BBM 413 Fundamentals of Image Processing

Erkut Erdem Dept. of Computer Engineering Hacettepe University

Spatial Filtering

Image Filtering

- <u>Image filtering</u>: computes a function of a *local neighborhood* at each pixel position
- Called "Local operator," "Neighborhood operator," or "Window operator"
- *f*: image → image
- Uses:
 - Enhance images
 - Noise reduction, smooth, resize, increase contrast, recolor, artistic effects, etc.
 - Extract features from images
 - Texture, edges, distinctive points, etc.
 - Detect patterns
 - Template matching, e.g., eye template

Filtering

- The name "filter" is borrowed from frequency domain processing (next week's topic)
- Accept or reject certain frequency components
- Fourier (1807): Periodic functions could be represented as a weighted sum of sines and cosines

Image courtesy of Technology Review

Signals

• A signal is composed of low and high frequency components

low frequency components: smooth / piecewise smooth Neighboring pixels have similar brightness values You're within a region

high frequency components: oscillatory Neighboring pixels have different brightness values You're either at the edges or noise points

Low/high frequencies vs. fine/coarse-scale details

Original image

Low-frequencies (coarse-scale details) boosted

High-frequencies (fine-scale details) boosted

Signals – Examples

Motivation: noise reduction

- Assume image is degraded with an additive model.
- Then,

Observation = True signal + noise Observed image = Actual image + noise low-pass high-pass filters filters \downarrow smooth the image

Common types of noise

- Salt and pepper noise: random occurrences of black and white pixels
- Impulse noise: random occurrences of white pixels

- Gaussian noise:

variations in intensity drawn from a Gaussian normal distribution

Original

Salt and pepper noise

Impulse noise

Gaussian noise Slide credit: S. Seitz

Gaussian noise

 $f(x,y) = \overbrace{\widehat{f}(x,y)}^{\text{Ideal Image}} + \overbrace{\eta(x,y)}^{\text{Noise process}}$

Gaussian i.i.d. ("white") noise: $\eta(x,y) \sim \mathcal{N}(\mu,\sigma)$

```
>> noise = randn(size(im)).*sigma;
>> output = im + noise;
```

What is the impact of the sigma?

Slide credit: M. Hebert

Motivation: noise reduction

- Make multiple observations of the same static scene
- Take the average
- Even multiple images of the same static scene will not be identical.

Motivation: noise reduction

- Make multiple observations of the same static scene
- Take the average
- Even multiple images of the same static scene will not be identical.
- What if we can't make multiple observations?
 What if there's only one image?

Adapted from: K. Grauman

Image Filtering

- <u>Idea:</u> Use the information coming from the neighboring pixels for processing
- Design a transformation function of the local neighborhood at each pixel in the image
 - Function specified by a "filter" or mask saying how to combine values from neighbors.
- Various uses of filtering:
 - Enhance an image (denoise, resize, etc)
 - Extract information (texture, edges, etc)
 - Detect patterns (template matching)

Filtering

- Processing done on a function
- can be executed in continuous form (e.g. analog circuit)
- but can also be executed using sampled representation
- Simple example: smoothing by averaging

Linear filtering

- Filtered value is the linear combination of neighboring pixel values.
- Key properties
- linearity: filter(f + g) = filter(f) + filter(g)
- shift invariance: behavior invariant to shifting the input
 - delaying an audio signal
 - sliding an image around
- Can be modeled mathematically by convolution

First attempt at a solution

- Let's replace each pixel with an average of all the values in its neighborhood
- Assumptions:
 - Expect pixels to be like their neighbors (spatial regularity in images)
 - Expect noise processes to be independent from pixel to pixel

First attempt at a solution

- Let's replace each pixel with an average of all the values in its neighborhood
- Moving average in ID:

Slide credit: S. Marschner

Convolution warm-up

• Same moving average operation, expressed mathematically:

$$b_{\text{smooth}}[i] = \frac{1}{2r+1} \sum_{j=i-r}^{i+r} b[j]$$

Discrete convolution

• Simple averaging:

$$b_{\text{smooth}}[i] = \frac{1}{2r+1} \sum_{j=i-r}^{i+r} b[j]$$

- every sample gets the same weight
- Convolution: same idea but with weighted average

$$(a \star b)[i] = \sum_{j} a[j]b[i-j]$$

- each sample gets its own weight (normally zero far away)
- This is all convolution is: it is a **moving weighted average**

Filters

- Sequence of weights a[j] is called a filter
- Filter is nonzero over its region of support
- usually centered on zero: support radius r
- Filter is normalized so that it sums to 1.0
- this makes for a weighted average, not just any old weighted sum
- Most filters are symmetric about 0
- since for images we usually want to treat left and right the same

