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Spatial Filtering

Image Filtering

* Image filtering: computes a function of a local neighborhood at
each pixel position

* Called “Local operator,” “Neighborhood operator,” or
“Window operator”

* f. image = image

e Uses:
— Enhance images

* Noise reduction, smooth, resize, increase contrast,
recolor, artistic effects, etc.

— Extract features from images

» Texture, edges, distinctive points, etc.
— Detect patterns

* Template matching, e.g., eye template

Filtering
* The name “filter” is borrowed from frequency domain
processing (next week’s topic)

* Accept or reject certain frequency components

* Fourier (1807):

Periodic functions ——
could be represented & :
as a weighted sum of s o g}

sines and cosines

Image courtesy of Technology Review

Signals

» Asignal is composed of low and high frequency
components

low frequency components: smooth /
piecewise smooth

Neighboring pixels have similar brightness values

You're within a region

high frequency components: oscillatory
Neighboring pixels have different brightness values

You're either at the edges or noise points

Slide credit: D. Hoiem




Low/high frequencies vs. fine/coarse-scale details
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Original image Low-frequencies High-frequencies
(coarse-scale details) (fine-scale details)
boosted boosted

L. Karacan, E. Erdem and A. Erdem, Structure Preserving Image Smoothing via Region Covariances, TOG, 2013
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Motivation: noise reduction

* Assume image is degraded with an additive model.

* Then,

Observation = True signal + noise

Observed image = Actual image + noise

low-pass high-pass
filters filters

|

smooth the image

— Salt and pepper noise:
random occurrences of
black and white pixels

— Impulse noise:
random occurrences of
white pixels

— Gaussian noise:
variations in intensity drawn
from a Gaussian normal
distribution

Impulse noise Gaussian noise
Slide credit: S. Seitz




Gaussian noise

ldejnl Image  Noise process Gaussian i.i.d. (“white") noise:
fwy)= [flzy) + alzy) n(z,y) ~ N(p, o)

>> noise = randn(size (im)).*sigma;
>> output = im + noise;

What is the impact of the sigma? Slide credit: M. Hebert

Motivation: noise reduction
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* Make multiple observations of the same static scene
* Take the average

* Even multiple images of the same static scene will not be
identical.

Adapted from: K. Grauman

Motivation: noise reduction

* Make multiple observations of the same static scene
* Take the average

* Even multiple images of the same static scene will not be
identical.

* What if we can’t make multiple observations?

. ’ . »
What if there’s only one Image' Adapted from: K. Grauman

Image Filtering

* Idea: Use the information coming from the neighboring
pixels for processing

* Design a transformation function of the local
neighborhood at each pixel in the image

— Function specified by a “filter” or mask saying how to
combine values from neighbors.

* Various uses of filtering:
— Enhance an image (denoise, resize, etc)
— Extract information (texture, edges, etc)
— Detect patterns (template matching)

Adapted from: K. Grauman




Filtering

* Processing done on a function
— can be executed in continuous form (e.g. analog circuit)
— but can also be executed using sampled representation

* Simple example: smoothing by averaging

continuous smoothing filter discrete smoothing filter
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Slide credit: S. Marschner

Linear filtering

* Filtered value is the linear combination of neighboring pixel
values.

* Key properties

— linearity: filter(f + g) = filter(f) + filter(g)

— shift invariance: behavior invariant to shifting the input

* delaying an audio signal
* sliding an image around

* Can be modeled mathematically by convolution

Adapted from: S. Marschner

First attempt at a solution

* Let’s replace each pixel with an average of all the values in its
neighborhood

* Assumptions:
— Expect pixels to be like their neighbors (spatial regularity in images)

— Expect noise processes to be independent from pixel to pixel

Slide credit: S. Marschner, K. Grauman

First attempt at a solution

* Let’s replace each pixel with an average of all the values in its
neighborhood

* Moving average in |D:
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Slide credit: S. Marschner




Convolution warm-up

* Same moving average operation, expressed mathematically:

