BBM 413 Fundamentals of Image Processing

Erkut Erdem
Dept. of Computer Engineering
Hacettepe University

Spatial Filtering

Filtering

- The name "filter" is borrowed from frequency domain processing (next week's topic)
- Accept or reject certain frequency components
- Fourier (1807):
 Periodic functions could be represented as a weighted sum of sines and cosines

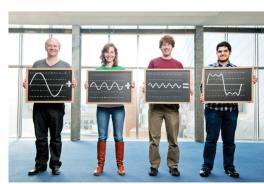


Image courtesy of Technology Review

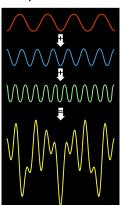
Image Filtering

- <u>Image filtering:</u> computes a function of a *local neighborhood* at each pixel position
- Called "Local operator," "Neighborhood operator," or "Window operator"
- f: image → image
- Uses:
 - Enhance images
 - Noise reduction, smooth, resize, increase contrast, recolor, artistic effects, etc.
 - Extract features from images
 - Texture, edges, distinctive points, etc.
 - Detect patterns
 - Template matching, e.g., eye template

Slide credit: D. Hoiem

Signals

A signal is composed of low and high frequency components



low frequency components: smooth / piecewise smooth

Neighboring pixels have similar brightness values You're within a region

high frequency components: oscillatory

Neighboring pixels have different brightness values

You're either at the edges or noise points

Low/high frequencies vs. fine/coarse-scale details

Low-frequencies (coarse-scale details) boosted

High-frequencies (fine-scale details) boosted

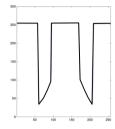
L. Karacan, E. Erdem and A. Erdem, Structure Preserving Image Smoothing via Region Covariances, TOG, 2013

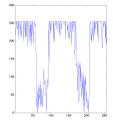
Motivation: noise reduction

- Assume image is degraded with an additive model.
- Then,

Observation = True signal + noise
Observed image = Actual image + noise
low-pass high-pass filters
filters
smooth the image

Signals - Examples





Common types of noise

- Salt and pepper noise: random occurrences of black and white pixels
- Impulse noise: random occurrences of white pixels
- Gaussian noise:
 variations in intensity drawn from a Gaussian normal distribution

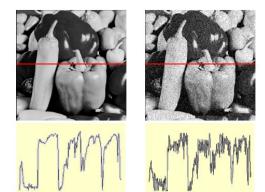
Original

Salt and pepper noise

Impulse noise

Gaussian noise Slide credit: S. Seitz

Gaussian noise



$$f(x,y) = \overbrace{\widehat{f}(x,y)}^{\text{Ideal Image}} + \overbrace{\eta(x,y)}^{\text{Noise process}}$$

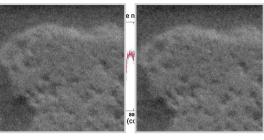
Gaussian i.i.d. ("white") noise: $\eta(x,y) \sim \mathcal{N}(\mu,\sigma)$

>> noise = randn(size(im)).*sigma;
>> output = im + noise;

What is the impact of the sigma?

Slide credit: M. Hebert

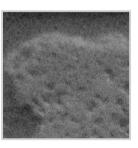
Motivation: noise reduction



- Make multiple observations of the same static scene
- Take the average
- Even multiple images of the same static scene will not be identical.

Adapted from: K. Grauman

Motivation: noise reduction



- Make multiple observations of the same static scene
- Take the average
- Even multiple images of the same static scene will not be identical.
- What if we can't make multiple observations?
 What if there's only one image?

Adapted from: K. Grauman

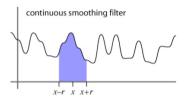
Image Filtering

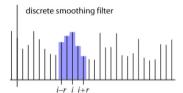
- <u>Idea:</u> Use the information coming from the neighboring pixels for processing
- Design a transformation function of the local neighborhood at each pixel in the image
 - Function specified by a "filter" or mask saying how to combine values from neighbors.
- Various uses of filtering:
 - Enhance an image (denoise, resize, etc)
 - Extract information (texture, edges, etc)
 - Detect patterns (template matching)

Adapted from: K. Grauman

Filtering

- Processing done on a function
- can be executed in continuous form (e.g. analog circuit)
- but can also be executed using sampled representation
- Simple example: smoothing by averaging





