BBM413
 Fundamentals of Image Processing

Erkut Erdem
Dept. of Computer Engineering Hacettepe University

Spatial Filtering

Image Filtering

- Image filtering: computes a function of a local neighborhood at each pixel position
- Called "Local operator," "Neighborhood operator," or "Window operator"
- f: image \rightarrow image
- Uses:
- Enhance images
- Noise reduction, smooth, resize, increase contrast, recolor, artistic effects, etc.
- Extract features from images
- Texture, edges, distinctive points, etc.
- Detect patterns
- Template matching, e.g., eye template

Filtering

- The name "filter" is borrowed from frequency domain processing (next week's topic)
- Accept or reject certain frequency components
- Fourier (I807): Periodic functions could be represented as a weighted sum of sines and cosines

Image courtesy of Technology Review

Signals

- A signal is composed of low and high frequency components

high frequency components: oscillatory Neighboring pixels have different brightness values You're either at the edges or noise points

Low/high frequencies vs. fine/coarse-scale details

Original image

Low-frequencies (coarse-scale details) boosted

High-frequencies (fine-scale details) boosted

Signals - Examples

Motivation: noise reduction

- Assume image is degraded with an additive model.
- Then,

Observation = True signal + noise
Observed image $=$ Actual image + noise
low-pass high-pass
filters filters

smooth the image

Common types of noise

- Salt and pepper noise: random occurrences of black and white pixels
- Impulse noise: random occurrences of white pixels
- Gaussian noise:
variations in intensity drawn from a Gaussian normal distribution

Gaussian noise

$$
\begin{array}{r}
f(x, y)=\overbrace{\overparen{f}(x, y)}^{\text {Ideal Image }}+\overbrace{\eta(x, y)}^{\text {Noise process }} \quad \begin{array}{l}
\text { Gaussian i.i.d. ("white") } \\
\eta(x, y) \sim \mathcal{N}(\mu, \sigma)
\end{array} \\
\begin{array}{l}
\text { >> noise }=\text { randn }(\text { size }(i m)) . * \text { sigma; } \\
\gg \text { output }=\text { im }+ \text { noise; }
\end{array}
\end{array}
$$

What is the impact of the sigma?

Motivation: noise reduction

- Make multiple observations of the same static scene
- Take the average
- Even multiple images of the same static scene will not be identical.

Motivation: noise reduction

- Make multiple observations of the same static scene
- Take the average
- Even multiple images of the same static scene will not be identical.
- What if we can't make multiple observations? What if there's only one image?

Image Filtering

- Idea: Use the information coming from the neighboring pixels for processing
- Design a transformation function of the local neighborhood at each pixel in the image
- Function specified by a "filter" or mask saying how to combine values from neighbors.
- Various uses of filtering:
- Enhance an image (denoise, resize, etc)
- Extract information (texture, edges, etc)
- Detect patterns (template matching)

Filtering

- Processing done on a function
- can be executed in continuous form (e.g. analog circuit)
- but can also be executed using sampled representation
- Simple example: smoothing by averaging

Linear filtering

- Filtered value is the linear combination of neighboring pixel values.
- Key properties
- linearity: filter $(f+g)=$ filter $(f)+$ filter (g)
- shift invariance: behavior invariant to shifting the input
- delaying an audio signal
- sliding an image around
- Can be modeled mathematically by convolution

First attempt at a solution

- Let's replace each pixel with an average of all the values in its neighborhood
- Assumptions:
- Expect pixels to be like their neighbors (spatial regularity in images)
- Expect noise processes to be independent from pixel to pixel

First attempt at a solution

- Let's replace each pixel with an average of all the values in its neighborhood
- Moving average in ID:

Convolution warm-up

- Same moving average operation, expressed mathematically:

$$
b_{\text {smooth }}[i]=\frac{1}{2 r+1} \sum_{j=i-r}^{i+r} b[j]
$$

Discrete convolution

- Simple averaging:

$$
b_{\text {smooth }}[i]=\frac{1}{2 r+1} \sum_{j=i-r}^{i+r} b[j]
$$

- every sample gets the same weight
- Convolution: same idea but with weighted average

$$
(a \star b)[i]=\sum_{j} a[j] b[i-j]
$$

- each sample gets its own weight (normally zero far away)
- This is all convolution is: it is a moving weighted average

Filters

- Sequence of weights $a[j]$ is called a filter
- Filter is nonzero over its region of support
- usually centered on zero: support radius r
- Filter is normalized so that it sums to 1.0
- this makes for a weighted average, not just any old weighted sum
- Most filters are symmetric about 0
- since for images we usually want to treat left and right the same

