# BBM 413 Fundamentals of Image Processing

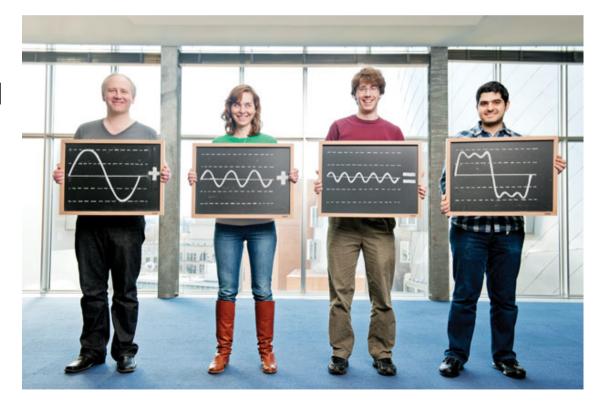
Nov. 13, 2012

Erkut Erdem
Dept. of Computer Engineering
Hacettepe University

Image Pyramids

## Review – Frequency Doman Techniques

- The name "filter" is borrowed from frequency domain processing (next week's topic)
- Accept or reject certain frequency components
- Fourier (1807):
   Periodic functions
   could be represented
   as a weighted sum of
   sines and cosines



#### **Review - Fourier Transform**

We want to understand the frequency w of our signal. So, let's reparametrize the signal by w instead of x:

For every w from 0 to inf, F(w) holds the amplitude A and phase f of the corresponding sine  $A\sin(\omega x + \phi)$ 

• How can Fhold both? Complex number trick!

$$F(\omega) = R(\omega) + iI(\omega)$$

$$A = \pm \sqrt{R(\omega)^2 + I(\omega)^2} \qquad \phi = \tan^{-1} \frac{I(\omega)}{R(\omega)}$$

We can always go back:

$$F(w)$$
 — Inverse Fourier —  $f(x)$  — Slide credit: A. Efros

#### **Review - The Discrete Fourier transform**

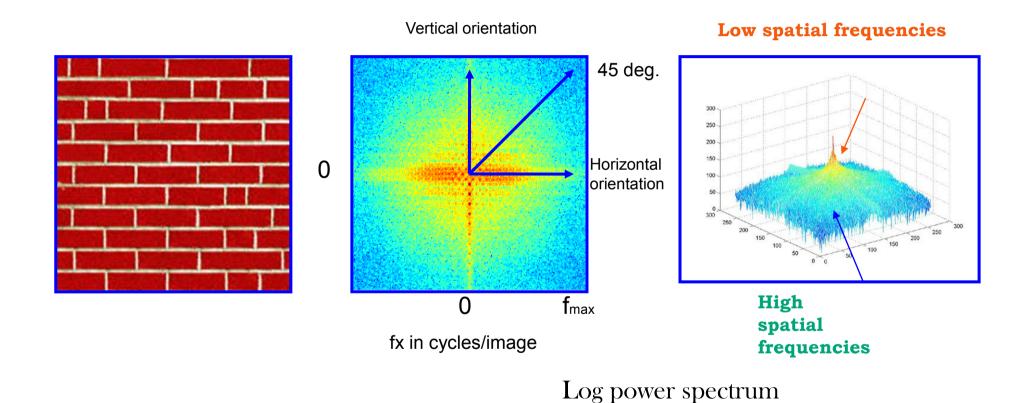
Forward transform

$$F[m,n] = \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} f[k,l] e^{-\pi i \left(\frac{km}{M} + \frac{\ln n}{N}\right)}$$

Inverse transform

$$f[k,l] = \frac{1}{MN} \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} F[m,n] e^{+\pi i \left(\frac{km}{M} + \frac{\ln}{N}\right)}$$

#### **Review - The Discrete Fourier transform**



#### **Review - The Convolution Theorem**

 The Fourier transform of the convolution of two functions is the product of their Fourier transforms

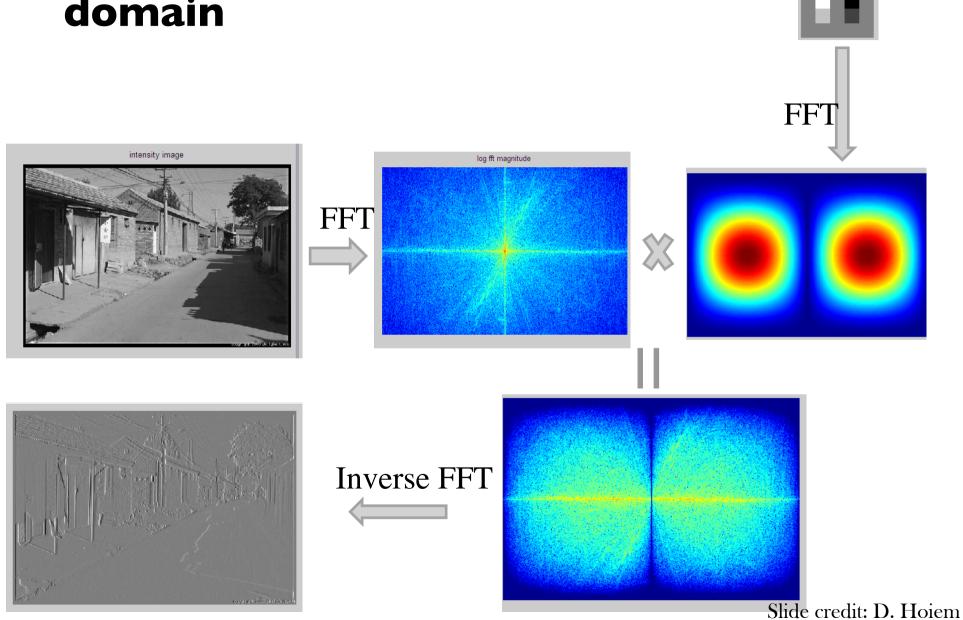
$$F[g*h] = F[g]F[h]$$

 The inverse Fourier transform of the product of two Fourier transforms is the convolution of the two inverse Fourier transforms

$$F^{-1}[gh] = F^{-1}[g] * F^{-1}[h]$$

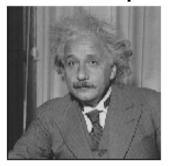
 Convolution in spatial domain is equivalent to multiplication in frequency domain!

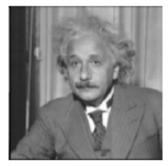
## Review - Filtering in frequency domain

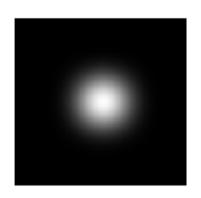


#### Review - Low-pass, Band-pass, Highpass filters

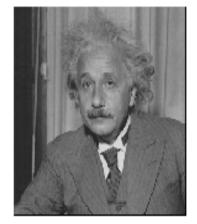
low-pass:



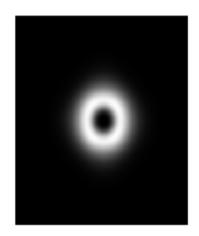




High-pass / band-pass:

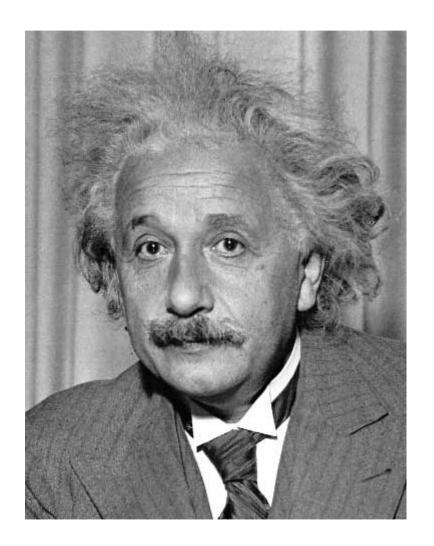






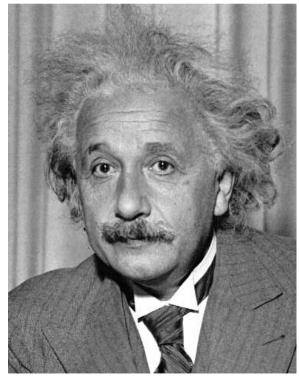
#### Template matching

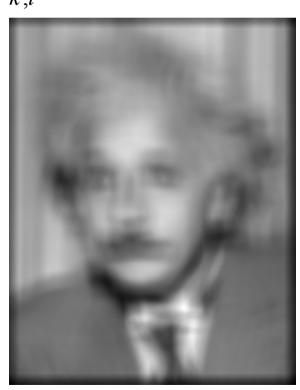
- Goal: find in image
- Main challenge: What is a good similarity or distance measure between two patches?
  - Correlation
  - Zero-mean correlation
  - Sum Square Difference
  - Normalized Cross Correlation



- Goal: find in image
- Method 0: filter the image with eye patch

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$





f = image g = filter

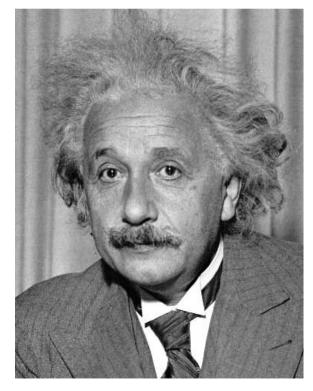
What went wrong?