Slide credit; S. Marschner

First attempt at a solution

- Let's replace each pixel with an average of all the values in its neighborhood
- Assumptions:
 - Expect pixels to be like their neighbors (spatial regularity in images)
 - Expect noise processes to be independent from pixel to pixel

Slide credit: S. Marschner, K. Grauman

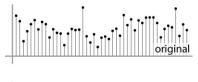
Linear filtering

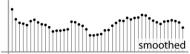
- Filtered value is the linear combination of neighboring pixel values.
- Key properties
- linearity: filter(f + g) = filter(f) + filter(g)
- shift invariance: behavior invariant to shifting the input
 - · delaying an audio signal
 - · sliding an image around
- Can be modeled mathematically by convolution

Adapted from: S. Marschner

First attempt at a solution

- Let's replace each pixel with an average of all the values in its neighborhood
- Moving average in ID:





Convolution warm-up

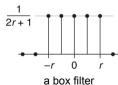
• Same moving average operation, expressed mathematically:

$$b_{\text{smooth}}[i] = \frac{1}{2r+1} \sum_{j=i-r}^{i+r} b[j]$$

Slide credit: S. Marschner

Filters

- Sequence of weights a[j] is called a filter
- Filter is nonzero over its region of support
- usually centered on zero: support radius r
- Filter is normalized so that it sums to 1.0
- this makes for a weighted average, not just any old weighted sum
- Most filters are symmetric about 0
- since for images we usually want to treat left and right the same



Slide credit; S. Marschner

Discrete convolution

• Simple averaging:

$$b_{\text{smooth}}[i] = \frac{1}{2r+1} \sum_{j=i-r}^{i+r} b[j]$$

- every sample gets the same weight
- Convolution: same idea but with weighted average

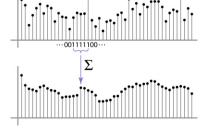
$$(a \star b)[i] = \sum_{j} a[j]b[i-j]$$

- each sample gets its own weight (normally zero far away)
- This is all convolution is: it is a moving weighted average

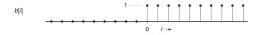
Slide credit: S. Marschner

Convolution and filtering

- Can express sliding average as convolution with a box filter
- $a_{box} = [..., 0, 1, 1, 1, 1, 1, 0, ...]$



Example: box and step



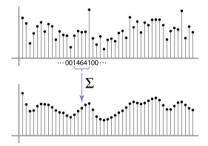
Slide credit: S. Marschner

And in pseudocode...

 $\begin{aligned} & \textbf{function} \text{ convolve}(\text{sequence } a, \text{ sequence } b, \text{ int } r, \text{ int } i \,) \\ & s = 0 \\ & \textbf{for } j = -r \text{ to } r \\ & s = s + a[j]b[i-j] \\ & \textbf{return } s \end{aligned}$

Convolution and filtering

- · Convolution applies with any sequence of weights
- Example: bell curve (gaussian-like) [..., 1, 4, 6, 4, 1, ...]/16



Slide credit: S. Marschner

Key properties

- **Linearity:** filter($f_1 + f_2$) = filter(f_1) + filter(f_2)
- **Shift invariance:** filter(shift(f)) = shift(filter(f))
 - same behavior regardless of pixel location, i.e. the value of the output depends on the pattern in the image neighborhood, not the position of the neighborhood.
- Theoretical result: any linear shift-invariant operator can be represented as a convolution

Slide credit: S. Marschner

Slide credit: S. Lazebnik

Properties in more detail

• Commutative: a * b = b * a

- Conceptually no difference between filter and signal

• Associative: a * (b * c) = (a * b) * c

- Often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$

- This is equivalent to applying one filter: $a * (b_1 * b_2 * b_3)$

• Distributes over addition: a * (b + c) = (a * b) + (a * c)

• Scalars factor out: ka * b = a * kb = k (a * b)

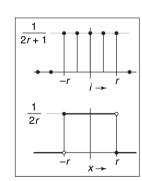
• Identity: unit impulse e = [..., 0, 0, 1, 0, 0, ...],a * e = a

