
BBM 413 !
Fundamentals of !
Image Processing!

Erkut Erdem"
Dept. of Computer Engineering"

Hacettepe University"
"
!

Spatial Filtering!

Image Filtering"

•  Image filtering: computes a function of a local neighborhood at
each pixel position!

•  Called “Local operator,” “Neighborhood operator,” or
“Window operator”!

•  f: image ! image!

•  Uses: !
–  Enhance images!

•  Noise reduction, smooth, resize, increase contrast,
recolor, artistic effects, etc. !

–  Extract features from images!
•  Texture, edges, distinctive points, etc.!

–  Detect patterns!
•  Template matching, e.g., eye template!

!
Slide credit: D. Hoiem

Filtering"

•  The name “filter” is borrowed from frequency domain
processing (next week’s topic)!

•  Accept or reject certain frequency components!

•  Fourier (1807): "
Periodic functions "
could be represented"
as a weighted sum of "
sines and cosines!

Image courtesy of Technology Review

Signals"

•  A signal is composed of low and high frequency
components!

low frequency components: smooth /"
! ! ! piecewise smooth!

high frequency components: oscillatory!

Neighboring pixels have similar brightness values!

Neighboring pixels have different brightness values!

You’re within a region!

You’re either at the edges or noise points!

Low/high frequencies vs. fine/coarse-scale details"

L. Karacan, E. Erdem and A. Erdem, Structure Preserving Image Smoothing via Region Covariances, TOG, 2013"

Original image! Low-frequencies "
(coarse-scale details) "

boosted!

High-frequencies "
(fine-scale details) "

boosted!

Signals – Examples"

Motivation: noise reduction"

•  Assume image is degraded with an additive model.!

•  Then,!

!Observation ! = True signal + noise!

!Observed image = Actual image + noise!
low-pass"

filters!
high-pass"

filters!

smooth the image!

Common types of noise"

–  Salt and pepper noise:
random occurrences of
black and white pixels!

–  Impulse noise: !
random occurrences of
white pixels!

–  Gaussian noise:
variations in intensity drawn
from a Gaussian normal
distribution"

Slide credit: S. Seitz

Gaussian noise"

Slide credit: M. Hebert

>> noise = randn(size(im)).*sigma;
>> output = im + noise;

What is the impact of the sigma?!

Motivation: noise reduction"

•  Make multiple observations of the same static scene!

•  Take the average!

•  Even multiple images of the same static scene will not be
identical.!

Adapted from: K. Grauman

Motivation: noise reduction"

•  Make multiple observations of the same static scene!

•  Take the average!

•  Even multiple images of the same static scene will not be
identical.!

•  What if we can’t make multiple observations? "
What if there’s only one image?" Adapted from: K. Grauman

Image Filtering"

•  Idea: Use the information coming from the neighboring
pixels for processing !

•  Design a transformation function of the local
neighborhood at each pixel in the image!
–  Function specified by a “filter” or mask saying how to

combine values from neighbors.!

•  Various uses of filtering:!
–  Enhance an image (denoise, resize, etc)!
–  Extract information (texture, edges, etc)!
–  Detect patterns (template matching)!

Adapted from: K. Grauman

Filtering"

•  Processing done on a function!
–  can be executed in continuous form (e.g. analog circuit)!
–  but can also be executed using sampled representation!

•  Simple example: smoothing by averaging!

Slide credit: S. Marschner

Linear filtering"

•  Filtered value is the linear combination of neighboring pixel
values.!

•  Key properties!
–  linearity: filter(f + g) = filter(f) + filter(g)!
–  shift invariance: behavior invariant to shifting the input!

•  delaying an audio signal!
•  sliding an image around!

•  Can be modeled mathematically by convolution!

Adapted from: S. Marschner

First attempt at a solution"

•  Let’s replace each pixel with an average of all the values in its
neighborhood!

•  Assumptions: !
–  Expect pixels to be like their neighbors (spatial regularity in images)!
–  Expect noise processes to be independent from pixel to pixel!

Slide credit: S. Marschner, K. Grauman

First attempt at a solution"

•  Let’s replace each pixel with an average of all the values in its
neighborhood!

•  Moving average in 1D:!

Slide credit: S. Marschner

Convolution warm-up"

•  Same moving average operation, expressed mathematically:!

Slide credit: S. Marschner

Discrete convolution"

•  Simple averaging:!

–  every sample gets the same weight!

•  Convolution: same idea but with weighted average!

–  each sample gets its own weight (normally zero far away)!

•  This is all convolution is: it is a moving weighted average"

Slide credit: S. Marschner

Filters"

•  Sequence of weights a[j] is called a filter!