1 i+r
bsmooth[i] - o +1 Z b[]]
j=i—r

Slide credit: S. Marschner

Discrete convolution

* Simple averaging:
i+r

) 1 .
bsmoothm = m Z b[j]

Jj=i—nr

— every sample gets the same weight
* Convolution: same idea but with weighted average
(axb)[i] = aljlofi - J]
J
— each sample gets its own weight (normally zero far away)

* This is all convolution is: it is a moving weighted average

Slide credit: S. Marschner

Filters

* Sequence of weights a[j] is called a filter

* Filter is nonzero over its region of support
— usually centered on zero: support radius r

¢ Filter is normalized so that it sums to 1.0

— this makes for a weighted average, not just any
old weighted sum

* Most filters are symmetric about 0 2,% { { ‘ ‘ ]

— since for images we usually want to treat

left and right the same .
—-r r

a box filter

Slide credit: S. Marschner

Convolution and filtering

* Can express sliding average as convolution with a box filter

Gox = [ O 1, 1, 1, 1,1,0, ...]

Slide credit: S. Marschner




Example: box and step
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Slide credit: S. Marschner

Convolution and filtering

* Convolution applies with any sequence of weights

* Example: bell curve (gaussian-like) [..., 1,4, 6,4, |, ...]/16

gl

001464100

Slide credit: S. Marschner

And in pseudocode...

function convolve(sequence a, sequence b, int r, int7 )
s=0
forj=—r tor
s =s+aljlbli — j]
return s

Slide credit: S. Marschner

Key properties

- Linearity: filter(f, + f,) = filter(f,) + filter(f,)
- Shift invariance: filter(shift(f) = shift(filter(f))

* same behavior regardless of pixel location, i.e. the value of the output
depends on the pattern in the image neighborhood, not the position of
the neighborhood.

* Theoretical result: any linear shift-invariant operator can be
represented as a convolution

Slide credit: S. Lazebnik




Properties in more detail

* Commutative:a*b=b*a
— Conceptually no difference between filter and signal

* Associative: a * (b *¢c) = (a *b) * ¢
— Often apply several filters one after another: (((a * b;) * b,) * bs)
— This is equivalent to applying one filter: a * (b, * b, * bs)

* Distributes over addition: a * (b + ¢) = (@ * b) + (a * ¢)
* Scalars factor out: ka * b = a * kb = k (a * b)

* ldentity: unit impulsee =[...,0,0, 1, 0,0, ...],
a*e=a

Slide credit: S. Lazebnik

A gallery of filters

* Box filter
— Simple and cheap

* Tent filter
— Linear interpolation

* Gaussian filter
— Very smooth antialiasing filter

Slide credit: S. Marschner

Box filter

1 »
2r+1
_ 1/2r+1) | <,
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0 otherwise.
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,fbox,r( ) {0 otherwise. M
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Slide credit: S. Marschner

Tent filter

L Jr—2 fzl <1,
Jeem(2) = {0 otherwise;
. ent xr/r
fien,r(2) = M

¥,
/Y

[N

x

Y
[N

nlw

o

x
Y

Slide credit: S. Marschner




Gaussian filter

Slide credit: S. Marschner

Discrete filtering in 2D

* Same equation, one more index

(axb)li, ] = ali',j'1b[i —i',j — j]

.
57

* Usefulness of associativity

— often apply several filters one after another: (((a * b;) * b,) * b,)

this is equivalent to applying one filter: a * (b, * b, * b;)

now the filter is a rectangle you slide around over a grid of numbers

Slide credit: S. Marschner

And in pseudocode...

function convolve2d(filter2d a, filter2d b, int 4, int j)
s=0
r = a.radius
for i’ = —rtordo
for j/ = —rtordo
s = s+ al?)[§"1bli — 1[5 —
return s

Slide credit: S. Marschner

Moving Average In 2D

Flx,y]

Glz, y]