Slide credit: S. Lazebnik

Box filter

$$a_{\text{box},r}[i] = \begin{cases} 1/(2r+1) & |i| \le r, \\ 0 & \text{otherwise.} \end{cases}$$

$$f_{\text{box},r}(x) = \begin{cases} 1/(2r) & -r \le x < r, \\ 0 & \text{otherwise.} \end{cases}$$



Slide credit: S. Marschner

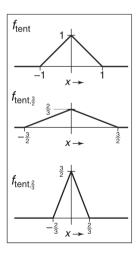
A gallery of filters

- Box filter
- Simple and cheap
- Tent filter
- Linear interpolation
- Gaussian filter
- Very smooth antialiasing filter

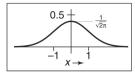
Slide credit: S. Marschner

Tent filter

$$f_{ ext{tent}}(x) = egin{cases} 1 - |x| & |x| < 1, \ 0 & ext{otherwise}; \ f_{ ext{tent},r}(x) = rac{f_{ ext{tent}}(x/r)}{r}. \end{cases}$$



Gaussian filter



$$f_g(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}.$$

Slide credit: S. Marschner

And in pseudocode...

function convolve2d(filter2d a, filter2d b, int i, int i)

$$s = 0$$

r = a.radius

for
$$i' = -r$$
 to r do

for
$$j' = -r$$
 to r do

$$s = s + a[i'][j']b[i - i'][j - j']$$

return s

Discrete filtering in 2D

• Same equation, one more index

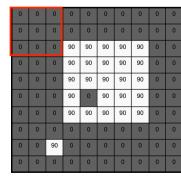
$$(a \star b)[i,j] = \sum_{i',j'} a[i',j']b[i-i',j-j']$$

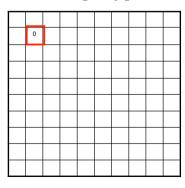
- now the filter is a rectangle you slide around over a grid of numbers
- Usefulness of associativity
- often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
- this is equivalent to applying one filter: $a * (b_1 * b_2 * b_3)$

Slide credit: S. Marschner

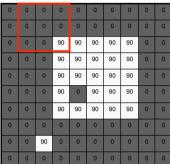
Slide credit: S. Seitz

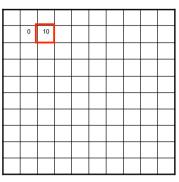
Moving Average In 2D





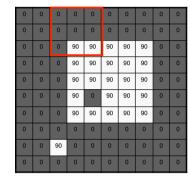
Moving Average In 2D

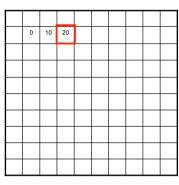




Slide credit: S. Seitz

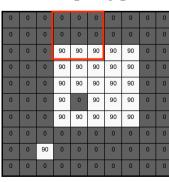
Moving Average In 2D

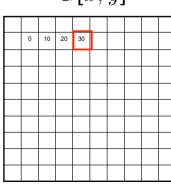




Slide credit: S. Seitz

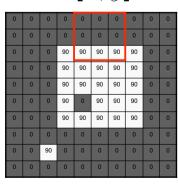
Moving Average In 2D

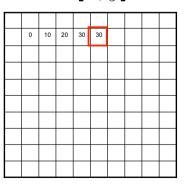




Slide credit: S. Seitz

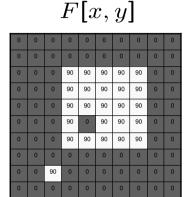
Moving Average In 2D

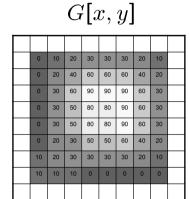




Slide credit: S. Seitz

Moving Average In 2D





Slide credit: S. Seitz

Correlation filtering

Say the averaging window size is $2k+1 \times 2k+1$:

$$G[i,j] = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u,j+v]$$

Attribute uniform Loop over all pixels in neighborhood weight to each pixel around image pixel F[i,j]

Now generalize to allow different weights depending on neighboring pixel's relative position:

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} \underbrace{H[u,v]}_{\text{Non-uniform weights}} F[i+u,j+v]$$

Slide credit: K. Grauman

Image Correlation Filtering

- Center filter g at each pixel in image f
- Multiply weights by corresponding pixels
- Set resulting value in output image h
- g is called a filter, mask, kernel, or template
- Linear filtering is sum of dot product at each pixel position
- Filtering operation called cross-correlation

Slide credit: C. Dver

Correlation filtering

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

This is called cross-correlation, denoted $G = H \otimes F$

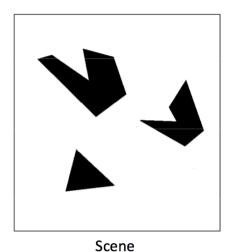
$$G = H \otimes F$$

Filtering an image: replace each pixel with a linear combination of its neighbors.