Input Filtered Image

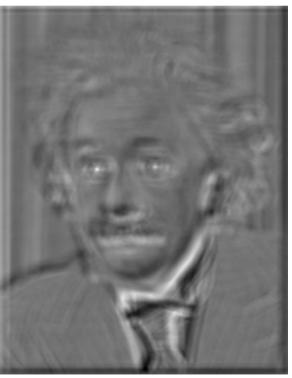
Slide: Hoiem

- Goal: find in image
- Method I: filter the image with zero-mean eye

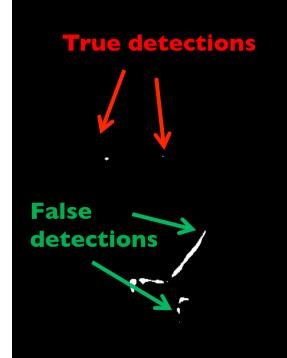
$$h[m,n] = \sum_{k,l} (f[k,l] - \bar{f}) (g[m+k,n+l])$$
mean of f



Input

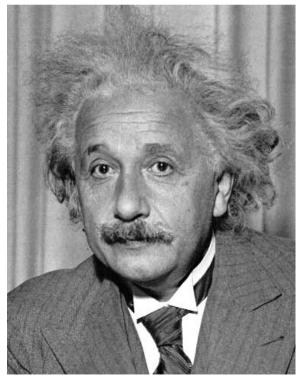


Filtered Image (scaled) Thresholded Image



- Goal: find in image
- Method 2: SSD

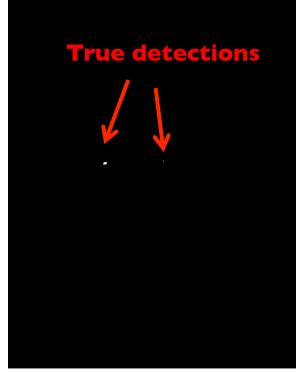
$$h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^2$$



Input



I - sqrt(SSD)



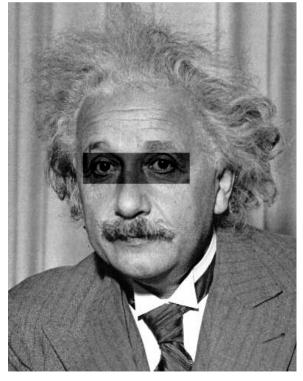
Thresholded Image

Goal: find in image

Method 2: SSD

What's the potential downside of SSD?

$$h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^2$$





Input I - sqrt(SSD)

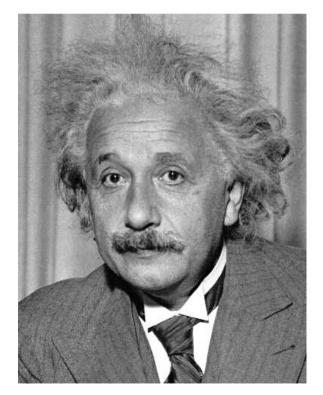
Slide: Hoiem

- Goal: find in image
- Method 3: Normalized cross-correlation

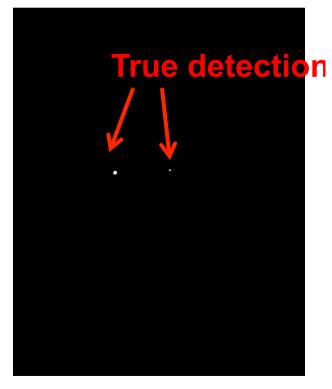
mean template mean image patch  $\sum_{k,l} (g[k,l] - \overline{g})(f[m-k,n-l] - \overline{f}_{m,n})$   $h[m,n] = \frac{\sum_{k,l} (g[k,l] - \overline{g})(f[m-k,n-l] - \overline{f}_{m,n})}{\left(\sum_{k,l} (g[k,l] - \overline{g})^2 \sum_{k,l} (f[m-k,n-l] - \overline{f}_{m,n})^2\right)^{0.5}}$ 

Matlab: normxcorr2 (template, im)

- Goal: find in image
- Method 3: Normalized cross-correlation



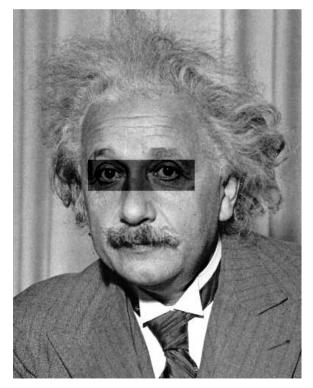




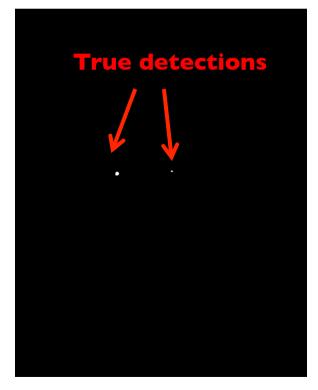
Normalized X-Correlation Thresholded Image

Input

- Goal: find in image
- Method 3: Normalized cross-correlation







put Normalized X-Correlation Thresholded Image

Slide: Hoiem Input

#### Q: What is the best method to use?

#### A: Depends

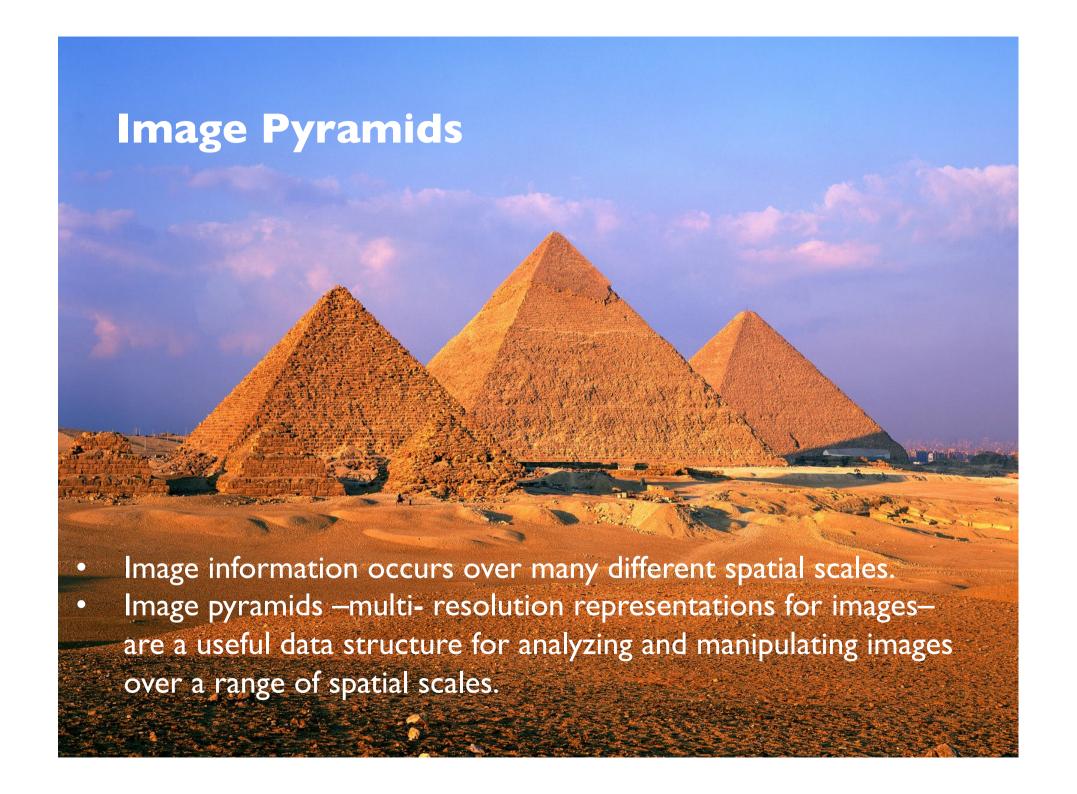
- SSD: faster, sensitive to overall intensity
- Normalized cross-correlation: slower, invariant to local average intensity and contrast

Slide: R. Pless

### Q: What if we want to find larger or smaller eyes?

A: Image Pyramid

Slide: R. Pless



#### **Image pyramids**

Image information occurs at all spatial scales

- Gaussian pyramid
- Laplacian pyramid
- Wavelet/QMF pyramid
- Steerable pyramid

#### **Image pyramids**

Image information occurs at all spatial scales

- Gaussian pyramid
- Laplacian pyramid
- Wavelet/QMF pyramid
- Steerable pyramid

#### **Review of Sampling**



#### The Gaussian pyramid

- Smooth with Gaussians, because
  - A Gaussian\*Gaussian = another Gaussian
- Gaussians are low pass filters, so representation is redundant.