Convolution and filtering

- Can express sliding average as convolution with a box filter
- $a_{\text{box}} = [..., 0, 1, 1, 1, 1, 1, 0, ...]$

Example: box and step

Convolution and filtering

- Convolution applies with any sequence of weights
- Example: bell curve (gaussian-like) [..., I, 4, 6, 4, I, ...]/16

And in pseudocode...

function convolve(sequence a, sequence b, int r, int i)

$$s = 0$$

for $j = -r$ to r
 $s = s + a[j]b[i - j]$
return s

Key properties

- **Linearity:** filter $(f_1 + f_2) = filter(f_1) + filter(f_2)$
- Shift invariance: filter(shift(f)) = shift(filter(f))
 - same behavior regardless of pixel location, i.e. the value of the output depends on the pattern in the image neighborhood, not the position of the neighborhood.
- Theoretical result: any linear shift-invariant operator can be represented as a convolution

Properties in more detail

- Commutative: a * b = b * a
 - Conceptually no difference between filter and signal
- Associative: a * (b * c) = (a * b) * c
 - Often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
 - This is equivalent to applying one filter: $a * (b_1 * b_2 * b_3)$
- Distributes over addition: a * (b + c) = (a * b) + (a * c)
- Scalars factor out: ka * b = a * kb = k (a * b)
- Identity: unit impulse e = [..., 0, 0, 1, 0, 0, ...],
 a * e = a

A gallery of filters

- Box filter
- Simple and cheap
- Tent filter
- Linear interpolation
- Gaussian filter
- Very smooth antialiasing filter

Box filter

$$a_{\text{box},r}[i] = \begin{cases} 1/(2r+1) & |i| \le r, \\ 0 & \text{otherwise} \end{cases}$$

•

$$f_{\text{box},r}(x) = \begin{cases} 1/(2r) & -r \le x < r, \\ 0 & \text{otherwise.} \end{cases}$$

Tent filter

$$f_{\text{tent}}(x) = \begin{cases} 1 - |x| & |x| < 1, \\ 0 & \text{otherwise}; \end{cases}$$
$$f_{\text{tent},r}(x) = \frac{f_{\text{tent}}(x/r)}{r}.$$

Slide credit: S. Marschner

Gaussian filter

$$f_g(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}.$$

Discrete filtering in 2D

• Same equation, one more index

$$(a \star b)[i, j] = \sum_{i', j'} a[i', j'] b[i - i', j - j']$$

- now the filter is a rectangle you slide around over a grid of numbers
- Usefulness of associativity
- often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
- this is equivalent to applying one filter: $a * (b_1 * b_2 * b_3)$

And in pseudocode...

function convolve2d(filter2d a, filter2d b, int i, int j) s = 0 r = a.radius for i' = -r to r do for j' = -r to r do s = s + a[i'][j']b[i - i'][j - j']

return s

F[x, y]

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

F[x, y]

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

F[x, y]

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

F[x, y]

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30			

F[x, y]

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30		

Moving Average In 2D

F[x, y]

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

Image Correlation Filtering

- Center filter g at each pixel in image f
- Multiply weights by corresponding pixels
- Set resulting value in output image h
- g is called a **filter**, **mask**, **kernel**, or **template**
- Linear filtering is sum of dot product at each pixel position
- Filtering operation called **cross-correlation**

Say the averaging window size is $2k+1 \times 2k+1$:

$$G[i, j] = \frac{1}{(2k+1)^2} \sum_{\substack{u=-k}}^{k} \sum_{\substack{v=-k}}^{k} F[i+u, j+v]$$

Attribute uniform
weight to each pixel Loop over all pixels in neighborhood
around image pixel F[i,j]

Now generalize to allow different weights depending on neighboring pixel's relative position:

$$G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} \frac{H[u, v]F[i + u, j + v]}{\prod_{k \in V} Non-uniform \text{ weights}}$$

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

This is called cross-correlation, denoted $G = H \otimes F$

Filtering an image: replace each pixel with a linear combination of its neighbors.

The filter "kernel" or "mask" H[u,v] is the prescription for the weights in the linear combination.

Template (mask)

Scene

Detected template

Correlation map

Cross correlation example

Slide credit: Fei-Fei Li

Averaging filter

• What values belong in the kernel H for the moving average example?

 $G = H \otimes F$

Smoothing by averaging

depicts box filter: white = high value, black = low value

original

filtered

What if the filter size was 5×5 instead of 3×3 ?