The filter "kernel" or "mask" H[u,v] is the prescription for the weights in the linear combination.

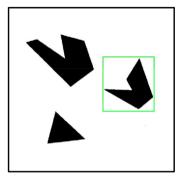
Slide credit: K. Grauman

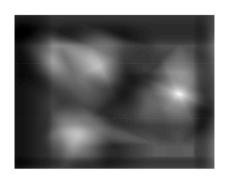
Correlation filtering



Template (mask)

Correlation filtering

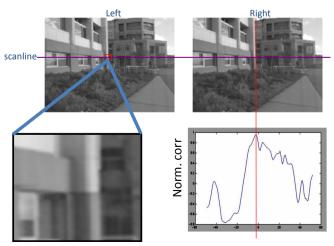




Detected template

Correlation map

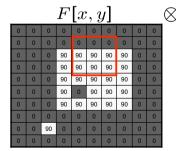
Cross correlation example

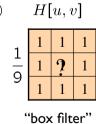


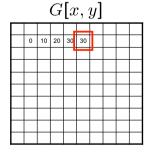
Slide credit: Fei-Fei Li

Averaging filter

• What values belong in the kernel *H* for the moving average example?



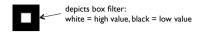




$$G = H \otimes F$$

Slide credit: K. Grauman

Smoothing by averaging



original

filtered

What if the filter size was 5×5 instead of 3×3 ?

Slide credit: K. Grauman

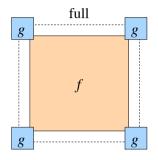
Boundary issues

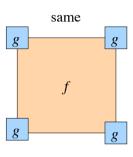
- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

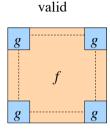
Slide credit: S. Marschner

Boundary issues

- What is the size of the output?
- MATLAB: output size / "shape" options
 - shape = 'full': output size is sum of sizes of f and g
 - shape = 'same': output size is same as f
 - shape = 'valid': output size is difference of sizes of f and g







Slide credit: S. Lazebnik

Boundary issues

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods (MATLAB):

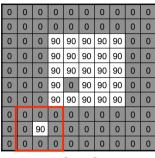
• clip filter (black): imfilter (f, g, 0)

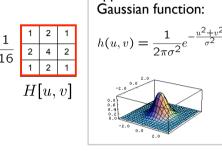
wrap around: imfilter(f, g, 'circular')copy edge: imfilter(f, g, 'replicate')

• reflect across edge: imfilter(f, g, 'symmetric')

Gaussian filter

• What if we want nearest neighboring pixels to have the most influence on the output?





This kernel is an

approximation of a 2d

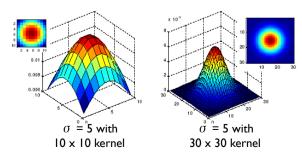
F[x,y]

• Removes high-frequency components from the image ("low-pass filter").

Slide credit: S. Seitz

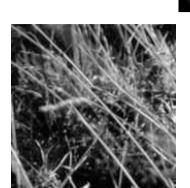
Gaussian filters

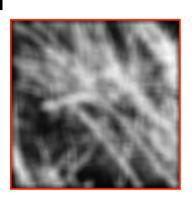
- What parameters matter here?
- **Size** of kernel or mask
 - Note, Gaussian function has infinite support, but discrete filters use finite kernels



Slide credit: K. Grauman

Smoothing with a Gaussian

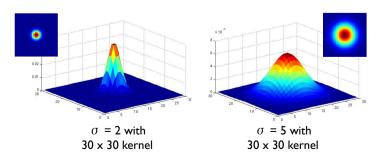




Slide credit: K. Grauman

Gaussian filters

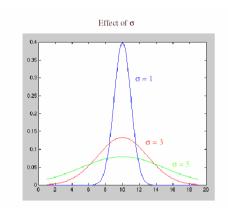
- What parameters matter here?
- Variance of Gaussian: determines extent of smoothing