#### The computational advantage of pyramids

#### GAUSSIAN PYRAMID

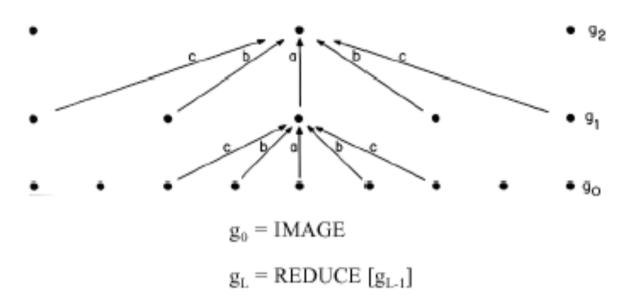


Fig 1. A one-dimensional graphic representation of the process which generates a Gaussian pyramid Each row of dots represents nodes within a level of the pyramid. The value of each node in the zero level is just the gray level of a corresponding image pixel. The value of each node in a high level is the weighted average of node values in the next lower level. Note that node spacing doubles from level to level, while the same weighting pattern or "generating kernel" is used to generate all levels.

#### The Gaussian Pyramid

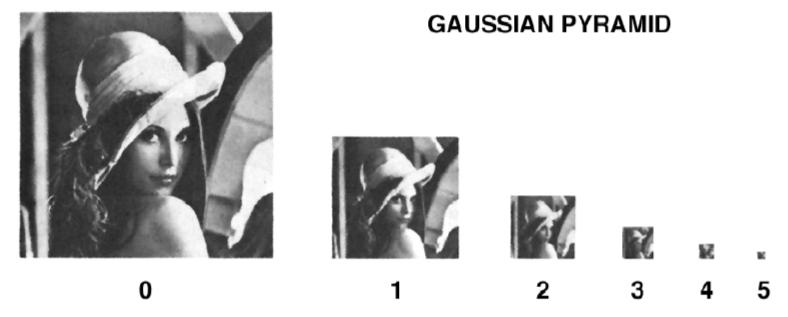
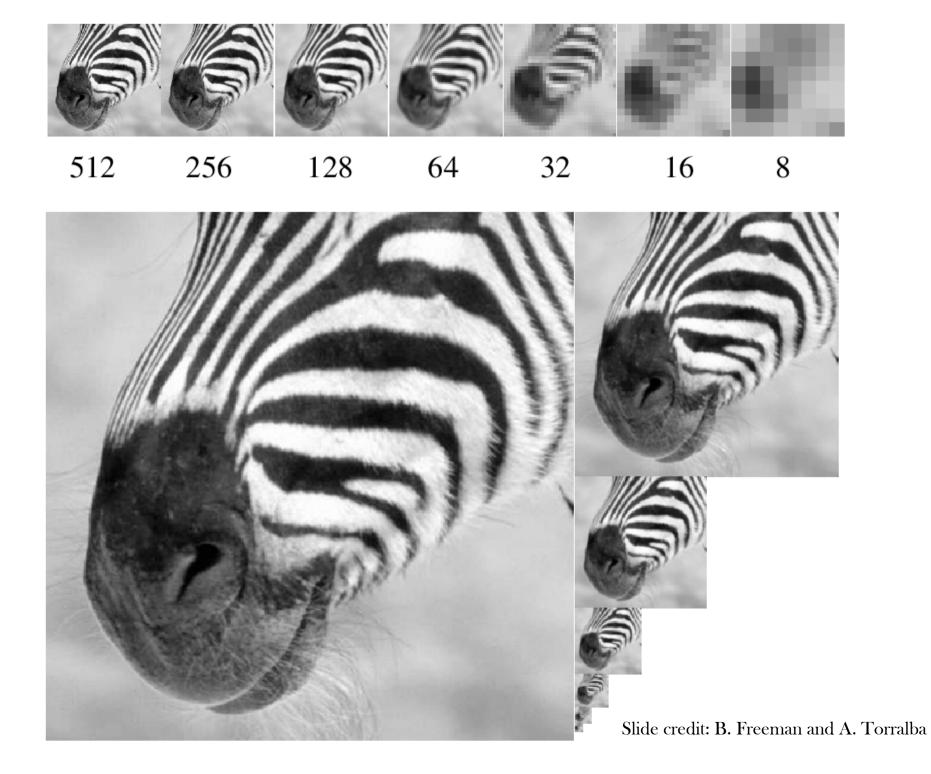


Fig. 4. First six levels of the Gaussian pyramid for the "Lady" image The original image, level 0, meusures 257 by 257 pixels and each higher level array is roughly half the dimensions of its predecessor. Thus, level 5 measures just 9 by 9 pixels.



## Convolution and subsampling as a matrix multiply (ID case)

$$x_2 = G_1 x_1$$

$$G_1 =$$

(Normalization constant of 1/16 omitted for visual clarity.)

#### **Next pyramid level**

$$x_3 = G_2 x_2$$

## The combined effect of the two pyramid levels

$$x_3 = G_2 G_1 x_1$$

$$G_2G_1 =$$

```
    1
    4
    10
    20
    31
    40
    44
    40
    31
    20
    10
    4
    1
    0
    0
    0
    0
    0
    0
    0

    0
    0
    0
    0
    1
    4
    10
    20
    31
    40
    44
    40
    31
    20
    10
    4
    1
    0
    0
    0

    0
    0
    0
    0
    0
    0
    1
    4
    10
    20
    31
    40
    44
    40
    30
    16
    4
    0

    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    1
    4
    10
    20
    25
    16
    4
    0
```

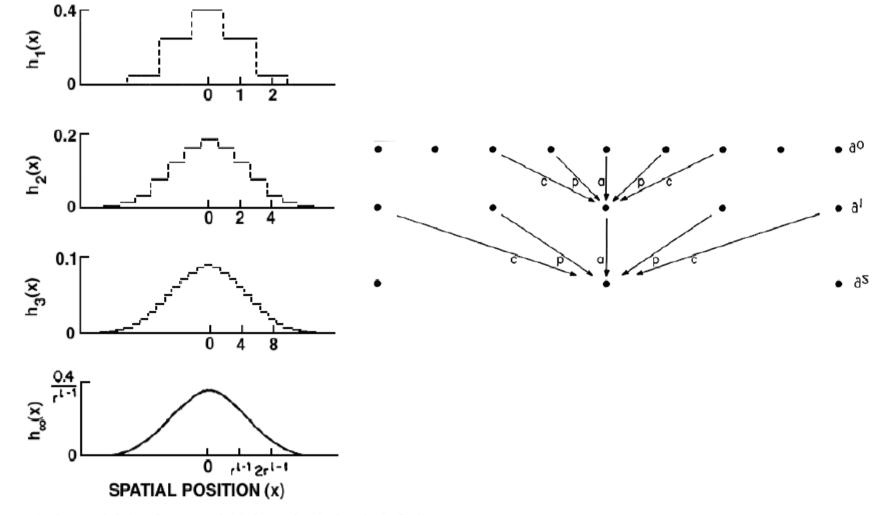


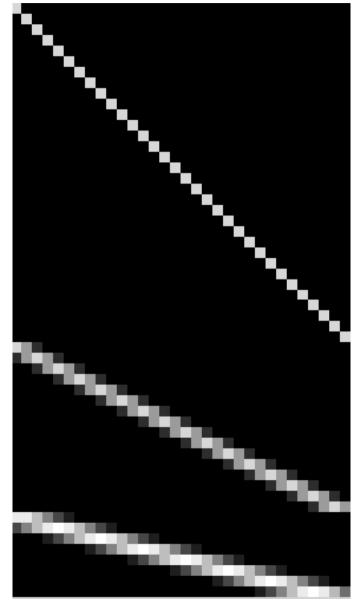
Fig. 2. The equivalent weighting functions  $h_i(x)$  for nodes in levels 1, 2, 3, and infinity of the Gaussian pyramid. Note that axis scales have been adjusted by factors of 2 to aid comparison Here the parameter a of the generating kernel is 0.4, and the resulting equivalent weighting functions closely resemble the Gaussian probability density functions.

