>
</table>

Observations
- $|TMin| = Tmax + 1$
 - Asymmetric range
- $UMax = 2 * Tmax + 1$

C Programming
- `#include <limits.h>`
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- Values platform specific
Unsigned & Signed Numeric Values

Equivalence
- Same encodings for nonnegative values

Uniqueness
- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

Can Invert Mappings
- \(U2B(x) = B2U^{-1}(x) \)
 - Bit pattern for unsigned integer
- \(T2B(x) = B2T^{-1}(x) \)
 - Bit pattern for two’s comp integer

<table>
<thead>
<tr>
<th>(x)</th>
<th>(B2U(x))</th>
<th>(B2T(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>
Today: Integers

- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

- Summary
Mapping Between Signed & Unsigned

Two’s Complement

\[x \rightarrow T2B \rightarrow X \rightarrow B2U \rightarrow ux \]

Maintain Same Bit Pattern

Unsigned

\[ux \rightarrow U2B \rightarrow X \rightarrow B2T \rightarrow x \]

Maintain Same Bit Pattern

- Mappings between unsigned and two’s complement numbers: keep bit representations and reinterpret
Mapping Signed \leftrightarrow Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>

The mapping shows the correspondence between signed and unsigned binary representations, with a range of +/- 16.
Relation between Signed & Unsigned

Two’s Complement

\[x \xrightarrow{T2B} T2U \xrightarrow{B2U} \mathbf{ux} \]

Maintain Same Bit Pattern

\begin{align*}
\mathbf{ux} & = \begin{cases}
x + 2^w & x < 0 \\
x & x \geq 0
\end{cases} \\
\end{align*}

Large negative weight becomes Large positive weight
Conversion Visualized

- **2’s Comp. → Unsigned**
 - Ordering Inversion
 - Negative → Big Positive

![Diagram showing conversion from 2's complement to unsigned format, with key points labeled: Tmax, Tmin, UMax, UMax - 1, Tmax + 1, 0.](image-url)
Signed vs. Unsigned in C

Constants
- By default are considered to be signed integers
- Unsigned if have “U” as suffix

 $0U, \ 4294967259U$

Casting
- Explicit casting between signed & unsigned same as U2T and T2U

  ```c
  int tx, ty;
  unsigned ux, uy;
  tx = (int) ux;
  uy = (unsigned) ty;
  ```

- Implicit casting also occurs via assignments and procedure calls

  ```c
  tx = ux;
  uy = ty;
  ```
Casting Surprises

Expression Evaluation

- If there is a mix of unsigned and signed in single expression, *signed values implicitly cast to unsigned*
- Including comparison operations `<, >, ==, <=, >=`
- Examples for $W = 32$: $TMIN = -2,147,483,648$, $TMAX = 2,147,483,647$

<table>
<thead>
<tr>
<th>Constant$_1$</th>
<th>Constant$_2$</th>
<th>Relation</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0U</td>
<td>==</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td><</td>
<td>signed</td>
</tr>
<tr>
<td>-1</td>
<td>0U</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>-2147483647-1</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td>-2147483647-1</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>(unsigned)-1</td>
<td>-2</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648U</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>(int) 2147483648U</td>
<td>></td>
<td>signed</td>
</tr>
</tbody>
</table>
Code Security Example

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcpy(user_dest, kbuf, len);
 return len;
}

- Similar to code found in FreeBSD’s implementation of getpeername
- There are legions of smart people trying to find vulnerabilities in programs
Typical Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcpy(user_dest, kbuf, len);
 return len;
}

#define MSIZE 528

void getstuff() {
 char mybuf[MSIZE];
 copy_from_kernel(mybuf, MSIZE);
 printf("%s\n", mybuf);
}
Malicious Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcpy(user_dest, kbuf, len);
 return len;
}

#define MSIZE 528

void getstuff() {
 char mybuf[MSIZE];
 copy_from_kernel(mybuf, -MSIZE);
 ...
}

A typical definition of size_t (in stdio.h):
typedef unsigned long int size_t;
Summary

Casting Signed ↔ Unsigned: Basic Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w

- Expression containing signed and unsigned int
 - int is cast to unsigned!!
Today: Integers

- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

- Summary
Sign Extension

- **Task:**
 - Given w-bit signed integer x
 - Convert it to $w+k$-bit integer with same value

- **Rule:**
 - Make k copies of sign bit:
 - $X' = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_0$
Sign Extension Example

short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>15213</td>
<td>00 00 3B 6D</td>
<td>00000000 00000000 00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>iy</td>
<td>-15213</td>
<td>FF FF C4 93</td>
<td>11111111 11111111 11000100 10010011</td>
</tr>
</tbody>
</table>

- Converting from smaller to larger integer data type
- C automatically performs sign extension
Summary:
Expanding, Truncating: Basic Rules

- **Expanding** (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result

- **Truncating** (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod (note that sign can change!)
 - For small numbers yields expected behaviour
Today: Integers

- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

- Summary
Negation: Complement & Increment

Claim: Following Holds for 2’s Complement

\[\sim x + 1 \equiv -x \]

Complement

- Observation: \(\sim x + x \equiv 111\ldots111 \equiv -1 \)

\[
\begin{array}{cccccccc}
0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}
\]

\[
\begin{array}{cccccccc}
1 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}
\]

\[
\begin{array}{cccccccc}
-1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}
\]

Complete Proof?
Complement & Increment Examples

\(x = 15213\)

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>15213</td>
<td>3B 6D</td>
<td>001111011 01101101</td>
</tr>
<tr>
<td>(~x)</td>
<td>-15214</td>
<td>C4 92</td>
<td>11000100 10010010</td>
</tr>
<tr>
<td>(~x+1)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>(y)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>

\(x = 0\)

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
<tr>
<td>(~0)</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>(~0+1)</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Unsigned Addition

Operands: w bits

True Sum: $w+1$ bits

Discard Carry: w bits

$UAdd_w(u, v)$

- **Standard Addition Function**
 - Ignores carry output

- **Implements Modular Arithmetic**

 \[s = UAdd_w(u, v) = u + v \mod 2^w \]

\[
UAdd_w(u,v) = \begin{cases}
 u + v & u + v < 2^w \\
 u + v - 2^w & u + v \geq 2^w
\end{cases}
\]
Visualizing (Mathematical) Integer Addition

- **Integer Addition**
 - 4-bit integers \(u, v \)
 - Compute true sum \(\text{Add}_4(u, v) \)
 - Values increase linearly with \(u \) and \(v \)
 - Forms planar surface
Visualizing Unsigned Addition

- Wraps Around
 - If true sum $\geq 2^w$
 - At most once

True Sum

2^{w+1}

2^w

0

Modular Sum

Overflow
Mathematical Properties

- Modular Addition Forms an Abelian Group
 - **Closed** under addition
 \[0 \leq \text{UAdd}_w(u, v) \leq 2^w - 1 \]
 - **Commutative**
 \[\text{UAdd}_w(u, v) = \text{UAdd}_w(v, u) \]
 - **Associative**
 \[\text{UAdd}_w(t, \text{UAdd}_w(u, v)) = \text{UAdd}_w(\text{UAdd}_w(t, u), v) \]
 - **0** is additive identity
 \[\text{UAdd}_w(u, 0) = u \]
 - Every element has additive **inverse**
 - Let \[\text{UComp}_w(u) = 2^w - u \]
 - \[\text{UAdd}_w(u, \text{UComp}_w(u)) = 0 \]
Two’s Complement Addition

Operands: \(w \) bits

\[
\begin{array}{c}
\text{u} \\
\hline
\text{+} \\
\text{v} \\
\hline
\text{u + v}
\end{array}
\]

True Sum: \(w+1 \) bits

Discard Carry: \(w \) bits

\[\text{TAdd}_w(u, v)\]

TAdd and UAdd have Identical Bit-Level Behavior

- Signed vs. unsigned addition in C:

  ```c
  int s, t, u, v;
  s = (int) ((unsigned) u + (unsigned) v);
  t = u + v
  ```

- Will give \(s == t \)
TAdd Overflow

- **Functionality**
 - True sum requires $w+1$ bits
 - Drop off MSB
 - Treat remaining bits as 2’s comp. integer

