Linear Algebra Review

Fei-Fei Li

@ Vectors and matrices are just collections of ordered numbers that
represent something: movements in space, scaling factors, pixel
brightnesses, etc.

@ A vector is a quantity that involves both magnitude and direction

@ A column vector v € R™1 where

x1
= (1)
Xn
@ A row vector v € R™! where
vl = [Xl Xo ... x,,] (2)

@ Vectors can represent an offset in 2D or 3D space
@ Points are just vectors from the origin
X L)
e
Yy 1 7=
A 22

P
=3

e Data (pixels, gradients at an image keypoint, etc) can also be treated
as a vector

@ Such vectors don't have a geometric interpretation, but calculations
like "distance” can still have value

> v =192 : 3 : 4 : 1

k=]
3
4
1
o

Y
v
i
[
4

T =
El 3 4
>»> w2 = [2 4 2.1 5 4]
w2 =
2.0000 4.0000
>> w2T = w2°'
w2T =
2.0000
4.0000
2.1000
5.0000
4.0000

2.1000

5.0000

4.0000

@ A matrix A € R™" is an array of mxn numbers arranged in m rows
and n columns.

X11 X12 X13 cee X1n

X21 X22 X23 ... X2n
A=

Xml Xm2 Xm3 ... Xmn

o If m= n, we say that A is a square matrix

@ MATLAB represents an image as a matrix of pixel brightnesses

Images

@ Note that matrix coordinates are NOT Cartesian coordinates. The
upper left corner is [y,x] = (1,1)

193 180 210 112 12§
189 8 177 97 114
100 71 81 195 165
167 12 242 203 181

@ Grayscale images have one number per pixel, and are stored as an m
X n matrix.

@ Color images have 3 numbers per pixel red, green, and blue
brightnesses

@ Stored as an m x n x 3 matrix
Ne——)

- /4

|

Matrix Operations

Addition
a b 1 2] fa+l b+2
c d 3 4| |e+3 d+4
@ Can only add a matrix with matching dimensions, or a scalar.
a b fa+7 b+7
{c d]+7_[c+7 d+7]

Scaling

Matrix Operations

Inner product (dot product) of vectors
@ Multiply corresponding entries of two vectors and add up the result
@ xy is also |x||y|Cos(the angle between x and y)
hn
xTy=[z1 ... @ |:| =21 2y (scalar)
Yn

o If B is a unit vector, then AB gives the length of A which lies in the
direction of B

Matrix Operations

Multiplication
@ For A.B; each entry in the result is (that row of A) dot product with
(that column of B)

B _ A x B_
>4 bz by 1 3
= fo- e 5 7
— — ¥ 1=
— O 1 w2 [10 14
Al 7o) 4 6 34 54
- a‘_ L — — 0-3+2-7=14

10/41

Matrix Operations

Multiplication
>> B=floor (l0*rand(3,4))
=
[} 6 3 4 »» C=floor(10%*rand(3,4))
o 1 4 E
ES 4 s El
c =
>> B=floor (l0*rand(4,5))
1] 4 4 [
B =
5 1 4 3
& 8 & 2 5| 7 1 9 3
2 3 1 B 1
o E 7 s]
2 - 3 - - »» R2 = A.*C
>» R = B*B R2 =
R =
1] 24 1z 24
18 49 43 73 33 o] 1 18 24
10 47 &1 81 37 28 4 45 27
41 EES 88 116 69

11/41

Matrix Operations

Transpose

@ row r becomes column ¢

o A useful identity
(ABCY' = "B AT

12/41

Matrix Operations

Determinant
@ det(A) returns a scalar value for square matrix A. For,

(a+c,b+d)
(c.d)

a b
A=|:C d}' det(A) = ad — be

(a,b)
(0,0)