Slide credit: S. Seitz




Moving Average In 2D Moving Average In 2D

Flx,y] Glz, y] Flx,y] Glz, y]

off 10 o[ 10] 20
90 | 90 | 90 | 90 | 90 90 | 90 foo | 90 | 90
90 | 90 [ 90 | 90 | 90 90 | 90 [ 90 | 90 | 90
90 | 90 [ 90 | 90 | 90 90 | 90 [ 90 | 90 | 90
90 90 | 90 | 90 90 9 [ 90 | 90
90 | 90 [ 90 | 90 | 90 90 | 90 [ 90 [ 90 | 90
920 920
Slide credit: S. Seitz Slide credit: S. Seitz

Movi A in 2D
Moving Average In 2D oving Average In

Flx,y] Glz,y] Flx,y] Glz, y]

0 | 10 [ 20 | 30 0 | 10 | 20 | 30 30
90 [ 90 | 90 ) 90 | 90 90 | 90 | 90 | 90 | 90
90 [ 90 | 90 | 90 | 90 90 [ 90 | 90 | 90 | 90
90 [ 90 | 90 | 90 | 90 90 [ 90 | 90 | 90 | 90
90 90 [ 90 | 90 90 90 [ 90 | 90
90 [ 90 | 90 | 90 | 90 90 [ 90 | 90 | 90 | 90
90 90

Slide credit: S. Seitz Slide credit: S. Seitz




Moving Average In 2D

Flx,y]

Slide credit: S. Seitz

Image Correlation Filtering

* Center filter g at each pixel in image f

» Multiply weights by corresponding pixels

* Set resulting value in output image h

* gis called a filter, mask, kernel, or template

* Linear filtering is sum of dot product at each pixel position

* Filtering operation called cross-correlation

Slide credit: C. Dyer

Correlation filtering

Say the averaging window size is 2k+1 x 2k+1:

k
Gli,j] = Fli+u, j+ v
e ; @i+ 172 Zm_z_k /
j
Attnbute umform Loop over all plxels in neighborhood

weight to each pixel ~ around image pixel F[ij]

Now generalize to allow different weights depending on
neighboring pixel’s relative position'

Gli, j] = E E Hlu,v]F[i 4+ u,j + v]
u=—kv=—%k Y
Non-uniform weights

Slide credit: K. Grauman

Correlation filtering

ko k
Gli.jl= > > Hlu,vlF[i+u,j+]

u=—kv=—k

This is called cross-correlation, denoted G=HXF

Filtering an image: replace each pixel with a linear combination of
its neighbors.

The filter “kernel” or “mask” H[u,v] is the prescription for the
weights in the linear combination.

Slide credit: K. Grauman




Correlation filtering Correlation filtering

3

A

Template (mask)

Detected template Correlation map

Scene

Cross correlation example Averaging filter

* What values belong in the kernel H for the moving
average example!?

Flz,y] ®  Hlu,v] Glz, y]
11111 o [10]20 3(1 30!

191
111

O+~
|

“box filter”
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=2

G=HQF

Slide credit: Fei-Fei Li Slide credit: K. Grauman




Smoothing by averaging

depicts box filter:
< white = high value, black = low value

original filtered
What if the filter size was 5 x 5 instead of 3 x 3?

Slide credit: K. Grauman

Boundary issues

* What is the size of the output?

* MATLAB: output size / “shape” options
— shape = ‘full’: output size is sum of sizes of fand g
— shape = ‘same’: output size is same as f
— shape = ‘valid’: output size is difference of sizes of fand g

same

Slide credit: S. Lazebnik

Boundary issues

* What about near the edge?!

— the filter window falls off the edge of the image
— need to extrapolate

— methods:

’ )

clip filter (black)
wrap around
copy edge

reflect across edge

Slide credit: S. Marschner

Boundary issues

* What about near the edge!

— the filter window falls off the edge of the image

— need to extrapolate
— methods (MATLAB):
* clip filter (black):
* wrap around:
* copy edge:
* reflect across edge:

imfilter (£,
imfilter (£,
imfilter (£,

(f,

imfilter

g
g
g
g

0)
‘circular’)
‘replicate’)
‘symmetric’)

Slide credit: S. Marschner




Gaussian filter

* What if we want nearest neighboring pixels to have the
most influence on the output!?