<table>
<thead>
<tr>
<th>True Sum</th>
<th>TAdd Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^{w-1}</td>
<td>011...1</td>
</tr>
<tr>
<td>0</td>
<td>000...0</td>
</tr>
<tr>
<td>-2^w-1</td>
<td>100...0</td>
</tr>
<tr>
<td>1011...1</td>
<td></td>
</tr>
<tr>
<td>1000...0</td>
<td></td>
</tr>
</tbody>
</table>

- **True Sum**
 - 011...1
 - 100...0

- **TAdd Result**
 - 011...1
 - 000...0
 - 100...0
Visualizing 2’s Complement Addition

- **Values**
 - 4-bit two’s comp.
 - Range from -8 to +7

- **Wraps Around**
 - If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
 - If sum $< -2^{w-1}$
 - Becomes positive
 - At most once
Characterizing TAdd

- **Functionality**
 - True sum requires \(w+1 \) bits
 - Drop off MSB
 - Treat remaining bits as 2’s comp. integer

\[
TAdd_w(u, v) = \begin{cases}
 u + v + 2^w & \text{if } u + v < TMin_w \quad \text{(NegOver)} \\
 u + v & \text{if } TMin_w \leq u + v \leq TMax_w \\
 u + v - 2^w & \text{if } TMax_w < u + v \quad \text{(PosOver)}
\end{cases}
\]
Mathematical Properties of TAdd

- **Isomorphic Group to unsigneds with UAdd**
 - \(TAdd_w(u, v) = U2T(UAdd_w(T2U(u), T2U(v))) \)
 - Since both have identical bit patterns

- **Two’s Complement Under TAdd Forms a Group**
 - Closed, Commutative, Associative, 0 is additive identity
 - Every element has additive inverse

\[
TComp_w(u) = \begin{cases}
-u & u \neq TMin_w \\
TMin_w & u = TMin_w
\end{cases}
\]
Multiplication

- **Computing Exact Product of w-bit numbers x, y**
 - Either signed or unsigned

- **Ranges**
 - Unsigned: $0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1$
 - Up to $2w$ bits
 - Two’s complement min: $x \times y \geq (-2^{w-1}) \times (2^{w-1} - 1) = -2^{2w-2} + 2^{w-1}$
 - Up to $2w-1$ bits
 - Two’s complement max: $x \times y \leq (-2^{w-1})^2 = 2^{2w-2}$
 - Up to $2w$ bits, but only for $(TMin_w)^2$

- **Maintaining Exact Results**
 - Would need to keep expanding word size with each product computed
 - Done in software by “arbitrary precision” arithmetic packages
Unsigned Multiplication in C

Operands: w bits

True Product: $2w$ bits

Discard w bits: w bits

- **Standard Multiplication Function**
 - Ignores high order w bits

- **Implements Modular Arithmetic**
 \[
 \text{UMult}_w(u, v) = u \cdot v \mod 2^w
 \]
Code Security Example #2

- SUN XDR library
 - Widely used library for transferring data between machines

```c
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);
```

```
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);

malloc(ele_cnt * ele_size)
```
XDR Code

```c
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size) {
    /*
     * Allocate buffer for ele_cnt objects, each of ele_size bytes
     * and copy from locations designated by ele_src
     */
    void *result = malloc(ele_cnt * ele_size);
    if (result == NULL)
        /* malloc failed */
        return NULL;
    void *next = result;
    int i;
    for (i = 0; i < ele_cnt; i++) {
        /* Copy object i to destination */
        memcpy(next, ele_src[i], ele_size);
        /* Move pointer to next memory region */
        next += ele_size;
    }
    return result;
}
```
XDR Vulnerability

malloc(ele_cnt * ele_size)

- What if:
 - ele_cnt = $2^{20} + 1$
 - ele_size = 4096 = 2^{12}
 - Allocation = ??