@ Properties:
det(AB) = det(BA)

det(A™) = Ga)

det(AT) = det(A)
det(A) =0 < A is singular

13/41

Special Matrices

Identity matrix /

@ Square matrix, 1s along diagonal, Os elsewhere

o A=A
1 0 O 3 0 O
O 1 O O 7 O
O 0 1 0O 0 25

Diagonal matrix
@ Square matrix with numbers along diagonal, Os elsewhere

o (A diagonal).(Another matrix B) scales the rows of matrix B

14 /41

Special Matrices

Symmetric matrix

1 2 5

2 1 7

AT = A 5 7 1
Skew-symmetric matrix

1 -2 -5

2 1 =7

15 /41

Transformations

@ Matrices can be used to transform vectors in useful ways, through
multiplication: x'= Ax

@ Simplest is scaling:

16 /41

@ How can you convert a vector represented in frame 0 to a new,
rotated coordinate frame 17
@ Remember what a vector is: [component in direction of the frames x

axis, component in direction of y axis]
yo
x1

‘3’1707 . (707,.707)
o, .)

X0

@ So to rotate it we must produce this vector: [component in direction
of new x axis, component in direction of new y axis]

@ We can do this easily with dot products!
@ New x coordinate is [original vector]| dot [the new x axis]

e New y coordinate is [original vector] dot [the new y axis]

R x p = P
rotated p' [px:|
by
R

707 707 iz
—.707 .707 py’

18/41

2D Rotation Matrix Formula

@ Counter-clockwise rotation by an angle ¢

! o _
| i x'=xcos@+ ysind
‘ “’io y'=—xsinf+ycosl
x' X cosf siné || x
=RO)|" |=|
y' v| [-sinf cosé |y
P'=RP

19/41

Transformation Matrices

@ Multiple transformation matrices can be used to transform a point:
p, = Rz.Rl.S.p

@ The effect of this is to apply their transformations one after the other,
from right to left.

@ In the example above, the result is (R2(R1(S.p)))

@ The result is exactly the same if we multiply the matrices first, to
form a single transformation matrix:p’ = (Rz2.R1.S)p

20 /41

Homogeneous System

In general, a matrix multiplication lets us linearly combine
components of a vector

a b y x| |ax+by
c d| " |yl |ezx+dy

This is sufficient for scale, rotate, skew transformations.

But notice, we cant add a constant!

The (somewhat hacky) solution? Stick a "1"” at the end of every
vector

21 /41

Homogeneous System

a b c x ar + by + ¢
d e f| x|yl =|dct+ey+f
0 0 1 1 1

e Now we can rotate, scale, and skew like before, AND translate (note
how the multiplication works out, above)

@ This is called "homogeneous coordinates”

@ In homogeneous coordinates, the multiplication works out so the
rightmost column of the matrix is a vector that gets added

22 /41

2D Translation

23 /41

2D Translation with Homogeneous Coordinates

ty 2

24 /41

A 4

25 /41

=3
2 P=(x,y) > P'=(s,X,s,y)
y P
P:(x:y)_>(x7y71)
o PG oG
§.X AN 0 0 X
S" 0
P - Syy =10 Sy 0f ¥y =|: i|P=SP
0 1
1 0O 0 1]|1

26 /41

Scaling & Translating

. &
q{&ﬁg P'=S-P
P =T-P’

P’=T-P’=T-(S-P)=T-S-P=A-P

A J

27 /41

Scaling & Translating

1 0 ¢ ||s, 0O Ofx
P'=T-S-P=10 1 7|0 s, Ofy|=
00 IJ[0 0 1]1
sx 0 tx"x _sxx-l-tx"x_ (x|
S
=0 s, 1, |y|=|s, | :[O l}y
0 11 1 1 1
_ L1 L AL |

28 /41

Scaling & Translating

I 0 t |s, 0 O X | s, 0 X | s X+t
P"=T-S-P=|0 L t [0 s, Ofly|=|0 s, t |y|=|sy+t,
0 0 1]0 L{1] JO 0O 1|1} 1
s, 0 O0ff1 0 t [x]
P"=S-T-P=/0 s 00 1 t|y|=
1fo 0 1711

29 /41

Rotation

30/41

Counter-clockwise rotation by an angle 6

x'=cosOx—smOy
y'=cosOy+sm0x

x' B cosd —smé | x
y' |sin@® cos® y

P'=RP

31/41

Rotation Matrix Properties

@ Transpose of a rotation matrix produces a rotation in the opposite
direction
RRT =R™R=1

det(R) =1

@ Consider the rotation matrix from the previous slide

32/41

Inverse of Matrix

@ Given a matrix A, its inverse A~ is a matrix such that AA~1 =A~1A

=1
-1
2 0 {12 0
0 3 |10 1/3
o Inverse does not always exist. If A~! exists, A is invertible or
non-singular. Otherwise, its singular.

