
Linear Algebra Review

Fei-Fei Li

1 / 51

Vectors

Vectors and matrices are just collections of ordered numbers that
represent something: movements in space, scaling factors, pixel
brightnesses, etc.

A vector is a quantity that involves both magnitude and direction

A column vector v ∈ Rnx1 where

v =


x1
x2
...
xn

 (1)

A row vector vT ∈ Rnx1 where

vT =
[
x1 x2 ... xn

]
(2)

2 / 51

Vectors

Vectors can represent an offset in 2D or 3D space

Points are just vectors from the origin

Data (pixels, gradients at an image keypoint, etc) can also be treated
as a vector

Such vectors don’t have a geometric interpretation, but calculations
like ”distance” can still have value

3 / 51

Vectors

4 / 51

Matrices

A matrix A ∈ Rmxn is an array of mxn numbers arranged in m rows
and n columns.

A =


x11 x12 x13 . . . x1n
x21 x22 x23 . . . x2n

...
...

...
. . .

...
xm1 xm2 xm3 . . . xmn


If m = n, we say that A is a square matrix

MATLAB represents an image as a matrix of pixel brightnesses

5 / 51

Images

Note that matrix coordinates are NOT Cartesian coordinates. The
upper left corner is [y,x] = (1,1)

Grayscale images have one number per pixel, and are stored as an m
x n matrix.

6 / 51

Images

Color images have 3 numbers per pixel red, green, and blue
brightnesses

Stored as an m x n x 3 matrix

7 / 51

Matrix Operations

Addition

Can only add a matrix with matching dimensions, or a scalar.

Scaling

8 / 51

Matrix Operations

Inner product (dot product) of vectors

Multiply corresponding entries of two vectors and add up the result

xy is also |x ||y |Cos(the angle between x and y)

If B is a unit vector, then AB gives the length of A which lies in the
direction of B

9 / 51

Matrix Operations

Multiplication

For A.B; each entry in the result is (that row of A) dot product with
(that column of B)

10 / 51

Matrix Operations

Multiplication

11 / 51

Matrix Operations

Transpose

row r becomes column c

A useful identity

12 / 51

Matrix Operations

Determinant

det(A) returns a scalar value for square matrix A. For,

Properties:

13 / 51

Special Matrices

Identity matrix I

Square matrix, 1s along diagonal, 0s elsewhere

I.A = A

Diagonal matrix

Square matrix with numbers along diagonal, 0s elsewhere

(A diagonal).(Another matrix B) scales the rows of matrix B

14 / 51

Special Matrices

Symmetric matrix

Skew-symmetric matrix

15 / 51

Transformations

Matrices can be used to transform vectors in useful ways, through
multiplication: x’= Ax

Simplest is scaling:

16 / 51

Rotation

How can you convert a vector represented in frame 0 to a new,
rotated coordinate frame 1?

Remember what a vector is: [component in direction of the frames x
axis, component in direction of y axis]

17 / 51

Rotation

So to rotate it we must produce this vector: [component in direction
of new x axis, component in direction of new y axis]

We can do this easily with dot products!

New x coordinate is [original vector] dot [the new x axis]

New y coordinate is [original vector] dot [the new y axis]

18 / 51

2D Rotation Matrix Formula

Counter-clockwise rotation by an angle θ

19 / 51

Transformation Matrices

Multiple transformation matrices can be used to transform a point:
p′ = R2.R1.S .p

The effect of this is to apply their transformations one after the other,
from right to left.

In the example above, the result is (R2(R1(S .p)))

The result is exactly the same if we multiply the matrices first, to
form a single transformation matrix:p′ = (R2.R1.S)p

20 / 51

Homogeneous System

In general, a matrix multiplication lets us linearly combine
components of a vector

This is sufficient for scale, rotate, skew transformations.

But notice, we cant add a constant!

The (somewhat hacky) solution? Stick a ”1” at the end of every
vector

21 / 51

Homogeneous System

Now we can rotate, scale, and skew like before, AND translate (note
how the multiplication works out, above)

This is called ”homogeneous coordinates”

In homogeneous coordinates, the multiplication works out so the
rightmost column of the matrix is a vector that gets added

22 / 51

2D Translation

23 / 51

2D Translation with Homogeneous Coordinates

24 / 51

Scaling

25 / 51

Scaling

26 / 51

Scaling & Translating

27 / 51

Scaling & Translating

28 / 51

Scaling & Translating

29 / 51

Rotation

30 / 51

Rotation

31 / 51

Rotation Matrix Properties

Transpose of a rotation matrix produces a rotation in the opposite
direction

RRT = RTR = I

det(R) = 1

Consider the rotation matrix from the previous slide

32 / 51

Inverse of Matrix

Given a matrix A, its inverse A−1 is a matrix such that AA−1 =A−1A
= I [

2 0
0 3

]−1
=

[
1/2 0

0 1/3

]
Inverse does not always exist. If A−1 exists, A is invertible or
non-singular. Otherwise, its singular.

Useful identities, for matrices that are invertible:

33 / 51

Matrix Operations

Pseudoinverse

Say you have the matrix equation AX=B, where A and B are known,
and you want to solve for X
You could use MATLAB to calculate the inverse and premultiply by it:
A−1AX = A−1BX = A−1B
MATLAB command would be inv(A)*B
But calculating the inverse for large matrices often brings problems
with computer floating-point resolution (because it involves working
with very small and very large numbers together).
Or, your matrix might not even have an inverse.
Fortunately, there are workarounds to solve AX=B in these situations.
And MATLAB can do them!