Convolution and filtering

- Can express sliding average as convolution with a box filter
- $a_{\text {box }}=[\ldots, 0, \mathbf{I}, \mathbf{I}, \mathrm{I}, \mathrm{I}, \mathrm{I}, 0, \ldots]$

Example: box and step

$b[i]$

$a[j]$

Slide credit: S. Marschner

Convolution and filtering

- Convolution applies with any sequence of weights
- Example: bell curve (gaussian-like) [..., I, 4, 6, 4, I, ...]/I6

And in pseudocode...

function convolve(sequence a, sequence b, int r, int i)

$$
\begin{aligned}
& s=0 \\
& \text { for } j=-r \text { to } r \\
& \quad s=s+a[j] b[i-j]
\end{aligned}
$$

return s

Key properties

- Linearity: $\operatorname{filter}\left(f_{1}+f_{2}\right)=$ filter $\left(f_{1}\right)+\operatorname{filter}\left(f_{2}\right)$
- Shift invariance: filter(shift(f)) = shift(filter(f))
- same behavior regardless of pixel location, i.e. the value of the output depends on the pattern in the image neighborhood, not the position of the neighborhood.
- Theoretical result: any linear shift-invariant operator can be represented as a convolution

Properties in more detail

- Commutative: $a * b=b * a$
- Conceptually no difference between filter and signal
- Associative: $a *\left(b^{*} c\right)=(a * b) * c$
- Often apply several filters one after another: $\left(\left(\left(a * b_{1}\right) * b_{2}\right) * b_{3}\right)$
- This is equivalent to applying one filter: $\mathrm{a} *\left(b_{1} * b_{2} * b_{3}\right)$
- Distributes over addition: $a^{*}(b+c)=(a * b)+\left(a^{*} c\right)$
- Scalars factor out: $k a * b=a * k b=k(a * b)$
- Identity: unit impulse $e=[\ldots, 0,0, I, 0,0, \ldots]$, $a^{*} \mathrm{e}=a$

A gallery of filters

- Box filter
- Simple and cheap
- Tent filter
- Linear interpolation
- Gaussian filter
- Very smooth antialiasing filter

Box filter

$$
\begin{aligned}
& a_{\mathrm{box}, r}[i]= \begin{cases}1 /(2 r+1) & |i| \leq r \\
0 & \text { otherwise }\end{cases} \\
& f_{\mathrm{box}, r}(x)= \begin{cases}1 /(2 r) & -r \leq x<r \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Slide credit: S. Marschner

Tent filter

$$
\begin{gathered}
f_{\text {tent }}(x)= \begin{cases}1-|x| & |x|<1 \\
0 & \text { otherwise } ;\end{cases} \\
f_{\text {tent }, r}(x)=\frac{f_{\text {tent }}(x / r)}{r} .
\end{gathered}
$$

Slide credit: S. Marschner

Gaussian filter

$$
f_{g}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}
$$

Discrete filtering in 2D

- Same equation, one more index

$$
(a \star b)[i, j]=\sum_{i^{\prime}, j^{\prime}} a\left[i^{\prime}, j^{\prime}\right] b\left[i-i^{\prime}, j-j^{\prime}\right]
$$

- now the filter is a rectangle you slide around over a grid of numbers
- Usefulness of associativity
- often apply several filters one after another: $\left(\left(\left(a * b_{1}\right) * b_{2}\right) * b_{3}\right)$
- this is equivalent to applying one filter: $a *\left(b_{1} * b_{2} * b_{3}\right)$

And in pseudocode...

$$
\begin{aligned}
& \text { function convolve } 2 \mathrm{~d}(\text { filter } 2 \mathrm{~d} a \text {, filter } 2 \mathrm{~d} b \text {, int } i \text {, int } j \text {) } \\
& s=0 \\
& r=a \text {.radius } \\
& \text { for } i^{\prime}=-r \text { to } r \text { do } \\
& \quad \text { for } j^{\prime}=-r \text { to } r \text { do } \\
& \quad s=s+a\left[i^{\prime}\right]\left[j^{\prime}\right] b\left[i-i^{\prime}\right]\left[j-j^{\prime}\right]
\end{aligned}
$$

return s

Moving Average In 2D
$F[x, y]$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$G[x, y]$

Slide credit: S. Seitz

Moving Average In 2D

$$
F[x, y]
$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$G[x, y]$

	0	10							

Slide credit: S. Seitz

Moving Average In 2D

$$
F[x, y]
$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0

$G[x, y]$

	0	10	20						

Slide credit: S. Seitz

Moving Average In 2D
$\pi[\overparen{H}, ?$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$\because[J, ?$

	0	10	20	30					

Slide credit: S. Seitz

Moving Average In 2D

$\Pi[\overparen{H}, ?$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

U[, $\because]$

	0	10	20	30	30				

Moving Average In 2D

$H[\sqrt{H}, ?$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$\because[\sqrt{T}[\because]$

