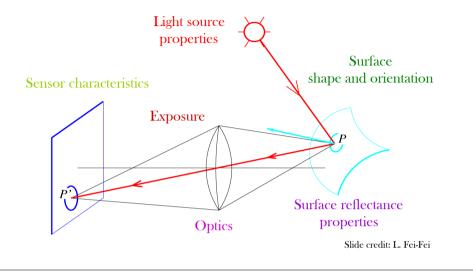
BBM 413 Fundamentals of Image Processing

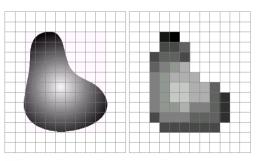
Erkut Erdem Dept. of Computer Engineering Hacettepe University

Color Perception and Color Spaces

Review - digital camera



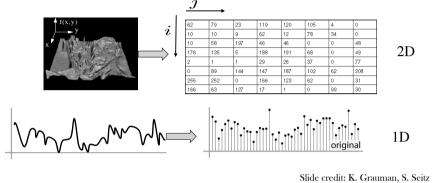
A digital camera replaces film with a sensor array


- Each cell in the array is light-sensitive diode that converts photons to electrons
- <u>http://electronics.howstuffworks.com/digital-camera.htm</u>


Review - image formation

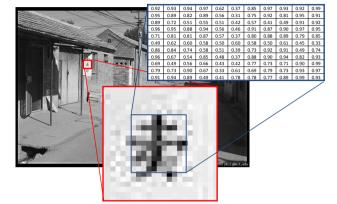
• What determines the brightness of an image pixel?

Review – digital images



a b FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

Slide credit: S. Seitz


Review - digital images

- Sample the 2D space on a regular grid
- <u>Quantize</u> each sample (round to nearest integer)
- Image thus represented as a matrix of integer values.

Review – image representation

- Digital image: 2D discrete function f
- **Pixel**: Smallest element of an image f(x,y)

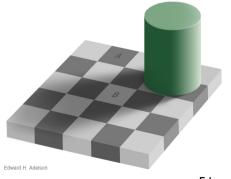
Slide credit: M. J. Black

Outline

- Perception of color and light
- Color spaces

Why does a visual system need color?

http://www.hobbylinc.com/gr/pll/pll5019.jpg


Slide credit: W. Freeman

Why does a visual system need color? (an incomplete list...)

- To tell what food is edible.
- To distinguish material changes from shading changes.
- To group parts of one object together in a scene.
- To find people's skin.
- Check whether a person's appearance looks normal/healthy.

Slide credit: W. Freeman

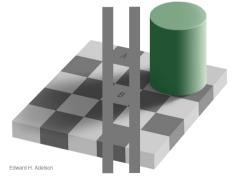
Brightness perception

Edward Adelson

http://web.mit.edu/persci/people/adelson/ illusions_demos.html

What is color?

- Color is the result of interaction between physical light in the environment and our visual system
- Color is a psychological property of our visual experiences when we look at objects and lights, not a physical property of those objects or lights (S. Palmer, Vision Science: Photons to Phenomenology)



VISION SCIENCE Photons to Phenomenology

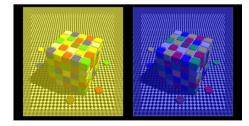
Stephen E. Palmer

Slide credit: A. Efros

Brightness perception

Edward Adelson

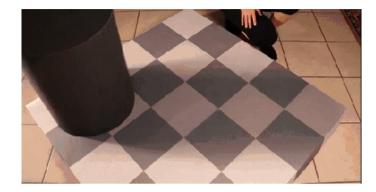
http://web.mit.edu/persci/people/adelson/ illusions_demos.html


Brightness perception

Edward Adelson

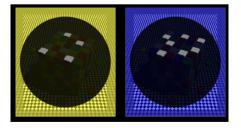
http://web.mit.edu/persci/people/adelson/ illusions_demos.html

Color perception

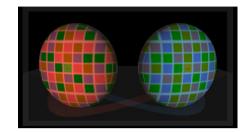


Look at blue squares

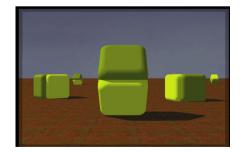
Look at yellow squares


Content © 2008 R.Beau Lotto http://www.lottolab.org/articles/illusionsoflight.asp