@ Useful identities, for matrices that are invertible:
(A7) = A
(AB) "' =B 'A™!
A—T é (AT)—l — (A—l)T

33/41

Matrix Operations

@ Pseudoinverse

e Say you have the matrix equation AX=B, where A and B are known,
and you want to solve for X

e You could use MATLAB to calculate the inverse and premultiply by it:
AIAX = A71BX = A71B

o MATLAB command would be inv(A)*B

e But calculating the inverse for large matrices often brings problems
with computer floating-point resolution (because it involves working
with very small and very large numbers together).

e Or, your matrix might not even have an inverse.

e Fortunately, there are workarounds to solve AX=B in these situations.
And MATLAB can do them!

34 /41

Matrix Operations

@ Pseudoinverse

o Instead of taking an inverse, directly ask MATLAB to solve for X in
AX=B, by typing A\B

o MATLAB will try several appropriate numerical methods (including the
pseudoinverse if the inverse doesnt exist)

o MATLAB will return the value of X which solves the equation

o If there is no exact solution, it will return the closest one

o If there are many solutions, it will return the smallest one

35/41

Matrix Operations

* MATLAB example:
AX =B

i -

>> x = A\B
x =
1.0000
-0.5000

36 /41

Rank of A Matrix

@ Linear independence

e Suppose we have a set of vectors vy, ..., v,

o If we can express vl as a linear combination of the other vectors
Va...Vp, then vl is linearly dependent on the other vectors.

e The direction vl can be expressed as a combination of the directions
Va..Vp. (E.gvi = .Tva — Tvy)

o If no vector is linearly dependent on the rest of the set, the set is
linearly independent.

o Common case: a set of vectors v, ..., v, is always linearly independent
if each vector is perpendicular to every other vector (and non-zero)

Linearly independent set Not linearly independent

s pd

37 /41

Rank of A Matrix

e Column/row rank
o col — rank(A)= the max. number of linearly independent column

vector of A
e row — rank(A)= the max. number of linearly independent row vector
of A

Column rank always equals row rank

Matrix rank : rank(A) := col — rank(A) = row — rank(A)

For transformation matrices, the rank tells you the dimensions of the
output

E.g. if rank of A is 1, then the transformation p’ = Ap maps points

onto a line.
1 1 :L' - T+ y oints ge
[2 2]) [y] B {2x+2y] moppete

the line y=2x

38/41

Rank of A Matrix

@ If an m x m matrix is rank m, we say its " full rank”

e Maps an m x 1 vector uniquely to another m x 1 vector
e An inverse matrix can be found

o If rank < m, we say its "singular”

o At least one dimension is getting collapsed. No way to look at the
result and tell what the input was
e Inverse does not exist

@ Inverse also doesnt exist for non-square matrices

39 /41

Eigenvalues and Eigenvectors

@ Suppose we have a square matrix A. We can solve for vector x and
scalar X such that Ax = Ax

@ In other words, find vectors where, if we transform them with A, the
only effect is to scale them with no change in direction.

@ These vectors are called eigenvectors (German for self vector of the
matrix), and the scaling factors X are called eigenvalues

@ An m x m matrix will have < m eigenvectors where X\ is nonzero

@ To find eigenvalues and eigenvectors rewrite the equation:

(A= A)x =0

@ x = 0 is always a solution but we have to find x # 0. This means
A — Al should not be invertible so we can have many solutions.

det(A—Al) =0

40 /41

Eigenvalues and Eigenvectors

@ For example;

31
e
det(A— Al)x =0
3-2 1
‘1 3—)\’_0

then A\; = 4,x =[11] and Ay = 2,x] = [-11]
@ Another example;
01
o= o

then \; = 1,x/ =[11] and Ay = —1,x] =[-11]

41/41