#### Gaussian pyramids used for

- up- or down- sampling images.
- Multi-resolution image analysis
  - Look for an object over various spatial scales
  - Coarse-to-fine image processing: form blur estimate or the motion analysis on very low-resolution image, upsample and repeat. Often a successful strategy for avoiding local minima in complicated estimation tasks.

## ID Gaussian pyramid matrix, for [I 4 6 4 I] low-pass filter

full-band image, highest resolution



lower-resolution image

lowest resolution image

Slide credit: B. Freeman and A. Torralba

## Template Matching with Image Pyramids

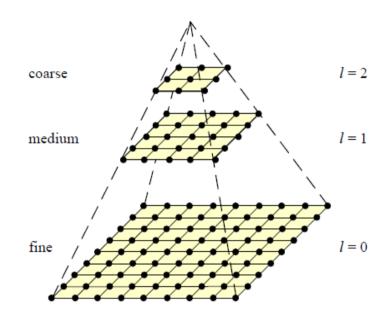
Input: Image, Template

- I. Match template at current scale
- 2. Downsample image
- 3. Repeat I-2 until image is very small
- 4. Take responses above some threshold, perhaps with non-maxima suppression

Slide: Hoiem

#### Coarse-to-fine Image Registration

- I. Compute Gaussian pyramid
- 2. Align with coarse pyramid
- 3. Successively align with finer pyramids
  - Search smaller range



Why is this faster?

Are we guaranteed to get the same result?

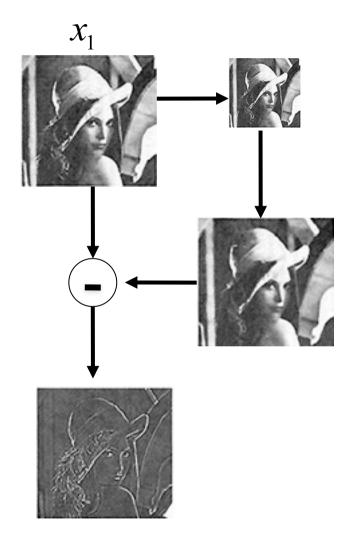
#### **Image pyramids**

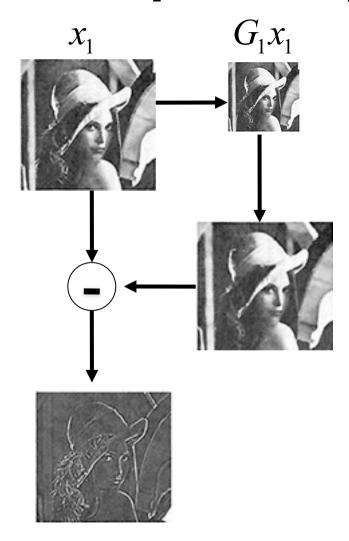
Image information occurs at all spatial scales

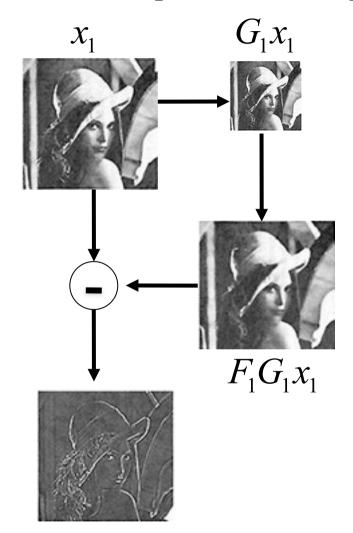
- Gaussian pyramid
- Laplacian pyramid
- Wavelet/QMF pyramid
- Steerable pyramid

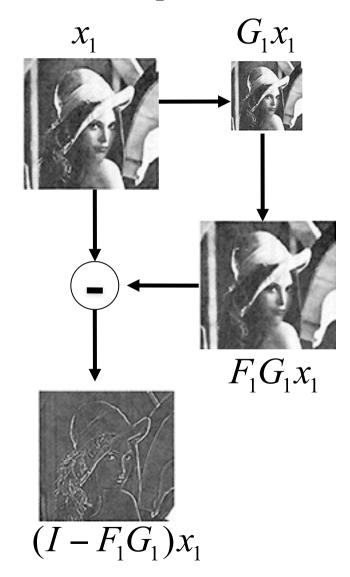
#### The Laplacian Pyramid

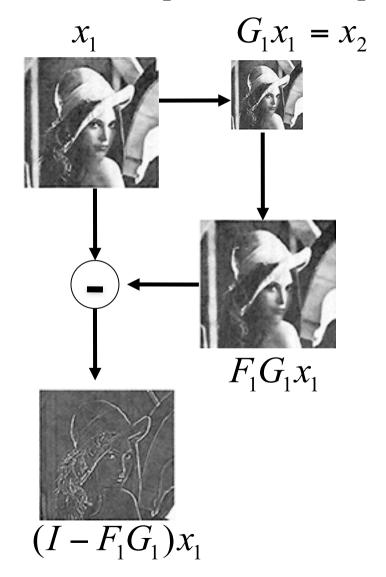
- Synthesis
  - Compute the difference between upsampled
     Gaussian pyramid level and Gaussian pyramid level.
  - band pass filter each level represents spatial frequencies (largely) unrepresented at other level.

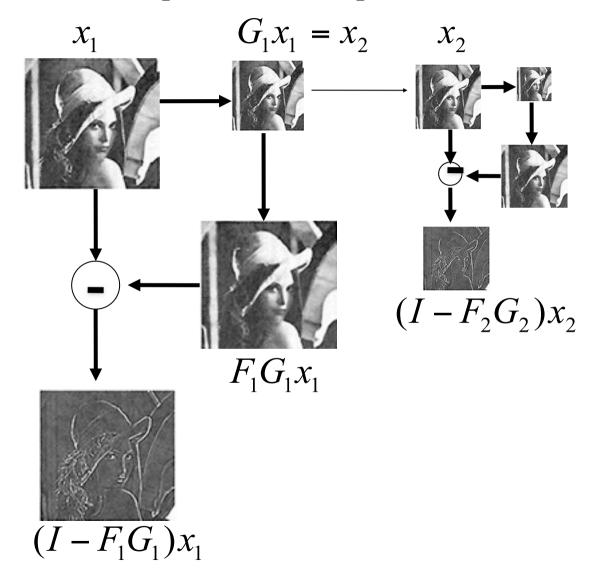


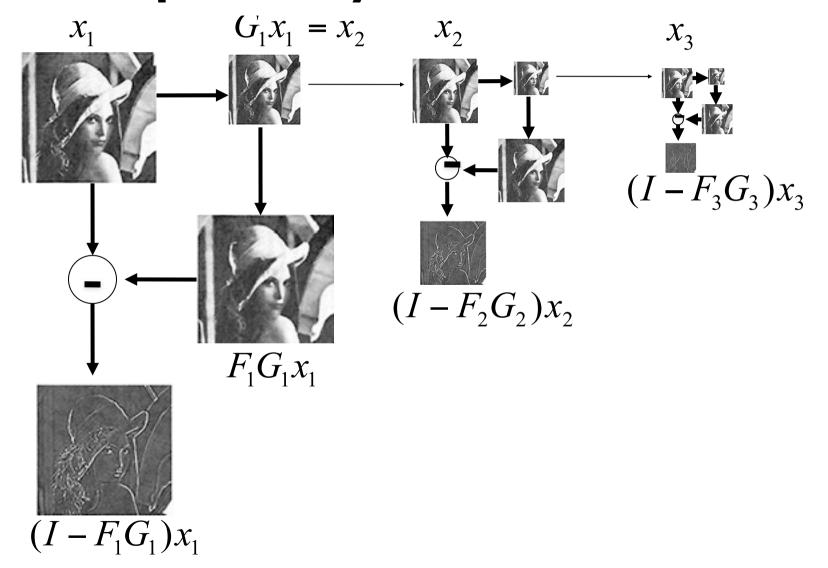












#### **Upsampling**

$$y_2 = F_3 x_3$$

Insert zeros between pixels, then apply a low-pass filter, [1 4 6 4 1]

## Showing, at full resolution, the information captured at each level of a Gaussian (top) and Laplacian (bottom) pyramid.