	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	
	0	30	60	90	90	90	60	30	
	0	30	50	80	80	90	60	30	
	0	30	50	80	80	90	60	30	
	10	20	30	50	50	60	40	20	
	10	10	10	0	0	0	0	0	

Image Correlation Filtering

- Center filter g at each pixel in image f
- Multiply weights by corresponding pixels
- Set resulting value in output image h
- g is called a filter, mask, kernel, or template
- Linear filtering is sum of dot product at each pixel position
- Filtering operation called cross-correlation

Correlation filtering

Say the averaging window size is $2 k+1 \times 2 k+1$:

$$
G[i, j]=\underbrace{\frac{1}{(2 k+1)^{2}}}_{\begin{array}{l}
\text { Attribute uniform } \\
\text { weight to each pixel }
\end{array}} \underbrace{\sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u, j+v]}_{\begin{array}{l}
\text { Loop over all pixels in neighborhood } \\
\text { around image pixel F[i,j] }
\end{array}}
$$

Now generalize to allow different weights depending on neighboring pixel's relative position:

$$
G[i, j]=\sum_{u=-k}^{k} \sum_{v=-k}^{k} \underbrace{H[u, v]} F[i+u, j+v]
$$

Non-uniform weights

Correlation filtering

$$
G[i, j]=\sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i+u, j+v]
$$

This is called cross-correlation, denoted

$$
G=H \otimes F
$$

Filtering an image: replace each pixel with a linear combination of its neighbors.

The filter "kernel" or "mask" $H[u, v]$ is the prescription for the weights in the linear combination.

Correlation filtering

Template (mask)

Scene

Correlation filtering

Detected template

Correlation map

Cross correlation example

Slide credit: Fei-Fei Li

Averaging filter

- What values belong in the kernel H for the moving average example?

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$
\begin{gathered}
H[u, v] \\
\frac{1}{9} \begin{array}{|l|l|l|}
\hline 1 & 1 & 1 \\
\hline 9 & ? & 1 \\
\hline 1 & 1 & 1 \\
\hline
\end{array} \\
\text { "box filter" }
\end{gathered}
$$

$$
G=H \otimes F
$$

Smoothing by averaging

\longleftarrow| depicts box filter: |
| :--- |
| white $=$ high value, black = low value |

original

filtered

What if the filter size was 5×5 instead of 3×3 ?

Boundary issues

- What is the size of the output?
- MATLAB: output size / "shape" options
- shape = 'full': output size is sum of sizes of f and g
- shape = 'same': output size is same as f
- shape = 'valid': output size is difference of sizes of f and g

same

valid

Boundary issues

- What about near the edge?
- the filter window falls off the edge of the image
- need to extrapolate
- methods:
- clip filter (black)
- wrap around
- copy edge
- reflect across edge

Boundary issues

- What about near the edge?
- the filter window falls off the edge of the image
- need to extrapolate
- methods (MATLAB):
- clip filter (black):
- wrap around:
- copy edge:
- reflect across edge:

```
imfilter(f, g, 0)
```

```
imfilter(f, g, 'circular')
imfilter(f, g, 'replicate')
imfilter(f, g, 'symmetric')
```


Gaussian filter

- What if we want nearest neighboring pixels to have the most influence on the output?

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

This kernel is an approximation of a 2d Gaussian function:

$$
h(u, v)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{u^{2}+v^{2}}{\sigma^{2}}}
$$

- Removes high-frequency components from the image ("low-pass filter").

Smoothing with a Gaussian

Slide credit: K. Grauman

Gaussian filters

- What parameters matter here?
- Size of kernel or mask
- Note, Gaussian function has infinite support, but discrete filters use finite kernels

10×10 kernel

Gaussian filters

- What parameters matter here?
- Variance of Gaussian: determines extent of smoothing

Choosing kernel width

- Rule of thumb: set filter half-width to about 3σ

Effect of σ

Matlab

Slide credit: K. Grauman

Smoothing with a Gaussian

Parameter σ is the "scale" / "width" / "spread" of the Gaussian kernel, and controls the amount of smoothing.


```
for sigma=1:3:10
    h = fspecial('gaussian', fsize, sigma);
    out = imfilter(im, h);
    imshow (out);
    pause;
end
```


Gaussian Filters

Spatial Resolution and Color

original

B

Blurring the G Component

original

processed

Slide credit: C. Dyer

Blurring the \mathbf{R} Component

original

processed

B

Slide credit: C. Dyer

Blurring the B Component

Slide credit: C. Dyer

"Lab" Color Representation

L A transformation of the colors into a color space that is more
a perceptually meaningful:
L: luminance,
a: red-green, b: blue-yellow
b