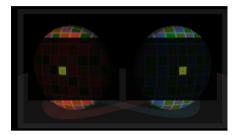
Brightness perception


14

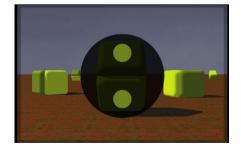
Color perception


Content © 2008 R.Beau Lotto http://www.lottolab.org/articles/illusionsoflight.asp

Color perception


Content © 2008 R.Beau Lotto http://www.lottolab.org/articles/illusionsoflight.asp

Color perception


Content © 2008 R.Beau Lotto http://www.lottolab.org/articles/illusionsoflight.asp

Color perception

Content © 2008 R.Beau Lotto http://www.lottolab.org/articles/illusionsoflight.asp

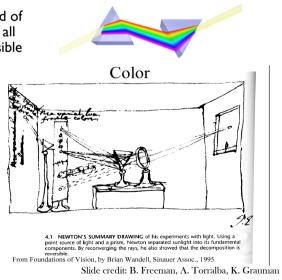
Color perception

Content © 2008 R.Beau Lotto http://www.lottolab.org/articles/illusionsoflight.asp

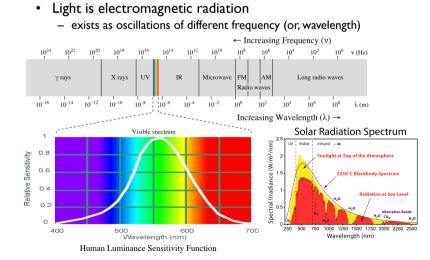
Reading Assignment #2

- Watch Beau Lotto's TED talk on "Optical illusions show how we see" [link available on course webpage]
- Prepare a 1-page summary of the talk
- Due on 8th of November

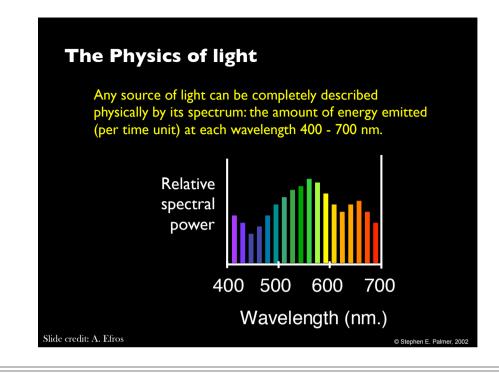
Color and light

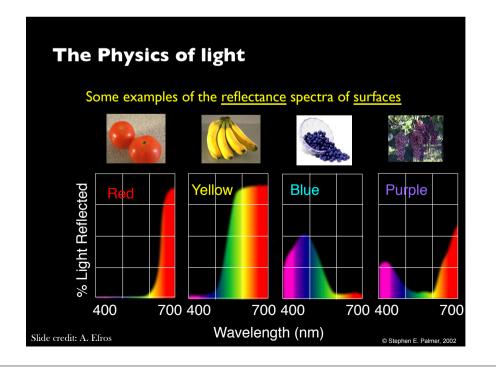

- Color of light arriving at camera depends on
 - Spectral reflectance of the surface light is leaving
 - Spectral radiance of light falling on that patch
- Color perceived depends on
 - Physics of light
 - Visual system receptors
 - Brain processing, environment
- Color is a phenomenon of human perception; it is **not** a universal property of light

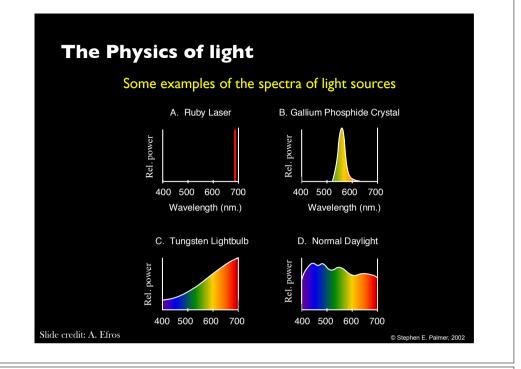
Slide credit: K. Grauman, S. Marschner


Color

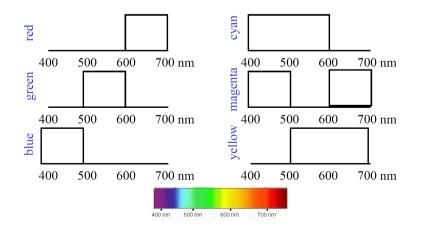
White light: composed of about equal energy in all wavelengths of the visible spectrum