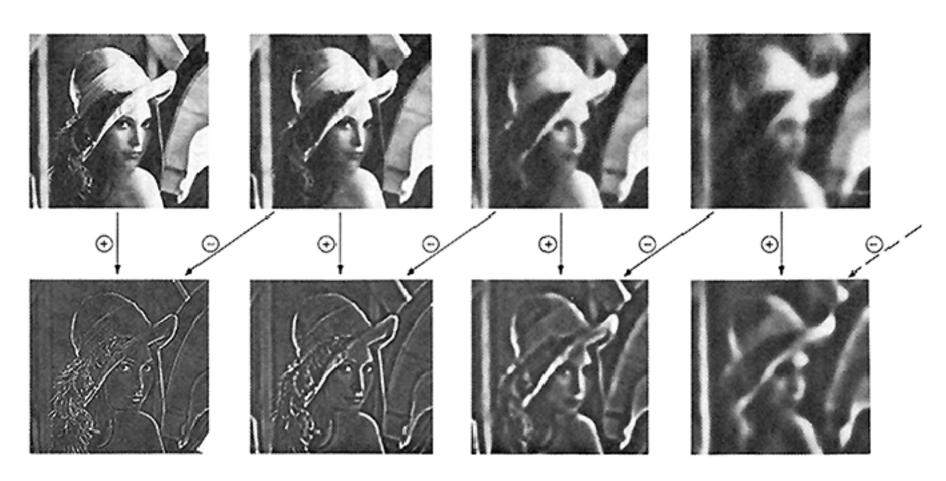


Fig. 5. First four levels of the Gaussian and Laplacian pyramid. Gaussian images, upper row, were obtained by expanding pyramid arrays (Fig. 4) through Gaussian interpolation. Each level of the Laplacian pyramid is the difference between the corresponding and next higher levels of the Gaussian pyramid.

## Laplacian pyramid reconstruction algorithm: recover $x_1$ from $L_1$ , $L_2$ , $L_3$ and $x_4$

G# is the blur-and-downsample operator at pyramid level # F# is the blur-and-upsample operator at pyramid level #

#### Laplacian pyramid elements:

$$LI = (I - FI GI) \times I$$

$$L2 = (I - F2 G2) \times 2$$

$$L3 = (I - F3 G3) \times 3$$

$$x2 = GIxI$$

$$x3 = G2 x2$$

$$x4 = G3 x3$$

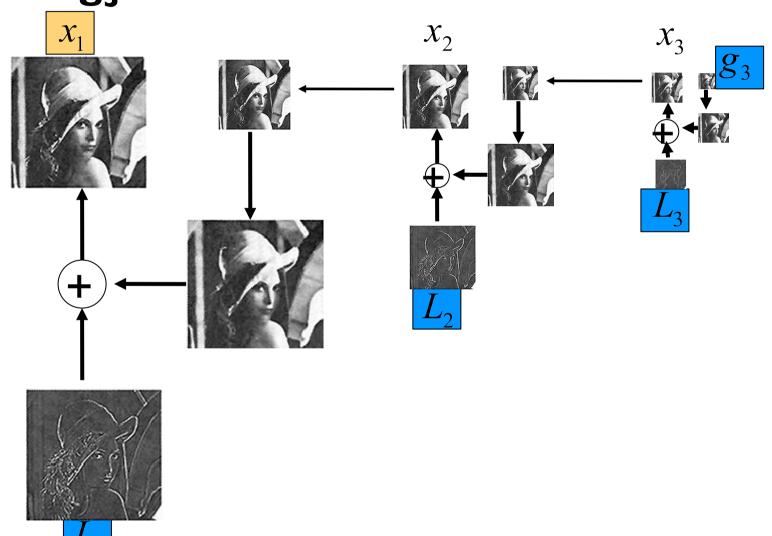
Reconstruction of original image (x I) from Laplacian pyramid elements:

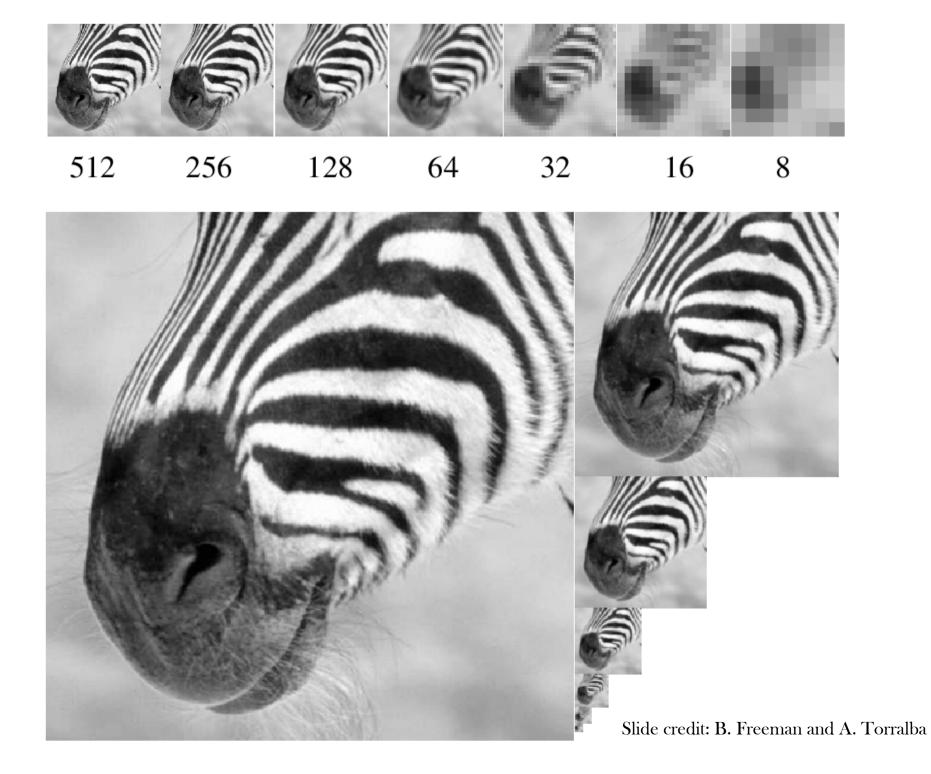
$$x3 = L3 + F3 x4$$

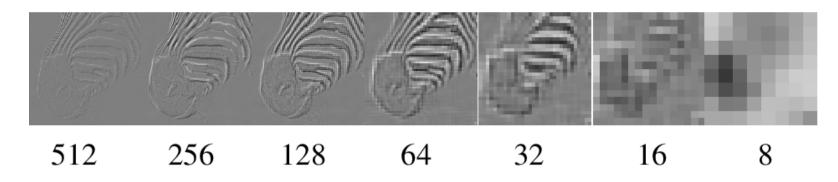
$$x2 = L2 + F2 \times 3$$

$$xI = LI + FI \times 2$$

# Laplacian pyramid reconstruction algorithm: recover $x_1$ from $L_1$ , $L_2$ , $L_3$ and $g_3$







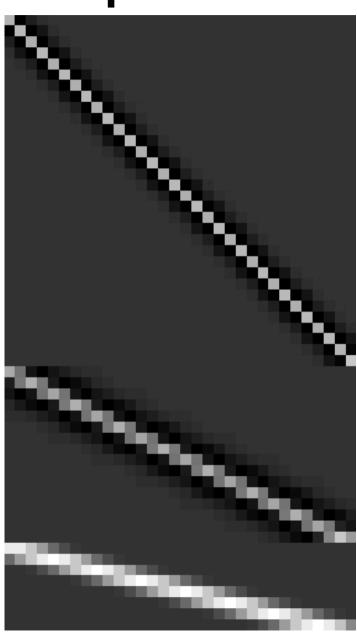


## ID Laplacian pyramid matrix, for [I 4 6 4 I] low-pass filter

high frequencies

mid-band frequencies

low frequencies



Slide credit: B. Freeman and A. Torralba

#### Laplacian pyramid applications

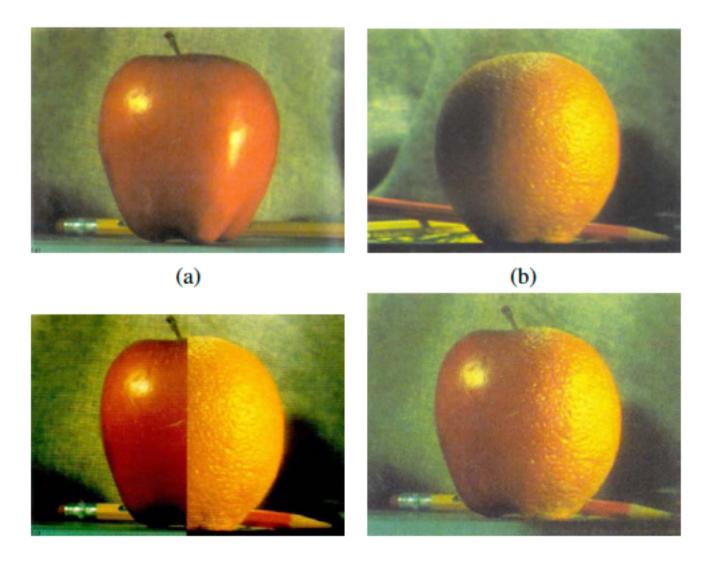
- Texture synthesis
- Image compression
- Noise removal

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-31, NO. 4, APRIL 1983

#### The Laplacian Pyramid as a Compact Image Code

PETER J. BURT, MEMBER, IEEE, AND EDWARD H. ADELSON

#### **Image blending**



Slide credit: B. Freeman and A. Torralba

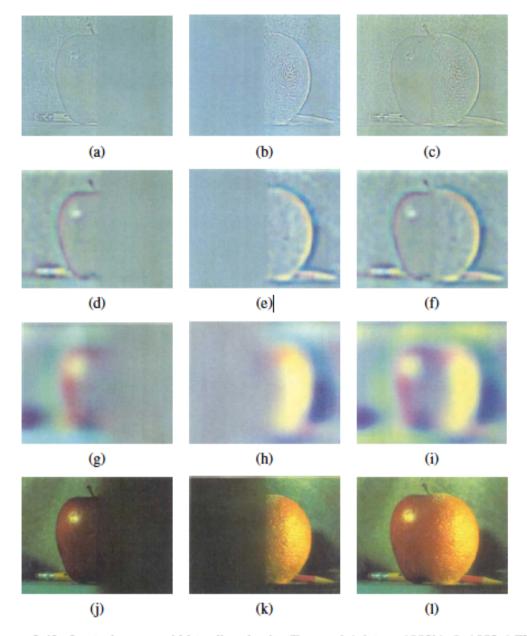
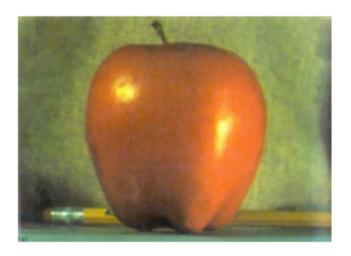
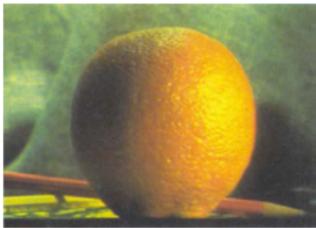


Figure 3.42 Laplacian pyramid blending details (Burt and Adelson 1983b) © 1983 ACM. The first three rows show the high, medium, and low frequency parts of the Laplacian pyramid (taken from levels 0, 2, and 4). The left and middle columns show the original apple and orange images weighted by the smooth interpolation functions, while the right column shows the averaged contributions.

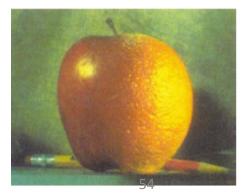
Slide credit: B. Freeman & A. Torralba

#### **Image blending**





- Build Laplacian pyramid for both images: LA, LB
- Build Gaussian pyramid for mask: G
- Build a combined Laplacian pyramid:
   L(j) = G(j) LA(j) + (I-G(j)) LB(j)
- Collapse L to obtain the blended image

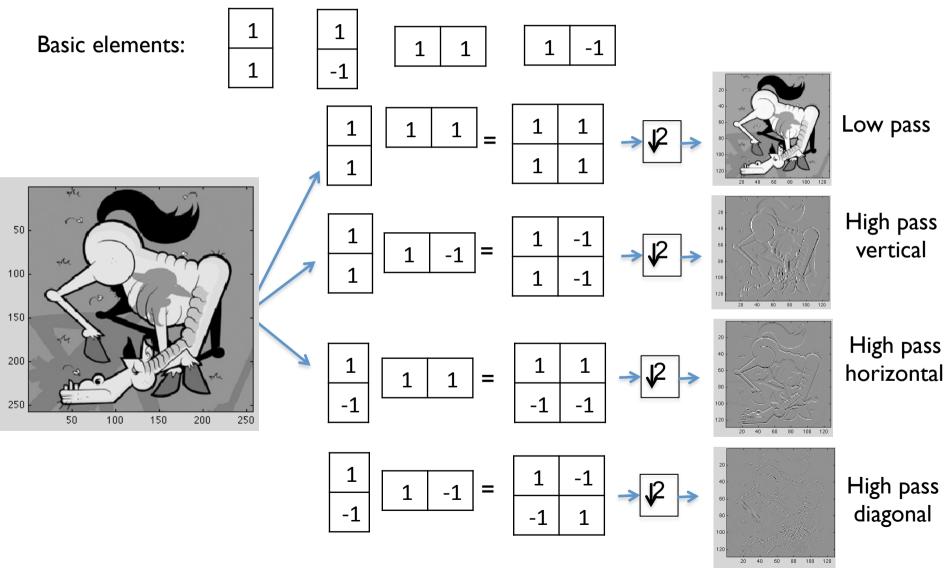


Slide credit: B. Freeman and A. Torralba

Image information occurs at all spatial scales

- Gaussian pyramid
- Laplacian pyramid
- Wavelet/QMF pyramid
- Steerable pyramid

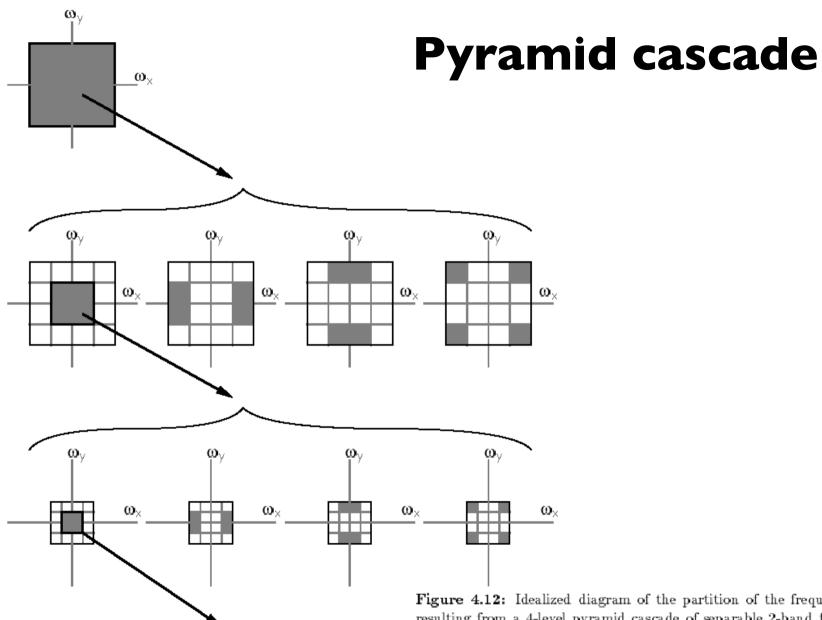
#### **2D Haar transform**



Slide credit: B. Freeman and A. Torralba

#### 2D Haar transform



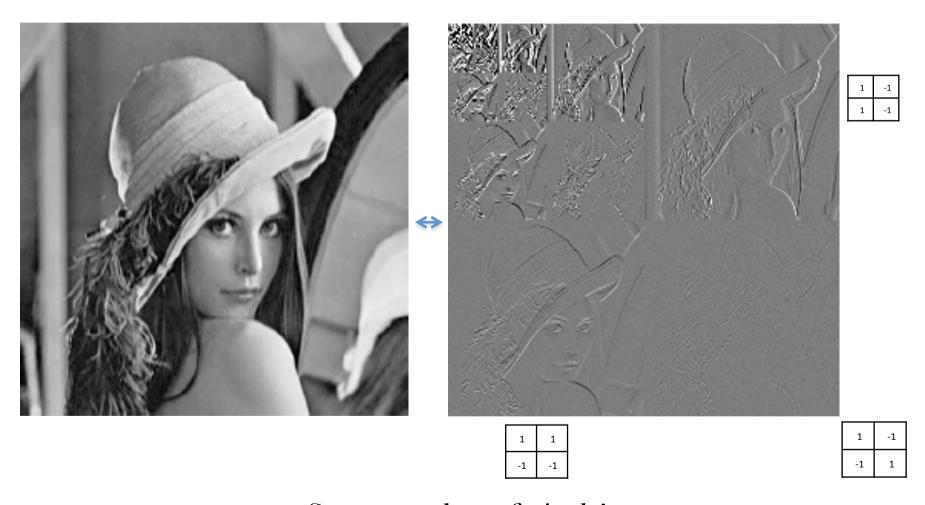


Simoncelli and Adelson, in "Subband coding", Kluwer, 1990.