•  Filter is nonzero over its region of support!
– usually centered on zero: support radius r!

•  Filter is normalized so that it sums to 1.0!
–  this makes for a weighted average, not just any"

old weighted sum!

•  Most filters are symmetric about 0!
–  since for images we usually want to treat"

left and right the same!

a box filter

Slide credit: S. Marschner

Convolution and filtering"

•  Can express sliding average as convolution with a box filter!

•  abox = […, 0, 1, 1, 1, 1, 1, 0, …]!

Slide credit: S. Marschner

Example: box and step"

Slide credit: S. Marschner

Convolution and filtering"

•  Convolution applies with any sequence of weights!

•  Example: bell curve (gaussian-like) […, 1, 4, 6, 4, 1, …]/16!

Slide credit: S. Marschner

And in pseudocode…"

Slide credit: S. Marschner

Key properties"

•  Linearity: filter(f1 + f2) = filter(f1) + filter(f2)!

•  Shift invariance: filter(shift(f)) = shift(filter(f))!
•  same behavior regardless of pixel location, i.e. the value of the output

depends on the pattern in the image neighborhood, not the position of
the neighborhood.!

•  Theoretical result: any linear shift-invariant operator can be
represented as a convolution!

Slide credit: S. Lazebnik

Properties in more detail"

•  Commutative: a * b = b * a!
–  Conceptually no difference between filter and signal!

•  Associative: a * (b * c) = (a * b) * c!
–  Often apply several filters one after another: (((a * b1) * b2) * b3)!
–  This is equivalent to applying one filter: a * (b1 * b2 * b3)!

•  Distributes over addition: a * (b + c) = (a * b) + (a * c)!

•  Scalars factor out: ka * b = a * kb = k (a * b)!

•  Identity: unit impulse e = […, 0, 0, 1, 0, 0, …], "
a * e = a!
!

Slide credit: S. Lazebnik

A gallery of filters"

•  Box filter!
–  Simple and cheap!

•  Tent filter!
–  Linear interpolation!

•  Gaussian filter!
– Very smooth antialiasing filter!

Slide credit: S. Marschner

Box filter"

Slide credit: S. Marschner

Tent filter"

Slide credit: S. Marschner

Gaussian filter"

Slide credit: S. Marschner

Discrete filtering in 2D"

•  Same equation, one more index!

–  now the filter is a rectangle you slide around over a grid of numbers!

•  Usefulness of associativity!
–  often apply several filters one after another: (((a * b1) * b2) * b3)!
–  this is equivalent to applying one filter: a * (b1 * b2 * b3)!

Slide credit: S. Marschner

And in pseudocode…"

Slide credit: S. Marschner

Moving Average In 2D"

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Slide credit: S. Seitz

Moving Average In 2D"

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Slide credit: S. Seitz

Moving Average In 2D"

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Slide credit: S. Seitz

Moving Average In 2D"

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Slide credit: S. Seitz

Moving Average In 2D"

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Slide credit: S. Seitz

Moving Average In 2D"

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

Slide credit: S. Seitz

Image Correlation Filtering"

•  Center filter g at each pixel in image f!

•  Multiply weights by corresponding pixels!

•  Set resulting value in output image h!

•  g is called a filter, mask, kernel, or template!

•  Linear filtering is sum of dot product at each pixel position!

•  Filtering operation called cross-correlation!

Slide credit: C. Dyer

Correlation filtering"

Say the averaging window size is 2k+1 x 2k+1:!

Loop over all pixels in neighborhood
around image pixel F[i,j]!

Attribute uniform
weight to each pixel!

Now generalize to allow different weights depending on
neighboring pixel’s relative position:!

Non-uniform weights!

Slide credit: K. Grauman

Correlation filtering"

Filtering an image: replace each pixel with a linear combination of
its neighbors.!
!
The filter “kernel” or “mask” H[u,v] is the prescription for the
weights in the linear combination.!
!

This is called cross-correlation, denoted !

Slide credit: K. Grauman

Correlation filtering" Correlation filtering"

Cross correlation example"

Lecture 3 -Fei-Fei Li 28ͲSepͲ1148

Cross�correlation�– example
Left Right

scanline

N
or
m
.�c
or
r

Slide credit: Fei-Fei Li

Averaging filter"

•  What values belong in the kernel H for the moving
average example?!

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1!1!1!
1!1!1!
1!1!1!

“box filter”!

?!

Slide credit: K. Grauman

Smoothing by averaging"

depicts box filter: !
white = high value, black = low value!

original! filtered!

What if the filter size was 5 x 5 instead of 3 x 3?!
Slide credit: K. Grauman

Boundary issues"

•  What is the size of the output?!

