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Image Pyramids	




Review – Frequency Domain 
Techniques	


•  The name “filter” is borrowed from frequency domain processing	


•  Accept or reject certain frequency components	


•  Fourier (1807): ���
Periodic functions ���
could be represented���
as a weighted sum of ���
sines and cosines	


Image courtesy of Technology Review 



Review - Fourier Transform	

We want to understand the frequency w of our signal.  So, let’s 
reparametrize the signal by w instead of x:	
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Transform	


F(w) f(x) Inverse Fourier 	

Transform	


For every w from 0 to inf, F(w) holds the amplitude A and 
phase f of the corresponding sine   

•  How can F hold both?  Complex number trick! 
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We can always go back: 

Slide credit: A. Efros 



Slide credit: B. Freeman and A. Torralba 

The Discrete Fourier transform 
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Inverse transform 
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Forward transform 

Review - The Discrete Fourier transform	


•  Forward transform	


	


•  Inverse transform	


The Discrete Fourier transform 
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Inverse transform 
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Forward transform 



How to interpret a 2-d Fourier 
Spectrum 

Horizontal 
orientation 

Vertical orientation 

45 deg. 

0 fmax 

0 

fx in cycles/image 

Low spatial frequencies 

High  
spatial  
frequencies 

Log power spectrum 

Slide credit: B. Freeman and A. Torralba 

Review - The Discrete Fourier transform	


Log power spectrum 



Review - The Convolution Theorem	


•  The Fourier transform of the convolution of two 
functions is the product of their Fourier transforms	


•  The inverse Fourier transform of the product of two 
Fourier transforms is the convolution of the two inverse 
Fourier transforms	


•  Convolution in spatial domain is equivalent to 
multiplication in frequency domain!	
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Slide credit: A. Efros 



Review - Filtering in frequency 
domain	


FFT	


FFT	


Inverse FFT	


=	


Slide credit: D. Hoiem 



Review - Low-pass, Band-pass, High-
pass filters	


low-pass:	


High-pass / band-pass:	


Slide credit: A. Efros 



Template matching	

•  Goal: find       in image	


•  Main challenge: What is a good 
similarity or distance measure 
between two patches?	

–  Correlation	

–  Zero-mean correlation	

–  Sum Square Difference	

–  Normalized Cross Correlation	


Slide: Hoiem	




Matching with filters	

•  Goal: find       in image	


•  Method 0: filter the image with eye patch	

	


Input	
 Filtered Image	
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What went wrong?	


f = image	

g = filter	


Slide: Hoiem	


response is stronger 
for higher intensity	




Slide: Hoiem	


Matching with filters	

•  Goal: find       in image	


•  Method 1: filter the image with zero-mean eye	

	


Input	
 Filtered Image (scaled)	
 Thresholded Image	
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True detections	


False 
detections	


mean of f	




Slide: Hoiem	


Matching with filters	

•  Goal: find       in image	


•  Method 2: SSD	

	


Input	
 1- sqrt(SSD)	
 Thresholded Image	
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Matching with filters	

•  Goal: find       in image	


•  Method 2: SSD	

	


Input	
 1- sqrt(SSD)	


2
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++−=∑
What’s the potential 

downside of SSD?	


Slide: Hoiem	


SSD sensitive to 
average intensity	




Matching with filters	

•  Goal: find       in image	


•  Method 3: Normalized cross-correlation	
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Matlab: normxcorr2(template, im) 

mean image patch	
mean template	


Slide: Hoiem	




Matching with filters	

•  Goal: find       in image	


•  Method 3: Normalized cross-correlation	


	

	


True detections 

Input	
 Normalized X-Correlation	
Thresholded Image	
Slide: Hoiem	




Matching with filters	

•  Goal: find       in image	


•  Method 3: Normalized cross-correlation	


	

	


Input	
 Normalized X-Correlation	
Thresholded Image	


True detections	


Slide: Hoiem	




Q: What is the best method to use?	


	


A: Depends	


•  SSD: faster, sensitive to overall intensity	


•  Normalized cross-correlation: slower, invariant to local average 
intensity and contrast	


Slide: R. Pless	




Q: What if we want to find larger or 
smaller eyes?	


	


	


	
A: Image Pyramid	


Slide: R. Pless	




Image Pyramids	


•  Image information occurs over many different spatial scales. 	