Slide credit: K. Grauman

Choosing kernel width

• Rule of thumb: set filter half-width to about 3 σ



Slide credit: S. Lazebnik

Matlab

```
>> hsize = 10;
>> sigma = 5;
>> h = fspecial('gaussian' hsize, sigma);

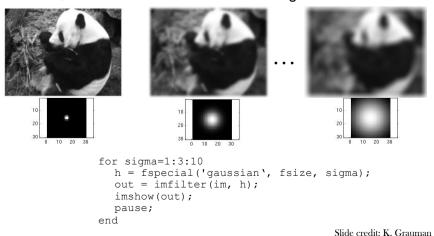
>> mesh(h);
>> imagesc(h);
>> outim = imfilter(im, h); % correlation
>> imshow(outim);

outim
```

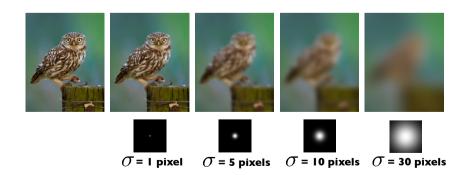
Slide credit: K. Grauman

Smoothing with a Gaussian

Parameter $\,\sigma\,$ is the "scale" / "width" / "spread" of the Gaussian kernel, and controls the amount of smoothing.



Gaussian Filters



Slide credit: C. Dyer

Spatial Resolution and Color

Slide credit: C. Dyer

R

G

В

Blurring the G Component

processed

Slide credit: C. Dyer

Blurring the R Component

original

processed

Slide credit: C. Dyer

Blurring the B Component

original

processed

Slide credit: C. Dyer

"Lab" Color Representation

- A transformation of the colors into a color space that is more
- is more perceptually meaningful: L: luminance, a: red-green, b: blue-yellow

Slide credit: C. Dyer

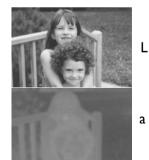
Blurring L

Slide credit: C. Dyer

Blurring a

original

processed



Slide credit: C. Dyer

Blurring b

processed

L

Slide credit: C. Dyer

Separability

- In some cases, filter is separable, and we can factor into two steps:
 - Convolve all rows
 - Convolve all columns

Slide credit: K. Grauman

Separability of the Gaussian filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$

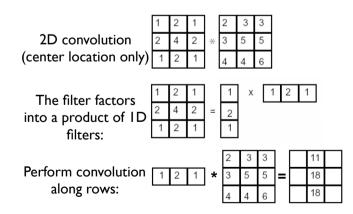
$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Slide credit: D. Lowe

Separability example



Followed by convolution along the remaining column:

Slide credit: K. Grauman

Why is separability useful?

- What is the complexity of filtering an n×n image with an m×m kernel?
 - $O(n^2 m^2)$
- What if the kernel is separable?
 - $O(n^2 m)$

Slide credit: S. Lazebnik

Properties of smoothing filters

- Smoothing
 - Values positive
 - Sum to I → constant regions same as input
 - Amount of smoothing proportional to mask size
 - Remove "high-frequency" components; "low-pass" filter

Slide credit: K. Grauman

Convolution

- Convolution:
 - Flip the filter in both dimensions (bottom to top, right to left)
 - Then apply cross-correlation

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

$$G = H \star F$$

ation for

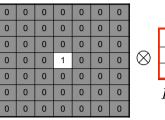
Notation for convolution operator

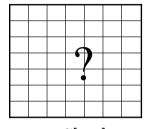
Н

Slide credit: K. Grauman

Filtering an impulse signal

What is the result of filtering the impulse signal (image) *F* with the arbitrary kernel *H*?





F[x, y]

G[x,y]

Slide credit: K. Grauman

Convolution vs. Correlation

- A **convolution** is an integral that expresses the amount of overlap of one function as it is shifted over another function.
 - convolution is a filtering operation
- Correlation compares the similarity of two sets of data.
 Correlation computes a measure of similarity of two input signals as they are shifted by one another. The correlation result reaches a maximum at the time when the two signals match best.
 - correlation is a measure of relatedness of two signals

Slide credit: Fei-Fei Li

Convolution vs. correlation

Convolution

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

$$G = H \star F$$

Cross-correlation

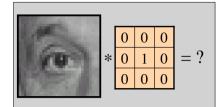
Cross-correlation
$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

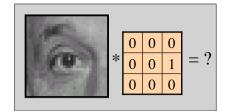
$$G = H \otimes F$$

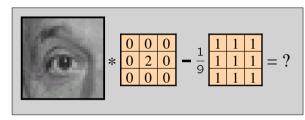
For a Gaussian or box filter, how will the outputs differ? If the input is an impulse signal, how will the outputs differ?