Blurring L

original

processed

Slide credit: C. Dyer

Blurring a

original

processed

b

Slide credit: C. Dyer

Blurring b

original

processed

a
b

Slide credit: C. Dyer

Separability

- In some cases, filter is separable, and we can factor into two steps:
- Convolve all rows
- Convolve all columns

Separability of the Gaussian filter

$$
\begin{aligned}
\mathcal{G}_{\sigma}(x, y) & =\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}} \\
& =\left(\frac{1}{\sqrt{2 \pi} \sigma} \exp ^{\left.-\frac{x^{2}}{2 \sigma^{2}}\right)\left(\frac{1}{\sqrt{2 \pi} \sigma} \exp ^{-\frac{y^{2}}{2 \sigma^{2}}}\right)}\right.
\end{aligned}
$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y In this case, the two functions are the (identical) 1D Gaussian

Separability example

The filter factors into a product of ID filters:

1	2	1		
2	4	2		
1	2	1	$=$	1
:---				
2				
1				

x

Perform convolution along rows:

Followed by convolution
along the remaining column:

Why is separability useful?

- What is the complexity of filtering an $n \times n$ image with an $m \times m$ kernel?
$-\mathrm{O}\left(\mathrm{n}^{2} \mathrm{~m}^{2}\right)$
- What if the kernel is separable?
$-\mathrm{O}\left(\mathrm{n}^{2} \mathrm{~m}\right)$

Properties of smoothing filters

- Smoothing
- Values positive
- Sum to I \rightarrow constant regions same as input
- Amount of smoothing proportional to mask size
- Remove "high-frequency" components; "low-pass" filter

Filtering an impulse signal

What is the result of filtering the impulse signal (image) F with the arbitrary kernel H ?

$G[x, y]$

Convolution

- Convolution:
- Flip the filter in both dimensions (bottom to top, right to left)
- Then apply cross-correlation

$$
G[i, j]=\sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i-u, j-v]
$$

$G=H \underset{\uparrow}{\star} F$
Notation for convolution operator

Slide credit: K. Grauman

Convolution vs. Correlation

- A convolution is an integral that expresses the amount of overlap of one function as it is shifted over another function.
- convolution is a filtering operation
- Correlation compares the similarity of two sets of data. Correlation computes a measure of similarity of two input signals as they are shifted by one another. The correlation result reaches a maximum at the time when the two signals match best.
- correlation is a measure of relatedness of two signals

Convolution vs. correlation

Convolution

$$
\begin{aligned}
G[i, j] & =\sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i-u, j-v] \\
G & =H \star F
\end{aligned}
$$

Cross-correlation

$$
\begin{aligned}
G[i, j] & =\sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i+u, j+v] \\
G & =H \otimes F
\end{aligned}
$$

For a Gaussian or box filter, how will the outputs differ?
If the input is an impulse signal, how will the outputs differ?

Predict the outputs using correlation filtering

Practice with linear filters

0	0	0
0	1	0
0	0	0

$?$

Original

Practice with linear filters

Original

0	0	0
0	1	0
0	0	0

Filtered (no change)

Practice with linear filters

0	0	0
0	0	1
0	0	0

?

Original

Practice with linear filters

Original

Shifted left by I pixel with correlation

Practice with linear filters

?

Original

Practice with linear filters

Original

Blur (with a box filter)

Practice with linear filters

Original

Practice with linear filters

0	0	0
0	2	0
0	0	0

Original

Sharpening filter: accentuates differences with local average

Filtering examples: sharpening

before

after

Sharpening

- What does blurring take away?

Let's add it back:

Slide credit: S. Lazebnik

Unsharp mask filter

Slide credit: S. Lazebnik

Sharpening using Unsharp Mask Filter

Original

Filtered result

Unsharp Masking

Slide credit: C. Dyer

Other filters

Vertical Edge (absolute value)
Slide credit: J. Hays

Other filters

Horizontal Edge
(absolute value)
Slide credit: J. Hays

1	2	1
0	0	0
-1	-2	-1

Sobel

Median filters

- A Median Filter operates over a window by selecting the median intensity in the window.
- What advantage does a median filter have over a mean filter?
- Is a median filter a kind of convolution?

Median filter

- No new pixel values introduced
- Removes spikes: good for impulse, salt \& pepper noise
- Non-linear filter

Median filter

Plots of a row of the image
Matlab: output im = medfilt2(im, [h w]);

Median filter

- What advantage does median filtering have over Gaussian filtering?
- Robustness to outliers
- Median filter is edge preserving
filters have width 5 :

Nextweek

- Introduction to frequency domain techniques
- The Fourier Transform