- How can I make this function secure?
Signed Multiplication in C

Operands: \(w \) bits

True Product: \(2w \) bits

Discard \(w \) bits: \(w \) bits

- **Standard Multiplication Function**
 - Ignores high order \(w \) bits
 - Some of which are different for signed vs. unsigned multiplication
 - Lower bits are the same
Power-of-2 Multiply with Shift

Operation
- $u \ll k$ gives $u \times 2^k$
- Both signed and unsigned

Operands: w bits

<table>
<thead>
<tr>
<th>u</th>
<th>$\times 2^k$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$*$</td>
<td>$0 \ldots 0 1 0 \ldots 0 0$</td>
</tr>
</tbody>
</table>

True Product: $w+k$ bits

<table>
<thead>
<tr>
<th>$u \cdot 2^k$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 \ldots 0 1 0 \ldots 0 0$</td>
</tr>
</tbody>
</table>

Discard k bits: w bits

<table>
<thead>
<tr>
<th>$u \ll k$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 \ldots 0 0$</td>
</tr>
</tbody>
</table>

Examples
- $u \ll 3 \quad == \quad u \times 8$
- $u \ll 5 - u \ll 3 \quad == \quad u \times 24$
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically
Compiled Multiplication Code

C Function

```c
int mul12(int x) {
    return x*12;
}
```

Compiled Arithmetic Operations

- `leal (%eax,%eax,2), %eax`
- `sall $2, %eax`

Explanation

- `t <- x+x*2`
- `return t << 2;`

- C compiler automatically generates shift/add code when multiplying by constant
Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
 - \(u \gg k \) gives \(\lfloor u / 2^k \rfloor \)
 - Uses logical shift

Operands:

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>(x \gg 1)</td>
<td>7606.5</td>
<td>1D B6</td>
<td>00011101 10110110</td>
</tr>
<tr>
<td>(x \gg 4)</td>
<td>950.8125</td>
<td>03 B6</td>
<td>00000011 10110110</td>
</tr>
<tr>
<td>(x \gg 8)</td>
<td>59.4257813</td>
<td>00 3B</td>
<td>00000000 00111011</td>
</tr>
</tbody>
</table>
Compiled Unsigned Division Code

C Function

```c
unsigned udiv8(unsigned x)
{
    return x/8;
}
```

Compiled Arithmetic Operations

- `shrl $3, %eax`

Explanation

- # Logical shift
- `return x >> 3;`

- Uses logical shift for unsigned
- For Java Users
 - Logical shift written as `>>>`
Signed Power-of-2 Divide with Shift

- **Quotient of Signed by Power of 2**
 - $x \gg k$ gives $\lfloor x / 2^k \rfloor$
 - Uses arithmetic shift
 - Rounds wrong direction when $u < 0$

![Diagram showing binary division and rounding](image)

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>$y \gg 1$</td>
<td>-7606.5</td>
<td>E2 49</td>
<td>11100010 01001001</td>
</tr>
<tr>
<td>$y \gg 4$</td>
<td>-950.8125</td>
<td>FC 49</td>
<td>11111100 01001001</td>
</tr>
<tr>
<td>$y \gg 8$</td>
<td>59.4257813</td>
<td>FF C4</td>
<td>11111111 11000100</td>
</tr>
</tbody>
</table>
Correct Power-of-2 Divide

- **Quotient of Negative Number by Power of 2**
 - Want \([x / 2^k]\) (Round Toward 0)
 - Compute as \([(x+2^k-1) / 2^k]\)
 - In C: \((x + (1<<k) - 1) >> k\)
 - Biases dividend toward 0

Case 1: No rounding

<table>
<thead>
<tr>
<th>Dividend:</th>
<th>0 0 0 0 0 0 0 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>+2^k – 1</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>

Divisor: \([u / 2^k]\)

- **Biasing has no effect**
Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Dividend: \[x + 2^k - 1 \]

Divisor: \[\frac{x}{2^k} \]

Biasing adds 1 to final result
Compiled Signed Division Code

C Function

```c
int idiv8(int x)
{
    return x/8;
}
```

Compiled Arithmetic Operations

```
testl %eax, %eax
js    L4
L3:
    sarl $3, %eax
    ret
L4:
    addl $7, %eax
    jmp    L3
```

Explanation

```
if x < 0  
    x += 7;
# Arithmetic shift  
return x >> 3;
```

- Uses arithmetic shift for int
- For Java Users
 - Arith. shift written as >>
Arithmetic: Basic Rules