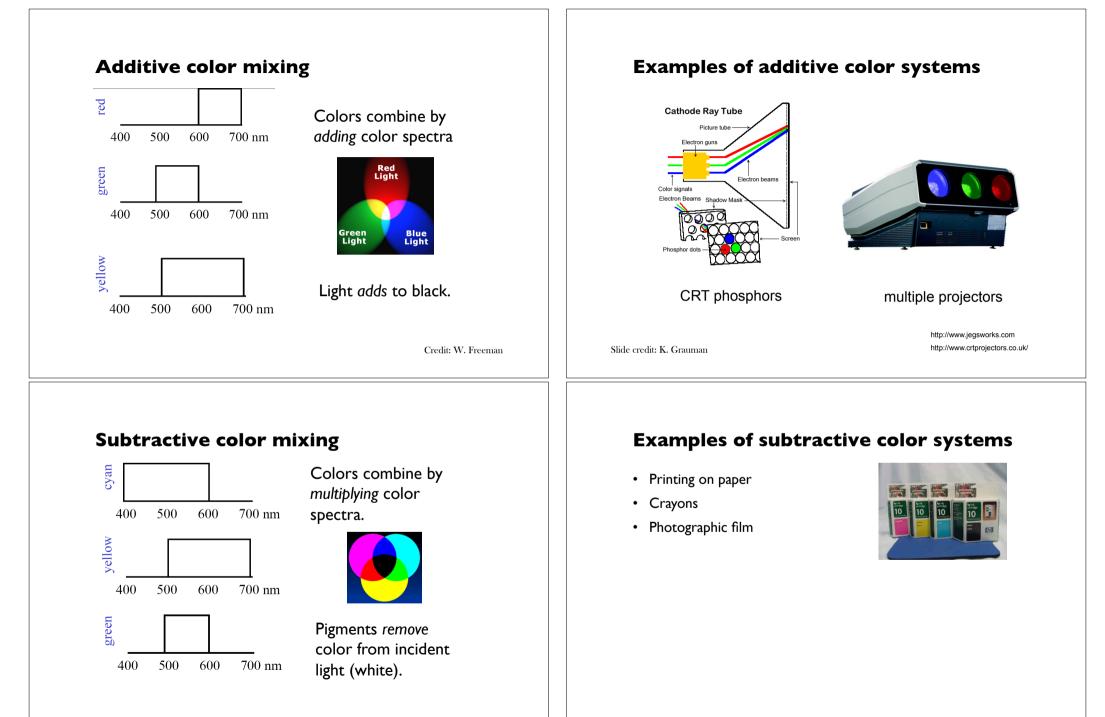

Newton 1665




Electromagnetic spectrum

Slide credit: A. Efros

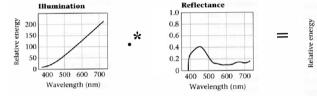


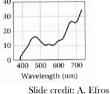


Color mixing

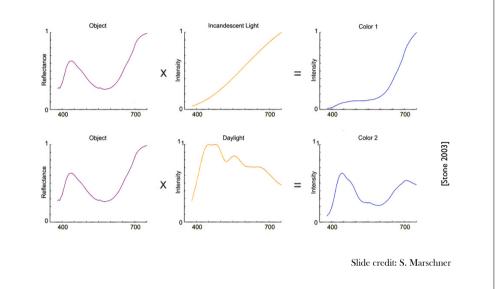
Cartoon spectra for color names:

Credit: W. Freeman


Credit: W. Freeman


Slide credit: K. Grauman

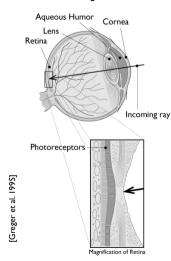
Interaction of light and surfaces


Reflected color is the result of interaction of light source spectrum with surface reflectance