•  Image pyramids –multi- resolution representations for images–���

are a useful data structure for analyzing and manipulating images 
over a range of spatial scales.	


	




Image pyramids	


Image information occurs at all spatial scales	


•  Gaussian pyramid	


•  Laplacian pyramid	


•  Wavelet/QMF pyramid	


•  Steerable pyramid	


Slide credit: B. Freeman and A. Torralba 



Image pyramids	


Image information occurs at all spatial scales	


•  Gaussian pyramid	


•  Laplacian pyramid	


•  Wavelet/QMF pyramid	


•  Steerable pyramid	


Slide credit: B. Freeman and A. Torralba 



Review of Sampling	


Low-Pass 
Filtered Image	
Image	


Gaussian	

Filter	
 Sample	
 Low-Res 

Image	


Slide: Hoiem	




The Gaussian pyramid	


•  Smooth with Gaussians, because	

–  A Gaussian*Gaussian = another Gaussian 	


•  Gaussians are low pass filters, so representation ���
is redundant.	


•  Gaussian pyramid creates versions of the input image 
at multiple resolutions.	


•   This is useful for analysis across different spatial scales, 
but doesn’t separate the image into different frequency 
bands.	


Slide adapted from: B. Freeman and A. Torralba 



The computational advantage of pyramids	


Slide credit: B. Freeman and A. Torralba 
[Burt and Adelson, 1983]	




The Gaussian Pyramid	


Slide credit: B. Freeman and A. Torralba 
[Burt and Adelson, 1983]	




Slide credit: B. Freeman and A. Torralba 



Convolution and subsampling as 
a matrix multiply (1D case)	


 

 

     1     4     6     4     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 

     0     0     1     4     6     4     1     0     0     0     0     0     0     0     0     0     0     0     0     0 

     0     0     0     0     1     4     6     4     1     0     0     0     0     0     0     0     0     0     0     0 

     0     0     0     0     0     0     1     4     6     4     1     0     0     0     0     0     0     0     0     0 

     0     0     0     0     0     0     0     0     1     4     6     4     1     0     0     0     0     0     0     0 

     0     0     0     0     0     0     0     0     0     0     1     4     6     4     1     0     0     0     0     0 

     0     0     0     0     0     0     0     0     0     0     0     0     1     4     6     4     1     0     0     0 

     0     0     0     0     0     0     0     0     0     0     0     0     0     0     1     4     6     4     1     0 

(Normalization constant of 1/16 omitted for visual clarity.)	
Slide credit: B. Freeman and A. Torralba 



Next pyramid level	


 

 

     1     4     6     4     1     0     0     0 

     0     0     1     4     6     4     1     0 

     0     0     0     0     1     4     6     4 

     0     0     0     0     0     0     1     4 

Slide credit: B. Freeman and A. Torralba 



The combined effect of the two 
pyramid levels	


 

 

 

     1     4    10    20   31    40    44    40    31    20    10     4      1      0      0     0     0      0     0     0 

     0     0     0      0      1     4     10    20    31    40    44    40   31    20    10     4     1      0     0     0 

     0     0     0      0      0     0       0     0      1     4      10    20   31    40    44    40    30   16    4     0 

     0     0     0      0      0     0       0     0      0     0        0      0     1     4     10    20    25   16    4     0 

Slide credit: B. Freeman and A. Torralba 



Slide credit: B. Freeman and A. Torralba 



Gaussian pyramids used for	


•  up- or down- sampling images.	


•  Multi-resolution image analysis	

–  Look for an object over various spatial scales	

–  Coarse-to-fine image processing:  form blur estimate or the 

motion analysis on very low-resolution image, upsample and 
repeat.  Often a successful strategy for avoiding local minima 
in complicated estimation tasks.	


Slide credit: B. Freeman and A. Torralba 



1D Gaussian pyramid matrix, ���
for  [1 4 6 4 1]  low-pass filter	


full-band image, 
highest resolution	


lower-resolution 
image	


lowest resolution 
image	


Slide credit: B. Freeman and A. Torralba 



Template Matching with Image 
Pyramids	

	


Input: Image, Template	


1.  Match template at current scale	


2.  Downsample image	


3.  Repeat 1-2 until image is very small	


4.  Take responses above some threshold, perhaps with non-
maxima suppression	


Slide: Hoiem	




Coarse-to-fine Image Registration	


1.  Compute Gaussian pyramid	


2.  Align with coarse pyramid	


3.  Successively align with finer 
pyramids	


–  Search smaller range	


Why is this faster?	