34 / 51

Matrix Operations

Pseudoinverse

Instead of taking an inverse, directly ask MATLAB to solve for X in
AX=B, by typing A\B
MATLAB will try several appropriate numerical methods (including the
pseudoinverse if the inverse doesnt exist)
MATLAB will return the value of X which solves the equation
If there is no exact solution, it will return the closest one
If there are many solutions, it will return the smallest one

35 / 51

Matrix Operations

36 / 51

Rank of A Matrix

Linear independence
Suppose we have a set of vectors v1, ..., vn
If we can express v1 as a linear combination of the other vectors
v2...vn, then v1 is linearly dependent on the other vectors.
The direction v1 can be expressed as a combination of the directions
v2...vn. (E .g .v1 = .7v2 − .7v4)
If no vector is linearly dependent on the rest of the set, the set is
linearly independent.
Common case: a set of vectors v1, ..., vn is always linearly independent
if each vector is perpendicular to every other vector (and non-zero)

37 / 51

Rank of A Matrix

Column/row rank

col − rank(A)= the max. number of linearly independent column
vector of A
row − rank(A)= the max. number of linearly independent row vector
of A

Column rank always equals row rank

Matrix rank : rank(A) := col − rank(A) = row − rank(A)

For transformation matrices, the rank tells you the dimensions of the
output

E.g. if rank of A is 1, then the transformation p′ = Ap maps points
onto a line.

38 / 51

Rank of A Matrix

If an m x m matrix is rank m, we say its ”full rank”

Maps an m x 1 vector uniquely to another m x 1 vector
An inverse matrix can be found

If rank < m, we say its ”singular”

At least one dimension is getting collapsed. No way to look at the
result and tell what the input was
Inverse does not exist

Inverse also doesnt exist for non-square matrices

39 / 51

Eigenvalues and Eigenvectors

Suppose we have a square matrix A. We can solve for vector x and
scalar λ such that Ax = λx

In other words, find vectors where, if we transform them with A, the
only effect is to scale them with no change in direction.

These vectors are called eigenvectors (German for self vector of the
matrix), and the scaling factors λ are called eigenvalues

An m x m matrix will have ≤ m eigenvectors where λ is nonzero

To find eigenvalues and eigenvectors rewrite the equation:

(A− λI)x = 0

x = 0 is always a solution but we have to find x 6= 0. This means
A− λI should not be invertible so we can have many solutions.

det(A− λI) = 0

40 / 51

Eigenvalues and Eigenvectors

For example;

A =

[
3 1
1 3

]
det(A− λI)x = 0∣∣∣∣3− λ 1

1 3− λ

∣∣∣∣ = 0

then λ1 = 4, xT1 = [1 1] and λ2 = 2, xT2 = [−1 1]

Another example;

B =

[
0 1
1 0

]
then λ1 = 1, xT1 = [1 1] and λ2 = −1, xT2 = [−1 1]

Relation between these two matrices ?

41 / 51

Singular Value Decomposition (SVD)

There are several computer algorithms that can factor a matrix,
representing it as the product of some other matrices

The most useful of these is the Singular Value Decomposition.

Represents any matrix A as a product of three matrices: UΣV T

MATLAB command: [U,S,V]=svd(A)

A = UΣV T

where U and V are rotation matrices, and Σ is a scaling matrix.

42 / 51

Singular Value Decomposition (SVD)

Eigenvectors are for square matrices, but SVD is for all matrices

To calculate U, take eigenvectors of AAT

Square root of eigenvalues are the singular values (the entries of Σ).

To calculate V, take eigenvectors of ATA

In general, if A is m x n, then U will be m x m, Σ will be m x n, and
V T will be n x n.

43 / 51

Singular Value Decomposition (SVD)

U and V are always rotation matrices.

Geometric rotation may not be an applicable concept, depending on
the matrix. So we call them ”unitary” matrices (each column is a unit
vector)

Σ is a diagonal matrix

The number of nonzero entries = rank of A
The algorithm always sorts the entries high to low

44 / 51

Singular Value Decomposition (SVD)

Look at how the multiplication works out, left to right

Column 1 of U gets scaled by the first value from

The resulting vector gets scaled by row 1 of VT to produce a
contribution to the columns of A

45 / 51

Singular Value Decomposition (SVD)

Each product of (column i of U).(value i from Σ).(row i of V T)
produces a component of the final A

46 / 51

Singular Value Decomposition (SVD)

Were building A as a linear combination of the columns of U

Using all columns of U, well rebuild the original matrix perfectly

But, in real-world data, often we can just use the first few columns of
U and well get something close (e.g. the first Apartial , above)

47 / 51

Singular Value Decomposition (SVD)

We can call those first few columns of U the Principal Components of
the data

They show the major patterns that can be added to produce the
columns of the original matrix

The rows of V T show how the principal components are mixed to
produce the columns of the matrix

48 / 51

SVD Applications

49 / 51

SVD Applications

For this image, using only the first 10 of 300 principal components
produces a recognizable reconstruction

So, SVD can be used for image compression

50 / 51

Principal Component Analysis

Remember, columns of U are the Principal Components of the data:
the major patterns that can be added to produce the columns of the
original matrix

One use of this is to construct a matrix where each column is a
separate data sample

Run SVD on that matrix, and look at the first few columns of U to
see patterns that are common among the columns

This is called Principal Component Analysis (or PCA) of the data
samples

51 / 51