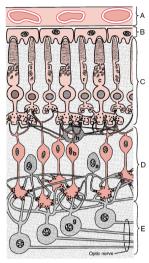


Color signal

Reflection from colored surface



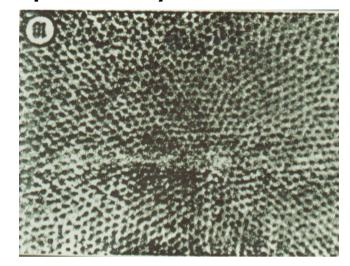
- Iris colored annulus with radial muscles
- Pupil the hole (aperture) whose size is controlled by the iris
- Lens changes shape by using ciliary muscles (to focus on objects at different distances)
- Retina photoreceptor cells


Slide credit: S. Seitz

The eye as a measurement device

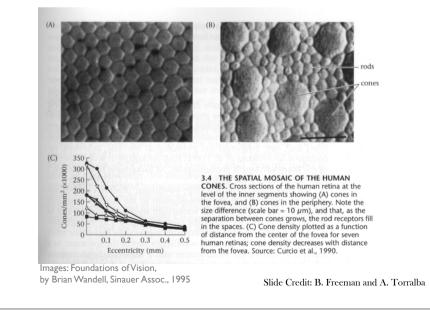
- We can model the low-level behavior of the eye by thinking of it as a light-measuring machine
 - its optics are much like a camera
 - its detection mechanism is also much like a camera
- Light is measured by the photoreceptors in the retina
 - they respond to visible light
 - different types respond to different wavelengths
- The human eye is a camera!

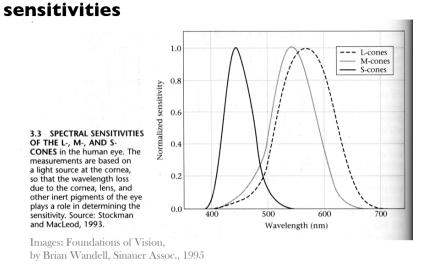
Layers of the retina



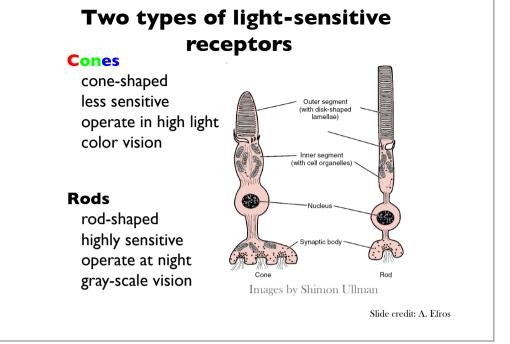
Slide credit: S. Ullman

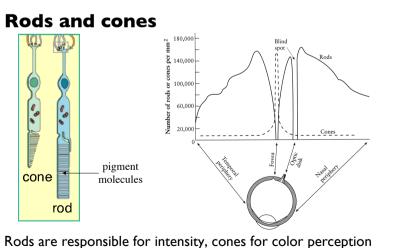
Receptors Density - Fovea


64	66	76	85	99	100	101	101	106	112	117	118	105	77	57	50	51	43	52	55	62
65	69	76	84	97	89	93	107	121	121	121	122	125	101	71	43	45	41	52	52	68
66	72	78	83	91	86	91	102	108	104	106	113	136	118	86	43	49	47	60	55	64
73	79	83	85	94	93	90	83	79	79	85	92	124	124	108	62	58	43	57	57	64
78	84	86	86	69	71	68	68	86	108	115	109	117	135	139	93	73	37	49	58	70
75	75	73	77	75	80	62	84	90	94	98	102	102	110	114	100	80	58	51	51	51
77	72	73	83	84	91	80	77	71	70	73	80	80	87	99	103	93	67	53	50	51
74	66	69	88	98	101	95	65	56	55	55	60	64	70	93	114	112	82	56	47	53
64	59	66	86	108	103	98	54	52	57	54	54	67	77	103	124	125	96	64	46	53
56	57	66	83	112	108	104	59	55	60	59	60	78	94	115	125	121	98	68	43	46
56	58	66	80	114	121	117	85	71	67	69	76	87	101	116	117	112	94	68	43	46
61	57	61	77	111	125	119	114	98	87	87	94	97	102	111	113	108	90	65	43	44
63	52	54	73	103	117	107	126	119	108	103	104	106	103	108	115	112	91	65	48	42
66	63	58	63	94	115	120	108	102	104	106	108	105	108	107	105	105	97	72	47	41
68	65	58	61	86	108	115	106	102	103	103	104	98	99	97	97	103	101	81	57	43
72	68	62	64	78	102	111	105	101	101	101	103	99	98	96	97	104	104	86	63	48
74	71	64	64	69	93	104	99	94	93	96	101	99	101	102	103	108	106	90	69	53
																				S