	


Are we guaranteed to get the same 
result?	


Slide: Hoiem	




Image pyramids	


Image information occurs at all spatial scales	


•  Gaussian pyramid	


•  Laplacian pyramid	


•  Wavelet/QMF pyramid	


•  Steerable pyramid	


Slide credit: B. Freeman and A. Torralba 



The Laplacian Pyramid	


•  Synthesis	

–  Compute the difference between upsampled 

Gaussian pyramid level and Gaussian pyramid level.	

–  band pass filter - each level represents spatial 

frequencies (largely) unrepresented at other level.	


•  Laplacian pyramid provides an extra level of 
analysis as compared to Gaussian pyramid by 
breaking the image into different isotropic 
spatial frequency bands. 	


Slide adapted from: B. Freeman and A. Torralba 



The Laplacian Pyramid	


Laplacian pyramid algorithm
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Slide credit: B. Freeman and A. Torralba 



The Laplacian Pyramid	


Laplacian pyramid algorithm
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Slide credit: B. Freeman and A. Torralba 



The Laplacian Pyramid	


Laplacian pyramid algorithm
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Slide credit: B. Freeman and A. Torralba 



The Laplacian Pyramid	


Laplacian pyramid algorithm
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Slide credit: B. Freeman and A. Torralba 



The Laplacian Pyramid	


Slide credit: B. Freeman and A. Torralba 

Laplacian pyramid algorithm

73

Wednesday, February 9, 2011



The Laplacian Pyramid	


Slide credit: B. Freeman and A. Torralba 

Laplacian pyramid algorithm
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The Laplacian Pyramid	


Slide credit: B. Freeman and A. Torralba 

Laplacian pyramid algorithm
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Upsampling	


     6     1     0     0    

     4     4     0     0  

     1     6     1     0  

     0     4     4     0  

     0     1     6     1 

     0     0     4     4 

     0     0     1     6 

     0     0     0     4 

Insert zeros between pixels, then 
apply a low-pass filter, [1 4 6 4 1]	


Slide credit: B. Freeman and A. Torralba 



Showing, at full resolution, the information 
captured at each level of a Gaussian (top) 
and Laplacian (bottom) pyramid.	


Slide credit: B. Freeman and A. Torralba 



Laplacian pyramid reconstruction algorithm:  
recover x1 from L1, L2, L3 and x4	


G# is the blur-and-downsample operator at pyramid level #	

F# is the blur-and-upsample operator at pyramid level #	

	

Laplacian pyramid elements:	

L1 = (I – F1 G1) x1	

L2 = (I – F2 G2) x2	

L3 = (I – F3 G3) x3	

x2 = G1 x1	

x3 = G2 x2	

x4 = G3 x3	

	

	

Reconstruction of original image (x1) from Laplacian pyramid elements:	

x3 = L3 + F3 x4	

x2 = L2 + F2 x3	

x1 = L1 + F1 x2	


Slide credit: B. Freeman and A. Torralba 



Laplacian pyramid reconstruction 
algorithm:  recover x1 from L1, L2, L3 
and g3	


+ 

+ 
+ 

Slide credit: B. Freeman and A. Torralba 



Slide credit: B. Freeman and A. Torralba 



Slide credit: B. Freeman and A. Torralba 



1D Laplacian pyramid matrix, ���
for [1 4 6 4 1]  low-pass filter	


high frequencies	


mid-band 
frequencies	


low frequencies	


Slide credit: B. Freeman and A. Torralba 



Laplacian pyramid applications	


•  Texture synthesis	


•  Image compression	


•  Noise removal	


Slide credit: B. Freeman and A. Torralba 
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The Laplacian Pyramid as a Compact Image Code
PETER J. BURT, MEMBER, IEEE, AND EDWARD H. ADELSON

Abstract—We describe a technique for image encoding in which     
local operators of many scales but identical shape serve as the basis
functions. The representation differs from established techniques in
that the code elements are localized in spatial frequency as well as in
space.

Pixel-to-pixel correlations are first removed by subtracting a low-
pass filtered copy of the image from the image itself. The result is a net
data compression since the difference, or error, image has low
variance and entropy, and the low-pass filtered image may represented
at reduced sample density. Further data compression is achieved by
quantizing the difference image. These steps are then repeated to
compress the low-pass image. Iteration of the process at appropriately
expanded scales generates a pyramid data structure.