This kernel is an
approximation of a 2d

Gaussian function:
1021 1 _u?4e?
L 242 h(u’v)=2 2¢ 7
16 To
12+
Hlu,v]

Flz,y]

* Removes high-frequency components from the image
(“low-pass filter”). , ‘ ,
Slide credit: S. Seitz

Smoothing with a Gaussian

Slide credit: K. Grauman

Gaussian filters

* What parameters matter here?!

* Size of kernel or mask

— Note, Gaussian function has infinite support, but discrete filters
use finite kernels

0 =5 with
10 x 10 kernel 30 x 30 kernel

Slide credit: K. Grauman

Gaussian filters

* What parameters matter here!?

* Variance of Gaussian: determines extent of
smoothing

oo

0 =2 with 0 =5 with
30 x 30 kernel 30 x 30 kernel

Slide credit: K. Grauman




Choosing kernel width

¢ Rule of thumb: set filter half-width to about 3 ¢

Effect of o

Slide credit: S. Lazebnik

Matlab

>> hsize = 10;

>> sigma = 5;
>> h = fspecial (‘gaussian’ hsize, sigma);
>> mesh (h) ; a

~<“-.>V
>> imagesc (h); E

o)

>> outim = imfilter(im, h); % correlation
>> imshow (outim) ;

outim

Slide credit: K. Grauman

Smoothing with a Gaussian

Parameter O is the “scale” / “width” / “spread” of the Gaussian
kernel, and controls the amount of smoothing.

10

20

30

0 10 20 30

for sigma=1:3:10
h = fspecial('gaussian', fsize, sigma);

out = imfilter (im, h);
imshow (out) ;
pause;

end

Slide credit: K. Grauman

Gaussian Filters

O =1pixel O =5pixels O =10pixels O =30 pixels

Slide credit: C. Dyer




Spatial Resolution and Color

original

Slide credit: C. Dyer

Blurring the G Component

original processed

Slide credit: C. Dyer

Blurring the R Component

processed

original

Slide credit: C. Dyer

Blurring the B Component

original processed

Slide credit: C. Dyer




“Lab” Color Representation

L A transformation
of the colors into
a color space that
is more

a perceptually
meaningful:
L: luminance,
a:red-green,
b: blue-yellow

Slide credit: C. Dyer

Blurring L

original

processed

~

|

Slide credit: C. Dyer

Blurring a

original processed

Slide credit: C. Dyer

Blurring b

original

processed

Slide credit: C. Dyer




Separability

* In some cases, filter is separable, and we can factor into two
steps:

— Convolve all rows
— Convolve all columns

Slide credit: K. Grauman

Separability of the Gaussian filter

1 X4 )2
GolXy) = 5 exp 20°

To

2

_ x2 Yy
L exp 20 ! exp 20
270 270

The 2D Gaussian can be expressed as the product of two
functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Slide credit: D. Lowe

Separability example

N
EN
N
w
(4]
(9

2D convolution
(center location only)| 1]2 [ 1

E=N
N
@D

2] [1] x [1]2T"

The filter factors —1 . H
into a product of 1D =
112 |1 1
filters: |

33 1

Perform convolution [1]2]r]*[3]5]5]=] [

along rows: e P

Followed by convolution
along the remaining column:

Slide credit: K. Grauman

Why is separability useful?

* What is the complexity of filtering an nxn image with an mxm
kernel?

— O(n?m?)
* What if the kernel is separable?
— O(n?m)

Slide credit: S. Lazebnik




Properties of smoothing filters

* Smoothing

— Values positive

— Sum to | - constant regions same as input

— Amount of smoothing proportional to mask size

— Remove “high-frequency” components; “low-pass” filter

Slide credit: K. Grauman

Filtering an impulse signal

What is the result of filtering the impulse signal (image) F
with the arbitrary kernel H?