Receptors Density - Fovea

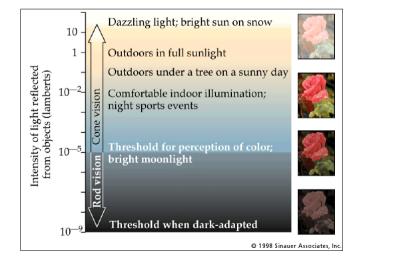
Slide credit: S. Ullman


Human Photoreceptors

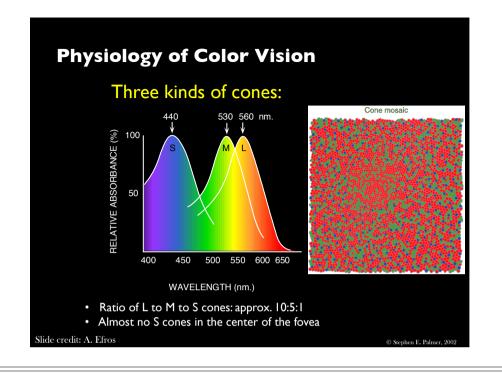


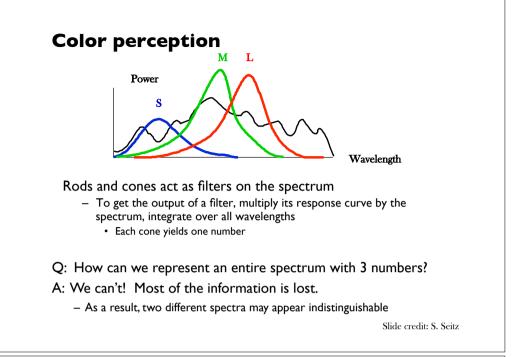
Human eye photoreceptor spectral

Slide Credit: B. Freeman and A. Torralba

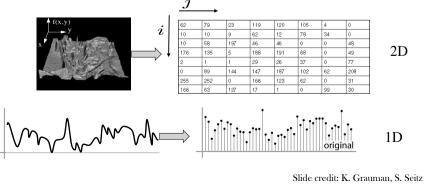


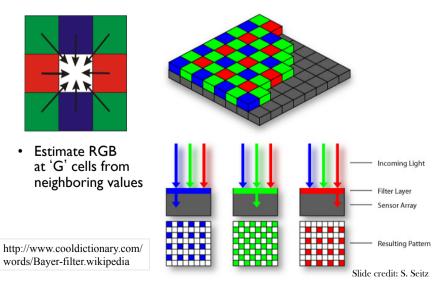
Rods and cones are non-uniformly distributed on the retina

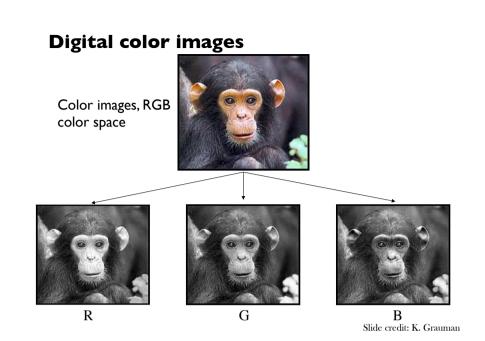

- Fovea - Small region (1 or 2°) at the center of the visual field containing the highest density of cones (and no rods)


Slide credit: S. Seitz

Rod / Cone sensitivity


Slide credit: A. Efros




Digital images

- Sample the 2D space on a regular grid
- <u>Quantize</u> each sample (round to nearest integer)
- Image thus represented as a matrix of integer values.