Figure 4.12: Idealized diagram of the partition of the frequency plane resulting from a 4-level pyramid cascade of separable 2-band filters. The top plot represents the frequency spectrum of the original image, with axes ranging from  $-\pi$  to  $\pi$ . This is divided into four subbands at the next level. On each subsequent level, the lowpass subbands(outlined in bold) is subdivided further.

Slide credit: B. Freeman and A. Torralba

### Wavelet/QMF representation



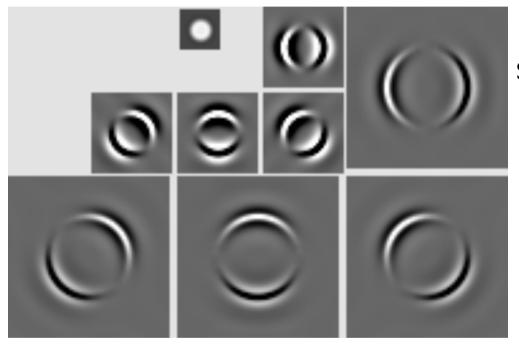
Same number of pixels!

Image information occurs at all spatial scales

- Gaussian pyramid
- Laplacian pyramid
- Wavelet/QMF pyramid
- Steerable pyramid

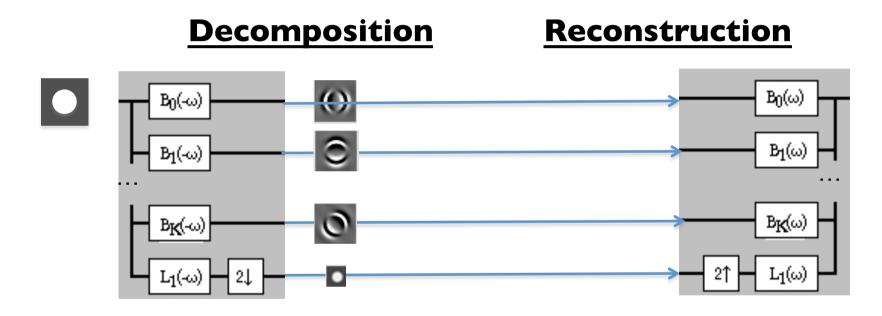
2 Level decomposition of white circle example:

Low pass residual

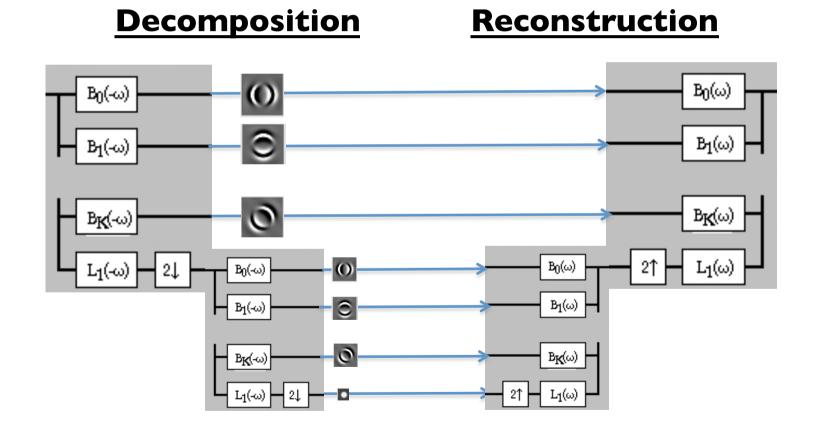


Subbands

We may combine Steerability with Pyramids to get a Steerable Laplacian Pyramid as shown below



We may combine Steerability with Pyramids to get a Steerable Laplacian Pyramid as shown below



But we need to get rid of the corner regions before starting the recursive circular filtering

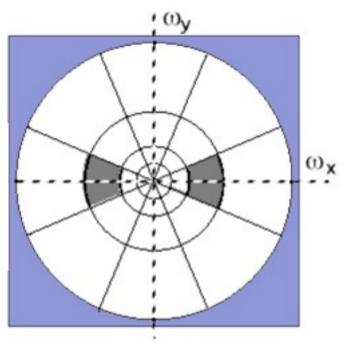
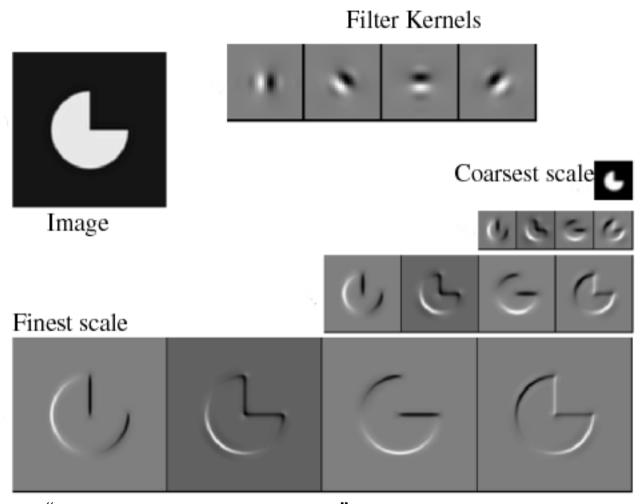


Figure 1. Idealized illustration of the spectral decomposition performed by a steerable pyramid with k = 4. Frequency axes range from  $-\pi$  to  $\pi$ . The basis functions are related by translations, dilations and rotations (except for the initial highpass subband and the final lowpass subband). For example, the shaded region Simoncelli and Freeman, corresponds to the spectral support of a single (vertically-oriented) subband. Slide credit: B. Freeman and A. Torralba

**ICIP 1995** 



Reprinted from "Shiftable MultiScale Transforms," by Simoncelli et al., IEEE Transactions on Information Theory, 1992, copyright 1992, IEEE

There is also a high pass residual...

Slide credit: B. Freeman and A. Torralba

• Gaussian

Laplacian

Wavelet/QMF

• Steerable pyramid

Gaussian



Progressively blurred and subsampled versions of the image. Adds scale invariance to fixed-size algorithms.

Laplacian

Wavelet/QMF

Steerable pyramid

Gaussian



Progressively blurred and subsampled versions of the image. Adds scale invariance to fixed-size algorithms.

Laplacian



Shows the information added in Gaussian pyramid at each spatial scale. Useful for noise reduction & coding.

Wavelet/QMF

Steerable pyramid

Gaussian



Progressively blurred and subsampled versions of the image. Adds scale invariance to fixed-size algorithms.

Laplacian



Shows the information added in Gaussian pyramid at each spatial scale. Useful for noise reduction & coding.

Wavelet/QMF



Bandpassed representation, complete, but with aliasing and some non-oriented subbands.

Steerable pyramid

Gaussian



Progressively blurred and subsampled versions of the image. Adds scale invariance to fixed-size algorithms.

Laplacian



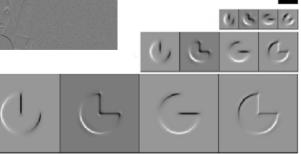
Shows the information added in Gaussian pyramid at each spatial scale. Useful for noise reduction & coding.

Wavelet/QMF



Bandpassed representation, complete, but with aliasing and some non-oriented subbands.