F[w,y] G[way]

Slide credit: K. Grauman

Convolution

¢ Convolution:

— Flip the filter in both dimensions (bottom to top, right to left)
— Then apply cross-correlation

k k
Gli, 7] = Z Z Hlu,v]F[i —u,j — v]

u=—kov=-k

G=HxF 4

1

Notation for H
convolution
operator

Slide credit: K. Grauman

Convolution vs. Correlation

* A convolution is an integral that expresses the amount of
overlap of one function as it is shifted over another function.

— convolution is a filtering operation

Correlation compares the similarity of two sets of data.
Correlation computes a measure of similarity of two input
signals as they are shifted by one another. The correlation result

reaches a maximum at the time when the two signals match
best .

— correlation is a measure of relatedness of two signals

Slide credit: Fei-Fei Li




Convolution vs. correlation

Convolution

k k
Gli,jl= > > Hlu,v]F[i—u,j— ]

u=—kv=—k

G=HxF

Cross-correlation

k
Gli,jl= Y. > Hlu,vlF[i+u,j+ ]
u=—kv=-k
G=HQ®F
For a Gaussian or box filter, how will the outputs differ?
If the input is an impulse signal, how will the outputs differ?

Slide credit: K. Grauman

Predict the outputs using correlation
filtering

0| Lt
0—5111=?
0 1[1]1

Slide credit: K. Grauman

Practice with linear filters

=
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Original

Slide credit: D. Lowe

Practice with linear filters

Original Filtered
(no change)

Slide credit: D. Lowe




Practice with linear filters

Original

Slide credit: D. Lowe

Practice with linear filters

0(00
0(0|1
0(0|0
Original Shifted left
by | pixel with
correlation

Slide credit: D. Lowe

Practice with linear filters

1111

1

—[(1]1]1 ?
1111

Original

Slide credit: D. Lowe

Practice with linear filters

O|

—_ = | =
—_—
p—

Original Blur (with a
box filter)

Slide credit: D. Lowe




Practice with linear filters

0/0]0 11]1
1

0j2]of = S|l ‘)

0/0/0 1[1]1 *

Practice with linear filters

0(0]0 L
020—5111
0/0]0 1111

Orriginal Original Sharpening filter:
accentuates differences with
local average
Slide credit: D. Lowe Slide credit: D. Lowe
Filtering examples: sharpening Sharpening

before

Slide credit: K. Grauman

* What does blurring take away?

DRicifial \} smoothekx;, o detail

Let’s add it back:

i / sharpinod
Slide credit: S. Lazebnik




Unsharp mask filter
fra(f-fre)=(+a)f~afrg=[*((1+x)e-g)

o |

image blurred unit impulse
image (identity)

i

AN
«W” i
’ll’”lr"""n i
A

unit impulse

Gaussian Laplacian of Gaussian

Slide credit: S. Lazebnik

Sharpening using Unsharp Mask Filter

Orriginal Filtered result

Slide credit: C. Dyer

Unsharp Masking

Slide credit: C. Dyer

Other filters

1(0]-1

2102

110|-1
Sobel

Vertical Edge
(absolute value)

Slide credit: J. Hays




Other filters

Median filters

* A Maedian Filter operates over a window by selecting the
median intensity in the window.

* What advantage does a median filter have over a mean filter?

* |s a median filter a kind of convolution?

11211
0(0(O0
-1 -21-1
Sobel
Horizontal Edge
Slide credit: J. Hays (abSOIUte value) adapted from: S. Seitz
Median filter Median filter
Salt and ' .
10115120 * No new pixel values — % . Median
; pepper l} filtered
2319027 introduced noise
13113 l Sort
Median value 33131130 + Removes spikes: good for
10 15 30 31 33 90 impu|se’ salt & pepper
10[1520] | Replace  MOWE
23[27]27 * Non-linear filter - I
333130 o ) A\

Slide credit: K. Grauman

dewnf| \

Plots of a row of the image

Matlab: output im = medfilt2 (im, [h w]);
Slide credit: M. Hebert




Median filter

* What advantage does median filtering have over Gaussian
filtering?

— Robustness to outliers

— Median filter is edge preserving

filters have width 5 :

. INPUT

R

. MEDIAN

. MEAN

Slide credit: K. Grauman