Color Images: Bayer Grid

Color spaces

• How can we represent color?

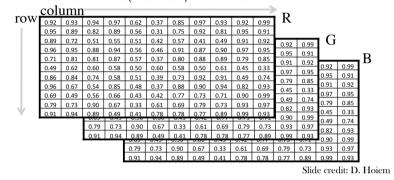
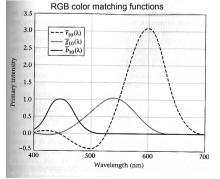
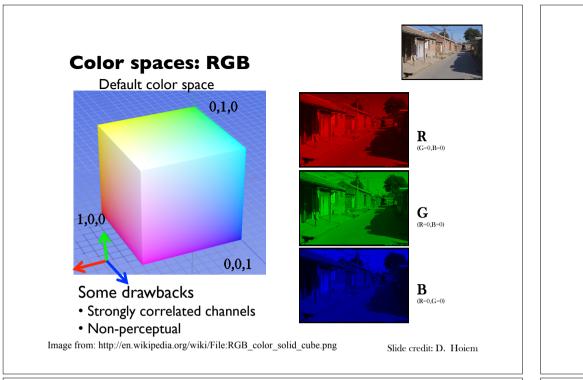


Image from http://en.wikipedia.org/wiki/File:RGB_illumination.jpg

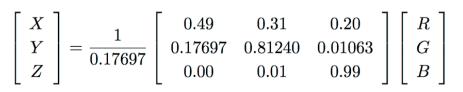
Slide credit: D. Hoiem


Images in Matlab

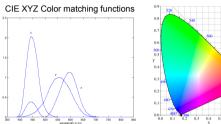
- · Images represented as a matrix
- · Suppose we have a NxM RGB image called "im"
 - im(1,1,1) = top-left pixel value in R-channel
 - -im(y, x, b) = y pixels down, x pixels to right in the bth channel
 - -im(N, M, 3) = bottom-right pixel in B-channel
- imread(filename) returns a uint8 image (values 0 to 255) - Convert to double format (values 0 to 1) with im2double


Color spaces: RGB

- Single wavelength primaries
- makes a particular monitor RGB standard
- Good for devices (e.g., phosphors for monitor), but not for perception

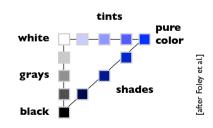


Slide credit: K. Grauman, S. Marschner


Color spaces: CIE XYZ

- Standardized by CIE (*Commission Internationale de l'Eclairage*, the standards organization for color science)
- Based on three "imaginary" primaries X, Y, and Z
 - imaginary = only realizable by spectra that are negative at some wavelengths
 - separates out luminance: \pmb{X}, \pmb{Z} have zero luminance, so Y tells you the luminance by itself

Color spaces: CIE XYZ

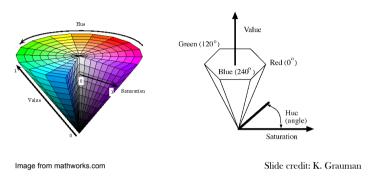

- Standardized by CIE (Commission Internationale de l'Eclairage, the standards organization for color science)
- Based on three "imaginary" primaries X, Y, and Z
 - imaginary = only realizable by spectra that are negative at some wavelengths
 - separates out luminance: X, Z have zero luminance, so Y tells you the luminance by itself

Slide credit: K. Grauman, S. Marschner

Perceptually organized color spaces

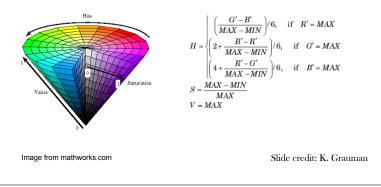
- Artists often refer to colors as *tints*, *shades*, and *tones* of pure pigments
 - tint: mixture with white
 - shade: mixture with black
 - tones: mixture with black and white
 - gray: no color at all (aka. neutral)

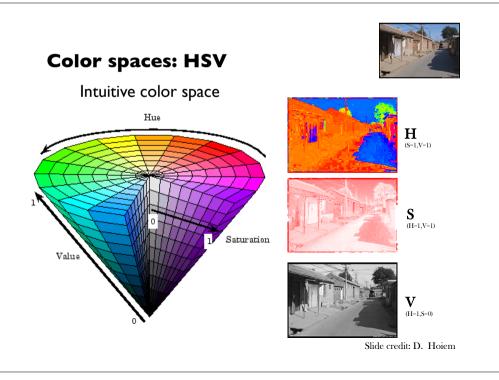
- This seems intuitive
 - tints and shades are inherently related to the pure color
 - "same" color but lighter, darker, paler, etc.