The encoding process is equivalent to sampling the image with
Laplacian operators of many scales. Thus, the code tends to enhance
salient image features. A further advantage of the present code is that
it is well suited for many image analysis tasks as well as for image
compression. Fast algorithms are described for coding and decoding.

INTRODUCTION

COMMON characteristic of images is that neighboring   
pixels are highly correlated. To represent the image

directly in terms of the pixel values is therefore inefficient:  
most of the encoded information is redundant. The first           
task in designing an efficient, compressed code is to find a
representation which, in effect, decorrelates the image pixels.
This has been achieved through predictive and through trans-
form techniques (cf. [9], [10] for recent reviews).

In predictive coding, pixels are encoded sequentially in a
raster format. However, prior to encoding each pixel, its value
is predicted from previously coded pixels in the same and
preceding raster lines. The predicted pixel value, which repre-
sents redundant information, is subtracted from the actual    
pixel value, and only the difference, or prediction error, i s
encoded. Since only previously encoded pixels are used in
predicting each pixel's value, this process is said to be causal.
Restriction to causal prediction facilitates decoding: to decode    
a given pixel, its predicted value is recomputed from already
decoded neighboring pixels, and added to the stored predic-   
tion error.

Noncausal prediction, based on a symmetric neighborhood
centered at each pixel, should yield more accurate prediction
and,  hence, greater  data compression.  However,  this  approach

Paper approved by the Editor for Signal Processing and Communica-
tion Electronics of the IEEE Communications Society for publication  
after presentation in part at the Conference on Pattern Recognition and
Image Processing, Dallas, TX, 1981. Manuscript received April 12, 1982;
revised July 21. 1982. This work was supported in part by the National
Science Foundation under Grant MCS-79-23422 and by the National
Institutes of Health under Postdoctoral Training Grant EY07003.

P. J. Burt is with the Department of Electrical, Computer, and Sys-
tems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12181.

E. H. Adelson is with the RCA David Sarnoff Research Center,
Princeton, NJ 08540.

does not permit simple sequential coding. Noncausal ap-
proaches to image coding typically involve image transforms,
or the solution to large sets of simultaneous equations. Rather
than encoding pixels sequentially, such techniques encode   
them all at once, or by blocks.

Both predictive and transform techniques have advantages.
The former is relatively simple to implement and is readily
adapted to local image characteristics. The latter generally
provides greater data compression, but at the expense of
considerably greater computation.

Here we shall describe a new technique for removing image
correlation which combines features of predictive and trans-
form methods. The technique is noncausal, yet computations  
are relatively simple and local.

The predicted value for each pixel is computed as a local
weighted average, using a unimodal Gaussian-like (or related
trimodal) weighting function centered on the pixel itself. The
predicted values for all pixels are first obtained by convolving
this weighting function with the image. The result is a low-  
pass filtered image which is then subtracted from the original.

Let g0(ij) be the original image, and g1(ij) be the result of
applying an appropriate low-pass filter to g0. The prediction
error L0(ij) is then given by

L0(ij) = g0(ij) — g1(ij)

Rather than encode g0, we encode L0 and g1. This results          
in a net data compression because a) L0 is largly decorrelated,  
and so may be represented pixel by pixel with many fewer bits
than g0, and b) g1 is low-pass filtered, and so may be encoded     
at a reduced sample rate.

Further data compression is achieved by iterating this pro-
cess. The reduced image g1 is itself low-pass filtered to yield     
g2 and a second error image is obtained:  L2(ij)=g1(ij)—g2(ij).   
By repeating these steps several times we obtain a sequence of
two-dimensional arrays L0, L1, L2, …, Ln.  In our implemen-
tation each is smaller than its predecessor by a scale factor of
1/2 due to reduced sample density. If we now imagine these
arrays stacked one above another, the result is a tapering
pyramid data structure. The value at each node in the pyramid
represents the difference between two Gaussian-like or related
functions convolved with the original image. The difference
between these two functions is similar to the "Laplacian"
operators commonly used in image enhancement [13]. Thus,     
we refer to the proposed compressed image representation as     
the Laplacian-pyramid code.

The coding scheme outlined above will be practical only if
required filtering computations can be performed with an ef-
ficient algorithm. A suitable fast algorithm has recently been
developed [2] and will be described in the next section.