•  MATLAB: output size / “shape” options!
–  shape = ‘full’: output size is sum of sizes of f and g!
–  shape = ‘same’: output size is same as f!
–  shape = ‘valid’: output size is difference of sizes of f and g !

f!

g!g!

g!g!

f!

g!g!

g!g!

f!

g!g!

g!g!

full! same! valid!

Slide credit: S. Lazebnik

Boundary issues"

•  What about near the edge?!
–  the filter window falls off the edge of the image!
–  need to extrapolate!
–  methods:!

•  clip filter (black)!
•  wrap around!
•  copy edge!
•  reflect across edge!

Slide credit: S. Marschner

Boundary issues"

•  What about near the edge?!
–  the filter window falls off the edge of the image!
–  need to extrapolate!
–  methods (MATLAB):!

•  clip filter (black): !imfilter(f, g, 0)
•  wrap around: ! !imfilter(f, g, ‘circular’)
•  copy edge: ! !imfilter(f, g, ‘replicate’)
•  reflect across edge: !imfilter(f, g, ‘symmetric’)

Slide credit: S. Marschner

Gaussian filter"

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 2 1

2 4 2

1 2 1

•  What if we want nearest neighboring pixels to have the
most influence on the output?!

!

•  Removes high-frequency components from the image
(“low-pass filter”).!

This kernel is an
approximation of a 2d
Gaussian function:!

Slide credit: S. Seitz

Smoothing with a Gaussian"

Slide credit: K. Grauman

Gaussian filters"

•  What parameters matter here?!

•  Size of kernel or mask!
–  Note, Gaussian function has infinite support, but discrete filters

use finite kernels!

!

σ = 5 with "
10 x 10 kernel!

σ = 5 with "
30 x 30 kernel!

Slide credit: K. Grauman

Gaussian filters"

•  What parameters matter here?!

•  Variance of Gaussian: determines extent of
smoothing!

!

σ = 2 with "
30 x 30 kernel!

σ = 5 with "
30 x 30 kernel!

Slide credit: K. Grauman

Choosing kernel width"

•  Rule of thumb: set filter half-width to about 3σ!

Slide credit: S. Lazebnik

Matlab"
>> hsize = 10;
>> sigma = 5;
>> h = fspecial(‘gaussian’ hsize, sigma);

>> mesh(h);

>> imagesc(h);

>> outim = imfilter(im, h); % correlation
>> imshow(outim);

outim!

Slide credit: K. Grauman

Smoothing with a Gaussian"

for sigma=1:3:10
 h = fspecial('gaussian‘, fsize, sigma);
 out = imfilter(im, h);
 imshow(out);
 pause;

end

…!

Parameter σ is the “scale” / “width” / “spread” of the Gaussian
kernel, and controls the amount of smoothing.!

Slide credit: K. Grauman

Gaussian Filters"

= 30 pixels"= 1 pixel" = 5 pixels" = 10 pixels"

Slide credit: C. Dyer

Spatial Resolution and Color"

R!

G!

B!
original!

Slide credit: C. Dyer

Blurring the G Component"

R!

G!

B!

original! processed!

Slide credit: C. Dyer

Blurring the R Component"

original! processed!

R!

G!

B!

Slide credit: C. Dyer

Blurring the B Component"

original!

R!

G!

B!
processed!

Slide credit: C. Dyer

L!

a!

b!

A transformation
of the colors into
a color space that
is more
perceptually
meaningful: !
L: luminance, !
a: red-green, !
b: blue-yellow!

“Lab” Color Representation"

Slide credit: C. Dyer

L!

a!

b!
original! processed!

Blurring L"

Slide credit: C. Dyer

original!

L!

a!

b!

processed!

Blurring a"

Slide credit: C. Dyer

original!

L!

a!

b!
processed!

Blurring b"

Slide credit: C. Dyer

Separability"

•  In some cases, filter is separable, and we can factor into two
steps:!
–  Convolve all rows!
–  Convolve all columns!

Slide credit: K. Grauman Slide credit: D. Lowe

Separability of the Gaussian filter"

Separability example"

*

*

=

=

2D convolution "
(center location only)!

The filter factors"
into a product of 1D "

filters:!

Perform convolution"
along rows:!

Followed by convolution"
along the remaining column:!

Slide credit: K. Grauman

Why is separability useful?"

•  What is the complexity of filtering an n×n image with an m×m
kernel? !
– O(n2 m2)!

•  What if the kernel is separable?!
– O(n2 m)!