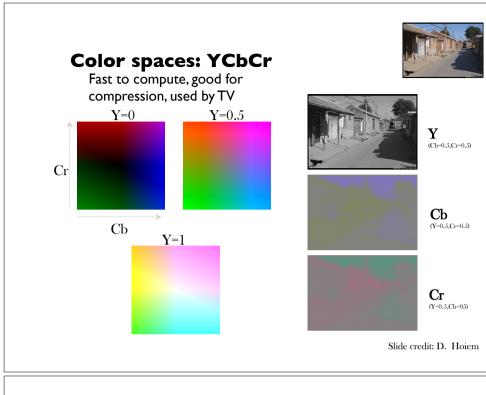

Perceptual dimensions of color

- Hue
 - the "kind" of color, regardless of attributes
 - colorimetric correlate: dominant wavelength
 - artist's correlate: the chosen pigment color
- Saturation
 - the "colorfulness"
 - colorimetric correlate: purity
 - artist's correlate: fraction of paint from the colored tube
- Lightness (or value)
 - the overall amount of light
 - colorimetric correlate: luminance
 - artist's correlate: tints are lighter, shades are darker

Slide credit: S. Marschner

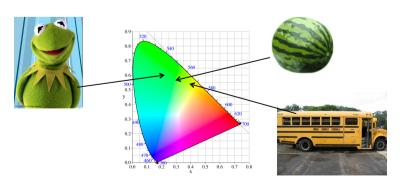

Color spaces: HSV

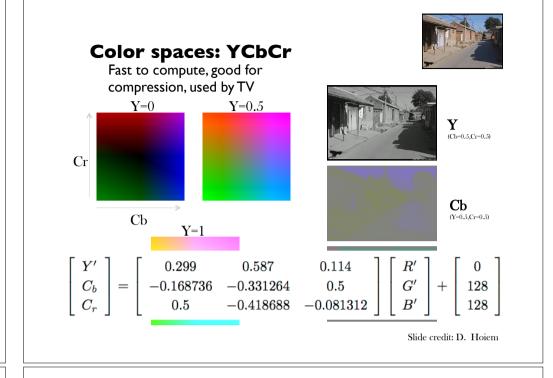

- Hue, Saturation, Value
- Nonlinear reflects topology of colors by coding hue as an angle
- Matlab: hsv2rgb, rgb2hsv.



Color spaces: HSV

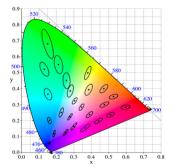
- Hue, Saturation, Value
- Nonlinear reflects topology of colors by coding hue as an angle
- Matlab: hsv2rgb, rgb2hsv.