A

0090-6778/83/0400-0532$01.00 © 1983 IEEE



Image blending	


Slide credit: B. Freeman and A. Torralba 
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Slide credit:  
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Image blending	


•  Build Laplacian pyramid for both images: LA, LB	


•  Build Gaussian pyramid for mask: G	


•  Build a combined Laplacian pyramid: ���
L(j) = G(j) LA(j) + (1-G(j)) LB(j)	


•  Collapse L to obtain the blended image 	


54	  
Slide credit: B. Freeman and A. Torralba 



Image pyramids	


Image information occurs at all spatial scales	


•  Gaussian pyramid	


•  Laplacian pyramid	


•  Wavelet/QMF pyramid	


•  Steerable pyramid	


Slide credit: B. Freeman and A. Torralba 



Wavelet/QMF pyramid	


•  Subband coding	


•  Wavelet or QMF (quadrature mirror filter) pyramid 
provides some splitting of the spatial frequency bands 
according to orientation (although in a somewhat 
limited way). 	


•  Image is decomposed into a set of band-limited 
components (subbands).	


•  Original image can be reconstructed without error by 
reassemblying these subbands.	




2D Haar transform	


1	  

1	  

1	  

-‐1	  
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Low pass	


High pass	

vertical	


High pass	

horizontal	


High pass	

diagonal	
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Slide credit: B. Freeman and A. Torralba 



2D Haar transform	


1	   1	  

1	   1	  

1	   -‐1	  

1	   -‐1	  

1	   1	  

-‐1	   -‐1	  

1	   -‐1	  

-‐1	   1	  

2 

2 

2 

2 Horizontal 
high pass, 
vertical high 
pass	


Horizontal high 
pass, vertical 
low-pass	


Horizontal low 
pass, vertical 
high-pass	


Horizontal low pass,	

Vertical low-pass	


Sketch of the Fourier transform	


Slide credit: B. Freeman and A. Torralba 



Simoncelli and Adelson,  
in “Subband coding”, Kluwer, 1990.

Pyramid cascade	


59	  
Slide credit: B. Freeman and A. Torralba 



Wavelet/QMF representation	


1	   -‐1	  

1	   -‐1	  

1	   1	  

-‐1	   -‐1	  

1	   -‐1	  

-‐1	   1	  

Same number of pixels! 

Slide credit: B. Freeman and A. Torralba 



Image pyramids	


Image information occurs at all spatial scales	


•  Gaussian pyramid	


•  Laplacian pyramid	


•  Wavelet/QMF pyramid	


•  Steerable pyramid	


Slide credit: B. Freeman and A. Torralba 



Steerable Pyramid	


•  The Steerable pyramid provides a clean separation of the image 
into different scales and orientations. 	


Images from: http://www.cis.upenn.edu/~eero/steerpyr.html 

2 Level decomposition	

of white circle example: 	


Low pass 	

residual	


Subbands	


Slide credit: B. Freeman and A. Torralba 



Steerable Pyramid	


Images from: http://www.cis.upenn.edu/~eero/steerpyr.html 

… … 

Slide credit: B. Freeman and A. Torralba 

We may combine Steerability with Pyramids to get a Steerable 
Laplacian Pyramid as shown below. 	


Decomposition	
 Reconstruction	




Steerable Pyramid	


We may combine Steerability with Pyramids to get a Steerable 
Laplacian Pyramid as shown below 	


Images from: http://www.cis.upenn.edu/~eero/steerpyr.html Slide credit: B. Freeman and A. Torralba 

Decomposition	
 Reconstruction	




Steerable Pyramid	


http://www.cns.nyu.edu/ftp/eero/simoncelli95b.pdf Simoncelli and Freeman, ICIP 1995

But we need to get 
rid of the corner 
regions before 
starting the 
recursive circular 
filtering

107
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But we need to get rid of 
the corner regions before 
starting the recursive 
circular filtering	


Slide credit: B. Freeman and A. Torralba 

Simoncelli and Freeman, ���
ICIP 1995	




Reprinted from “Shiftable MultiScale Transforms,” by Simoncelli et al., IEEE Transactions	

on Information Theory, 1992, copyright 1992, IEEE	


There is also a high pass residual…	

Slide credit: B. Freeman and A. Torralba 



Image pyramids	

•  Gaussian	


•  Laplacian	


•  Wavelet/QMF	


•  Steerable pyramid	


Slide credit: B. Freeman and A. Torralba 



Image pyramids	

Progressively blurred and 
subsampled versions of the image.  
Adds scale invariance to fixed-size 
algorithms.	