Slide credit: S. Lazebnik

Properties of smoothing filters"

•  Smoothing!
–  Values positive !
–  Sum to 1 " constant regions same as input!
–  Amount of smoothing proportional to mask size!
–  Remove “high-frequency” components; “low-pass” filter!

Slide credit: K. Grauman

Filtering an impulse signal"

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i

What is the result of filtering the impulse signal (image) F
with the arbitrary kernel H?!

?!

Slide credit: K. Grauman

Convolution"

•  Convolution: !
–  Flip the filter in both dimensions (bottom to top, right to left)!
–  Then apply cross-correlation!

Notation for
convolution
operator!

F!

H!

Slide credit: K. Grauman

Convolution vs. Correlation "

•  A convolution is an integral that expresses the amount of
overlap of one function as it is shifted over another function. !

!– convolution is a filtering operation !

•  Correlation compares the similarity of two sets of data.
Correlation computes a measure of similarity of two input
signals as they are shifted by one another. The correlation result
reaches a maximum at the time when the two signals match
best . !

!– correlation is a measure of relatedness of two signals !

Slide credit: Fei-Fei Li

Convolution vs. correlation"

Convolution!

Cross-correlation!

For a Gaussian or box filter, how will the outputs differ?!
If the input is an impulse signal, how will the outputs differ?!

Slide credit: K. Grauman

Predict the outputs using correlation
filtering"

0!0!0!
0!1!0!
0!0!0!

*! = ?!
0!0!0!
1!0!0!
0!0!0!

*! = ?!

1!1!1!
1!1!1!
1!1!1!

0!0!0!
0!2!0!
0!0!0! -!*! = ?!

Slide credit: K. Grauman

Practice with linear filters"

0!0!0!
0!1!0!
0!0!0!

Original!

?!

Slide credit: D. Lowe

Practice with linear filters"

0!0!0!
0!1!0!
0!0!0!

Original! Filtered !
(no change)!

Slide credit: D. Lowe

Practice with linear filters"

0!0!0!
1!0!0!
0!0!0!

Original!

?!

Slide credit: D. Lowe

Practice with linear filters"

0!0!0!
1!0!0!
0!0!0!

Original! Shifted left!
by 1 pixel with
correlation!

Slide credit: D. Lowe

Practice with linear filters"

Original!

?!
1!1!1!
1!1!1!
1!1!1!

Slide credit: D. Lowe

Practice with linear filters"

Original!

1!1!1!
1!1!1!
1!1!1!

Blur (with a!
box filter)!

Slide credit: D. Lowe

Practice with linear filters"

Original!

1!1!1!
1!1!1!
1!1!1!

0!0!0!
0!2!0!
0!0!0! -! ?!

Slide credit: D. Lowe

Practice with linear filters"

Original!

1!1!1!
1!1!1!
1!1!1!

0!0!0!
0!2!0!
0!0!0! -!

Sharpening filter:!
accentuates differences with
local average!

Slide credit: D. Lowe

Filtering examples: sharpening"

Slide credit: K. Grauman

Sharpening"
•  What does blurring take away?!

original! smoothed (5x5)!

–!

detail!

=!

sharpened!

=!

Let’s add it back:!

original! detail!

+ !

Slide credit: S. Lazebnik

Unsharp mask filter"

Gaussian!
unit impulse!

Laplacian of Gaussian!

))1(()1()(gefgffgfff −+∗=∗−+=∗−+ αααα

image! blurred"
image!

unit impulse"
(identity)!

Slide credit: S. Lazebnik

Sharpening using Unsharp Mask Filter"

Original! Filtered result!

Slide credit: C. Dyer

Unsharp Masking"

Slide credit: C. Dyer

Other filters"

-1!0!1!

-2!0!2!

-1!0!1!

Vertical Edge!
(absolute value)!

Sobel!

Slide credit: J. Hays

Other filters"

-1!-2!-1!

0!0!0!

1!2!1!

Horizontal Edge!
(absolute value)!

Sobel!

Slide credit: J. Hays

Median filters"

•  A Median Filter operates over a window by selecting the
median intensity in the window.!

•  What advantage does a median filter have over a mean filter?!

•  Is a median filter a kind of convolution?!

adapted from: S. Seitz

Median filter"

•  No new pixel values
introduced!

•  Removes spikes: good for
impulse, salt & pepper
noise!

•  Non-linear filter!

Slide credit: K. Grauman

Median filter"

Salt and
pepper
noise!

Median
filtered!

Slide credit: M. Hebert

Plots of a row of the image!
Matlab: output im = medfilt2(im, [h w]);

Median filter"

•  What advantage does median filtering have over Gaussian
filtering?!
–  Robustness to outliers!
–  Median filter is edge preserving!

Slide credit: K. Grauman