- **Addition:**
 - Unsigned/signed: Normal addition followed by truncate, same operation on bit level
 - Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2^w
 - Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

- **Multiplication:**
 - Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
 - Unsigned: multiplication mod 2^w
 - Signed: modified multiplication mod 2^w (result in proper range)
Arithmetic: Basic Rules

- Unsigned ints, 2’s complement ints are isomorphic rings: isomorphism = casting

- Left shift
 - Unsigned/signed: multiplication by 2^k
 - Always logical shift

- Right shift
 - Unsigned: logical shift, div (division + round to zero) by 2^k
 - Signed: arithmetic shift
 - Positive numbers: div (division + round to zero) by 2^k
 - Negative numbers: div (division + round away from zero) by 2^k
 Use biasing to fix
Today: Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary
Properties of Unsigned Arithmetic

- **Unsigned Multiplication with Addition Forms**
 - **Commutative Ring**
 - Addition is commutative group
 - Closed under multiplication
 \[0 \leq \text{UMult}_w(u, v) \leq 2^w - 1 \]
 - Multiplication Commutative
 \[\text{UMult}_w(u, v) = \text{UMult}_w(v, u) \]
 - Multiplication is Associative
 \[\text{UMult}_w(t, \text{UMult}_w(u, v)) = \text{UMult}_w(\text{UMult}_w(t, u), v) \]
 - 1 is multiplicative identity
 \[\text{UMult}_w(u, 1) = u \]
 - Multiplication distributes over addition
 \[\text{UMult}_w(t, \text{UAdd}_w(u, v)) = \text{UAdd}_w(\text{UMult}_w(t, u), \text{UMult}_w(t, v)) \]
Properties of Two’s Comp. Arithmetic

- **Isomorphic Algebras**
 - Unsigned multiplication and addition
 - Truncating to \(w \) bits
 - Two’s complement multiplication and addition
 - Truncating to \(w \) bits

- **Both Form Rings**
 - Isomorphic to ring of integers mod \(2^w \)

- **Comparison to (Mathematical) Integer Arithmetic**
 - Both are rings
 - Integers obey ordering properties, e.g.,
 \[
 u > 0 \quad \Rightarrow \quad u + v > v \\
 u > 0, \quad v > 0 \quad \Rightarrow \quad u \cdot v > 0
 \]
 - These properties are not obeyed by two’s comp. arithmetic
 \[
 TMax + 1 = TMin \\
 15213 \times 30426 = -10030
 \]
 (16-bit words)
Why Should I Use Unsigned?

- **Don’t Use Just Because Number Nonnegative**
 - Easy to make mistakes
    ```c
    unsigned i;
    for (i = cnt-2; i >= 0; i--)
        a[i] += a[i+1];
    ```
 - Can be very subtle
    ```c
    #define DELTA sizeof(int)
    int i;
    for (i = CNT; i-DELTA >= 0; i-= DELTA)
        ... 
    ```

- **Do Use When Performing Modular Arithmetic**
 - Multiprecision arithmetic

- **Do Use When Using Bits to Represent Sets**
 - Logical right shift, no sign extension
Integer C Puzzles

- Assume machine with 32 bit word size, two’s comp. integers

- \(x < 0 \) \(\Rightarrow \) \((x \times 2) < 0\)
- \(ux >= 0 \)
- \(x & 7 == 7 \) \(\Rightarrow \) \((x <\!<30) < 0\)
- \(ux > -1 \)
- \(x > y \) \(\Rightarrow \) \(-x < -y\)
- \(x \times x >= 0 \)
- \(x > 0 && y > 0 \) \(\Rightarrow \) \(x + y > 0 \)
- \(x >= 0 \) \(\Rightarrow \) \(-x <= 0\)
- \(x <= 0 \) \(\Rightarrow \) \(-x >= 0\)
- \((x|-x)>>31 == -1\)
- \(ux >> 3 == ux/8 \)
- \(x >> 3 == x/8 \)
- \(x & (x-1) != 0 \)

Initialization

```c
int x = foo();
int y = bar();
unsigned ux = x;
unsigned uy = y;
```