•  Gaussian	


•  Laplacian	


	


	

•  Wavelet/QMF	


•  Steerable pyramid	


Slide credit: B. Freeman and A. Torralba 



Image pyramids	


Shows the information added in 
Gaussian pyramid at each spatial 
scale.  Useful for noise reduction & 
coding.	


Progressively blurred and 
subsampled versions of the image.  
Adds scale invariance to fixed-size 
algorithms.	


•  Gaussian	


•  Laplacian	


•  Wavelet/QMF	


•  Steerable pyramid	


Slide credit: B. Freeman and A. Torralba 



Image pyramids	


Shows the information added in 
Gaussian pyramid at each spatial 
scale.  Useful for noise reduction & 
coding.	


Progressively blurred and 
subsampled versions of the image.  
Adds scale invariance to fixed-size 
algorithms.	


Bandpassed representation, complete, but with ���
aliasing and some non-oriented subbands.	


•  Gaussian	


•  Laplacian	


•  Wavelet/QMF	


•  Steerable pyramid	


Slide credit: B. Freeman and A. Torralba 



Image pyramids	


Shows the information added in 
Gaussian pyramid at each spatial 
scale.  Useful for noise reduction & 
coding.	


Progressively blurred and 
subsampled versions of the image.  
Adds scale invariance to fixed-size 
algorithms.	


Shows components at each scale 
and orientation separately.  Non-
aliased subbands.  Good for 
texture and feature analysis.  But 
overcomplete and with HF 
residual.	


Bandpassed representation, complete, but with ���
aliasing and some non-oriented subbands.	


•  Gaussian	


•  Laplacian	


•  Wavelet/QMF	


•  Steerable pyramid	


Slide credit: B. Freeman and A. Torralba 



Schematic pictures of each matrix 
transform	

Shown for 1-d images	


The matrices for 2-d images are the same idea, but more 
complicated, to account for vertical, as well as horizontal, 
neighbor relationships.	


    Fourier transform, or	

  Wavelet transform, or	

Steerable pyramid transform	


Vectorized image	


transformed image	


Slide credit: B. Freeman and A. Torralba 



Fourier transform	


=	
 *	


pixel domain 
image	


Fourier bases 
are global:  each 
transform 
coefficient 
depends on all 
pixel locations.	


Fourier 
transform	


real	


imaginary	


color key	


1	


j	


Slide credit: B. Freeman and A. Torralba 



Gaussian pyramid	


=	
 *	

pixel image	


Overcomplete representation.  
Low-pass filters, sampled 
appropriately for their blur.	


Gaussian 
pyramid	


Slide credit: B. Freeman and A. Torralba 



Laplacian pyramid	


=	
 *	

pixel image	


Overcomplete representation.  
Transformed pixels represent 
bandpassed image information.	


Laplacian 
pyramid	


Slide credit: B. Freeman and A. Torralba 



Wavelet (QMF) transform	


=	
 *	

pixel image	
Ortho-normal 

transform (like 
Fourier transform), 
but with localized 
basis functions.  	


Wavelet 
pyramid	


Slide credit: B. Freeman and A. Torralba 



=	
 *	

pixel image	


Over-complete 
representation, 
but non-aliased 
subbands. 	


Steerable 
pyramid	


Multiple 
orientations at 

one scale  	


Multiple 
orientations at 
the next scale  	


the next scale…  	


Steerable pyramid	


Slide: B. Freeman and A. Torralba 



Why use image pyramids? 	


•  Handle real-world size variations with a constant-size vision 
algorithm. 	


•  Remove noise 	


•  Analyze texture 	


•  Recognize objects 	


•  Label image features 	


•  Image priors can be specified naturally in terms of wavelet 
pyramids.	


Slide credit: B. Freeman and A. Torralba 



Reading Assignment #3 – Hybrid Images	


•  A. Oliva, A. Torralba, P.G. Schyns (2006). Hybrid 
Images. ACM Transactions on Graphics, ACM 
SIGGRAPH, 25-3, 527-530.	


•  Due on 20th of December���
	


©Michael J. Black CS143 Intro to Computer Vision 

http://cvcl.mit.edu/hybridimage.htm 

©Michael J. Black CS143 Intro to Computer Vision 

http://cvcl.mit.edu/hybridimage.htm 