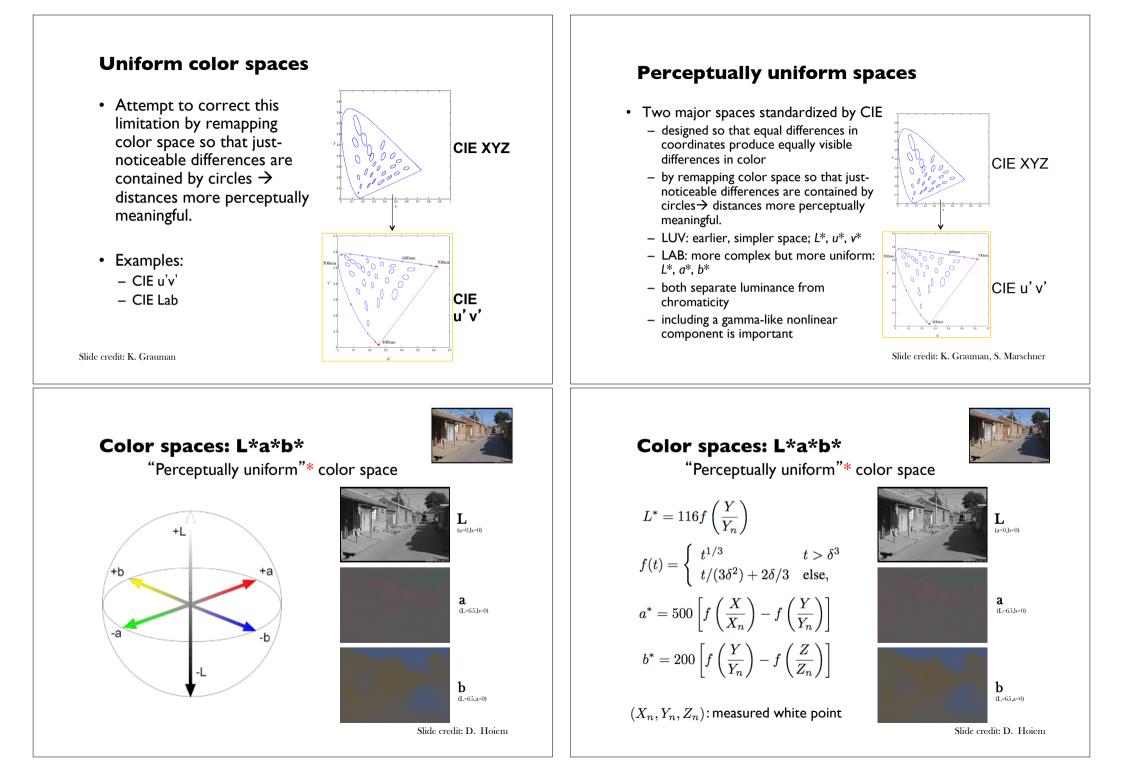


Distances in color space

• Are distances between points in a color space perceptually meaningful?



Slide credit: K. Grauman


Distances in color space

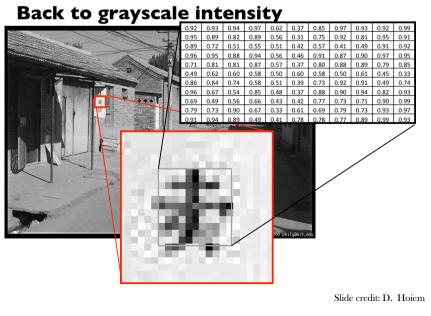
• Not necessarily: CIE XYZ is not a uniform color space, so magnitude of differences in coordinates are poor indicator of color "distance".

McAdam ellipses: Just noticeable differences in color

Slide credit: K. Grauman

Most information in intensity

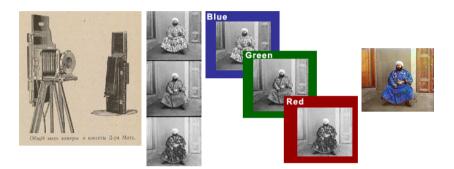
Only intensity shown - constant color


Slide credit: D. Hoiem

Most information in intensity

Original image

Slide credit: D. Hoiem



Your first programming assignment

- Colorizing the Prokudin-Gorskii photo collection
- A Matlab warm-up exercise
- Main steps:
 - I. Divide the input image into three equal parts corresponding to RGB channels.
 - 2. Align the second and the third parts (G and R channels) to the first one (B channel).

Prokudin-Gorskii's Russia in Color

- Russia circa 1900
- One camera, move the film with filters to get 3 exposures

Images from: <u>http://www.loc.gov/exhibits/empire/</u>

Slide credit: F. Durand

Emir Seyyid Mir Mohammed Alim Khan, the Emir of Bukhara, ca. 1910.

Prokudin-Gorskii's Russia in Color

• Digital restoration

Slide credit: F. Durand

Self-portrait on the Karolitskhali River, ca. 1910.

A metal truss bridge on stone piers, part of the Trans-Siberian Railway, crossing the Kama River near Perm, Ural Mountains Region, ca. 1910.

On the Sim River, a shepherd boy, ca. 1910.

Peasants harvesting hay in 1909. From the album "Views along the Mariinskii Canal and river system, Russian Empire", ca. 1910.