Steerable pyramid



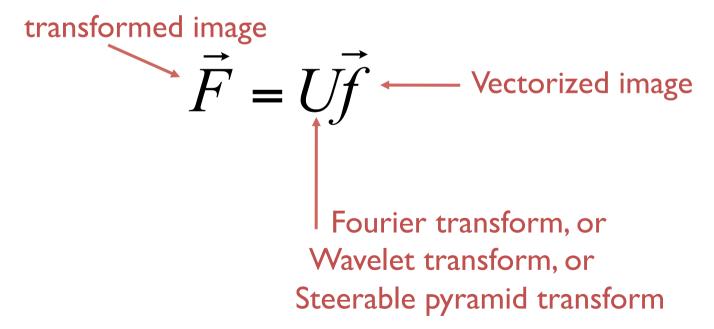
Shows components at each scale and orientation separately. Nonaliased subbands. Good for texture and feature analysis. But overcomplete and with HF residual.

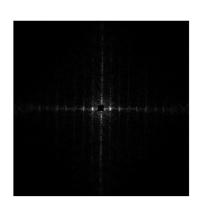
Slide credit: B. Freeman and A. Torralba

## Schematic pictures of each matrix transform

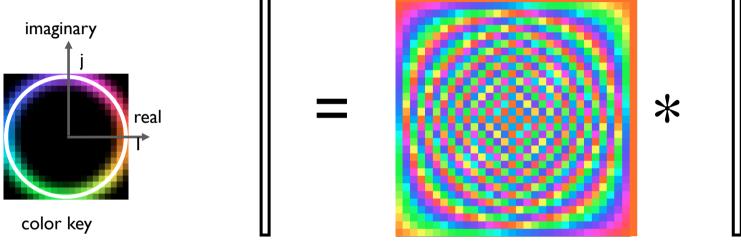
Shown for I-d images

The matrices for 2-d images are the same idea, but more complicated, to account for vertical, as well as horizontal, neighbor relationships.





#### Fourier transform



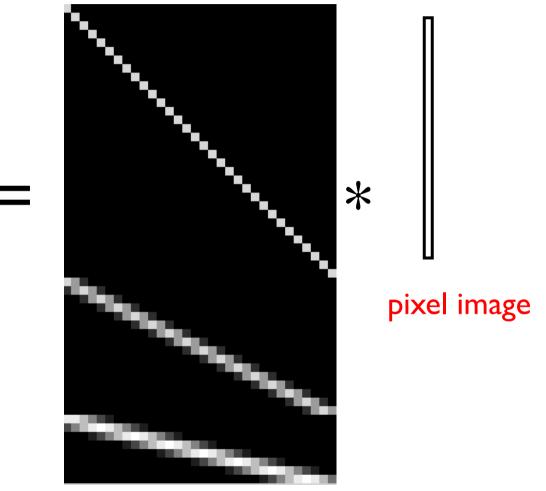
Fourier transform

Fourier bases are global: each transform coefficient depends on all pixel locations.

pixel domain image



#### Gaussian pyramid

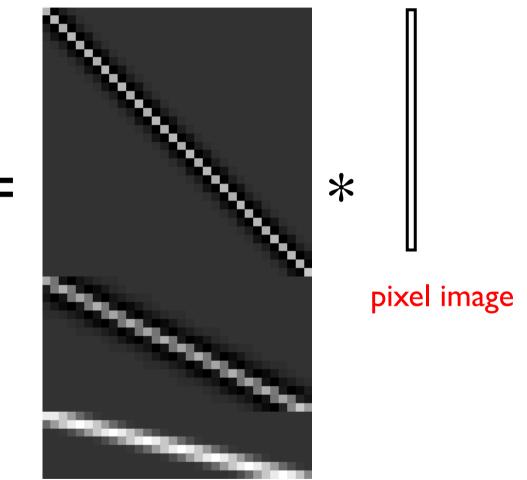


Gaussian pyramid

Overcomplete representation. Low-pass filters, sampled appropriately for their blur.

Slide credit: B. Freeman and A. Torralba

#### Laplacian pyramid

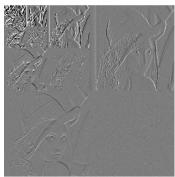


Overcomplete representation. Transformed pixels represent bandpassed image information.

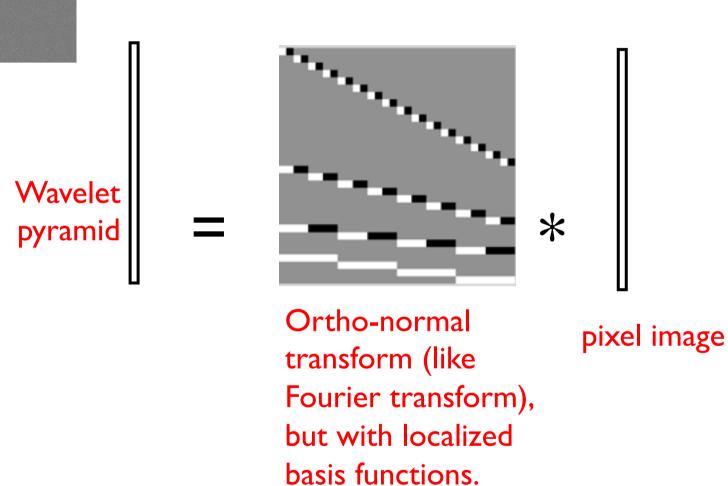
Slide credit: B. Freeman and A. Torralba

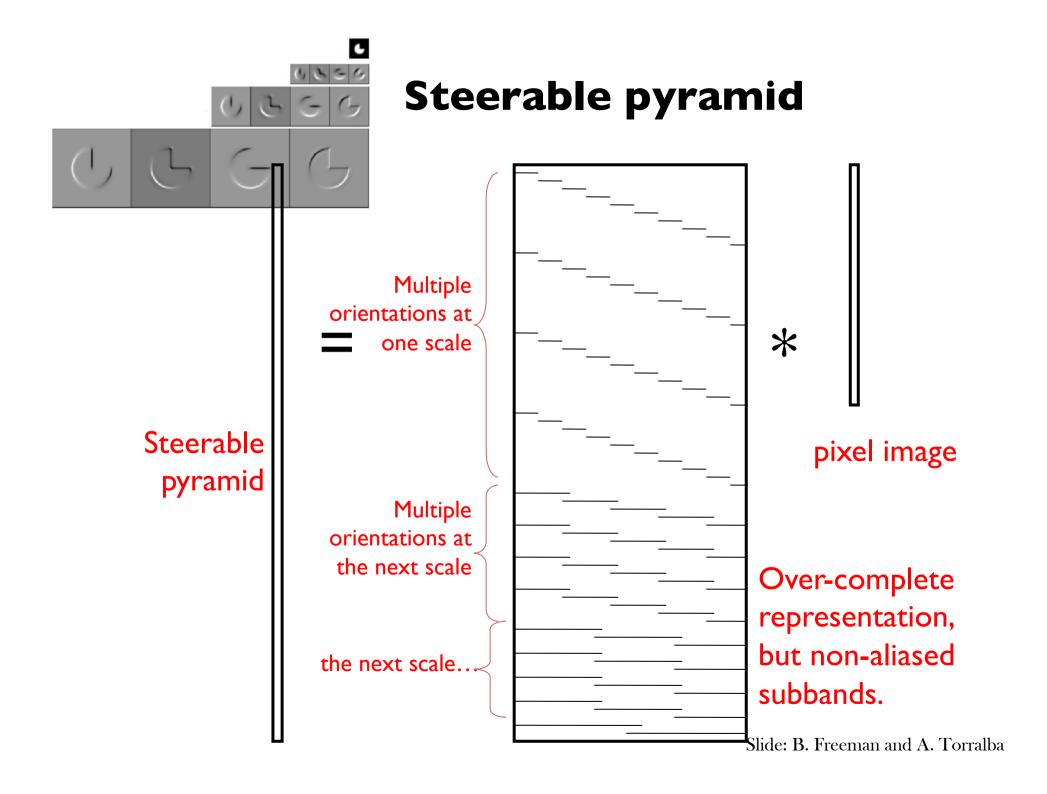
Laplacian

pyramid



#### Wavelet (QMF) transform





#### Why use image pyramids?

- Handle real-world size variations with a constant-size vision algorithm.
- Remove noise
- Analyze texture
- Recognize objects
- Label image features
- Image priors can be specified naturally in terms of wavelet pyramids.

#### Written Assignment #3 – Hybrid Images

- A. Oliva, A. Torralba, P.G. Schyns (2006). Hybrid Images. ACM Transactions on Graphics, ACM SIGGRAPH, 25-3, 527-530.
- Due on 27<sup>th</sup> of November