Slide credit: K. Grauman

Predict the outputs using correlation filtering







Slide credit: K. Grauman

Practice with linear filters

Original

Slide credit: D. Lowe

Practice with linear filters

Filtered (no change)

Slide credit: D. Lowe

Practice with linear filters

?

Original

Slide credit: D. Lowe

Practice with linear filters

 ${\sf Original}$

Shifted left by I pixel with correlation

Slide credit: D. Lowe

Practice with linear filters

Original

?

Slide credit: D. Lowe

Practice with linear filters

Original

Blur (with a box filter)

Slide credit: D. Lowe

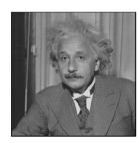
Practice with linear filters

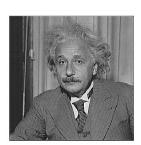
0	0	0
0	2	0
0	0	0

Original

Slide credit: D. Lowe

Filtering examples: sharpening

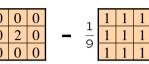




after

Slide credit: K. Grauman

Practice with linear filters



Sharpening filter: accentuates differences with local average

Slide credit: D. Lowe

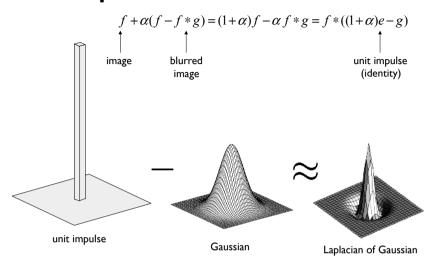
Sharpening

• What does blurring take away?

Let's add it back:

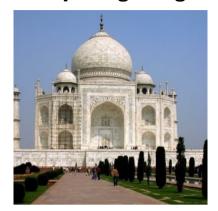
Slide credit: S. Lazebnik

Unsharp mask filter



Slide credit: S. Lazebnik

Sharpening using Unsharp Mask Filter



Original

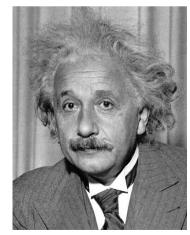
Filtered result

Slide credit: C. Dyer

Unsharp Masking

Slide credit: C. Dyer

Other filters



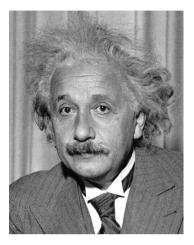
1	0	-1
2	0	-2
1	0	-1

Sobel

Vertical Edge (absolute value)

Slide credit: J. Hays

Other filters



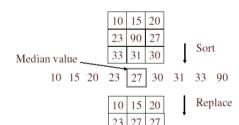
1	2	1	
0	0	0	
-1	-2	-1	

Sobel

Horizontal Edge (absolute value)

Slide credit: J. Hays

Median filter



- No new pixel values introduced
- Removes spikes: good for impulse, salt & pepper noise
- Non-linear filter

Slide credit: K. Grauman

Median filters

- A **Median Filter** operates over a window by selecting the median intensity in the window.
- What advantage does a median filter have over a mean filter?
- Is a median filter a kind of convolution?

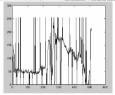
adapted from: S. Seitz

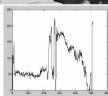
Median

filtered

Median filter

Salt and pepper noise





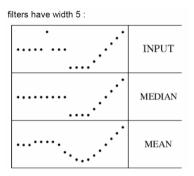
Plots of a row of the image

Matlab: output im = medfilt2(im, [h w]);

Slide credit: M. Hebert

Median filter

- What advantage does median filtering have over Gaussian filtering?
 - Robustness to outliers
 - Median filter is edge preserving



Slide credit: K. Grauman

Nextweek

- Introduction to frequency domain techniques
- The Fourier Transform