Boundary issues

- What is the size of the output?
- MATLAB: output size / "shape" options
 - shape = 'full': output size is sum of sizes of f and g
 - shape = 'same': output size is same as f
 - shape = 'valid': output size is difference of sizes of f and g

Slide credit: S. Lazebnik

Boundary issues

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

Slide credit: S. Marschner

Boundary issues

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods (MATLAB):
 - clip filter (black): imfilter(f, g, 0)
 - wrap around:
 - copy edge:
 - reflect across edge:
- imfilter(f, g, 0) imfilter(f, g, `circular') imfilter(f, g, `replicate') imfilter(f, g, `symmetric')

Gaussian filter

• What if we want nearest neighboring pixels to have the most influence on the output?

 Removes high-frequency components from the image ("low-pass filter").

Slide credit: S. Seitz

Smoothing with a Gaussian

Gaussian filters

- What parameters matter here?
- Size of kernel or mask
 - Note, Gaussian function has infinite support, but discrete filters use finite kernels

Gaussian filters

- What parameters matter here?
- **Variance** of Gaussian: determines extent of smoothing

Choosing kernel width

• Rule of thumb: set filter half-width to about 3 σ

Slide credit: S. Lazebnik

Matlab

```
>> hsize = 10;
>> sigma = 5;
>> h = fspecial('gaussian' hsize, sigma);
```


- >> imagesc(h);
- >> outim = imfilter(im, h); % correlation
- >> imshow(outim);

Smoothing with a Gaussian

Parameter σ is the "scale" / "width" / "spread" of the Gaussian kernel, and controls the amount of smoothing.

Gaussian Filters

Spatial Resolution and Color

Blurring the G Component

original

Blurring the R Component

original

processed

Blurring the B Component

original

processed

"Lab" Color Representation

L

a

b

A transformation
of the colors into
a color space that
is more
perceptually
meaningful:
L: luminance,
a: red-green,
b: blue-yellow

Blurring L

original

processed

Slide credit: C. Dyer

b

Blurring a

original

processed

Blurring b

original

processed

Separability

- In some cases, filter is separable, and we can factor into two steps:
 - Convolve all rows
 - Convolve all columns

Separability of the Gaussian filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$
$$= \left(\frac{1}{\sqrt{2\pi\sigma}} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi\sigma}} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Separability example

Followed by convolution along the remaining column:

Why is separability useful?

 What is the complexity of filtering an n×n image with an m×m kernel?

 $-O(n^2 m^2)$

• What if the kernel is separable?

 $-O(n^2 m)$

Properties of smoothing filters

• <u>Smoothing</u>

- Values positive
- Sum to I \rightarrow constant regions same as input
- Amount of smoothing proportional to mask size
- Remove "high-frequency" components; "low-pass" filter

Filtering an impulse signal

What is the result of filtering the impulse signal (image) F with the arbitrary kernel H?

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

G[x, y]

F[x, y]

Convolution

- Convolution:
 - Flip the filter in both dimensions (bottom to top, right to left)
 - Then apply cross-correlation

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

Convolution vs. Correlation

- A **convolution** is an integral that expresses the amount of overlap of one function as it is shifted over another function.
 - convolution is a filtering operation
- **Correlation** compares the **similarity** of **two** sets of **data**. Correlation computes a measure of similarity of two input signals as they are shifted by one another. The correlation result reaches a maximum at the time when the two signals match best.
 - correlation is a measure of relatedness of two signals

Convolution vs. correlation

Convolution

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

$$G = H \star F$$

Cross-correlation

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

$$G = H \otimes F$$

For a Gaussian or box filter, how will the outputs differ? If the input is an impulse signal, how will the outputs differ?

Slide credit: K. Grauman

Predict the outputs using correlation filtering

Slide credit: K. Grauman

Original

Original

Filtered (no change)

Original

Original

Shifted left by I pixel with correlation

Original

Original

Blur (with a box filter)

Original

Original

Sharpening filter: accentuates differences with local average

Filtering examples: sharpening

before

after

Slide credit: K. Grauman

Sharpening

• What does blurring take away?

╋

Let's add it back:

Slide credit: S. Lazebnik

Unsharp mask filter

Slide credit: S. Lazebnik

Sharpening using Unsharp Mask Filter

Original

Filtered result

Slide credit: C. Dyer

Unsharp Masking

Slide credit: C. Dyer

Other filters

1	0	-1
2	0	-2
1	0	-1

Sobel

Vertical Edge (absolute value)

Slide credit: J. Hays

Other filters

1	2	1	
0	0	0	
-1	-2	-1	

Sobel

Horizontal Edge (absolute value)

Slide credit: J. Hays

Median filters

- A **Median Filter** operates over a window by selecting the median intensity in the window.
- What advantage does a median filter have over a mean filter?
- Is a median filter a kind of convolution?

Median filter

- No new pixel values introduced
- Removes spikes: good for impulse, salt & pepper noise
- Non-linear filter

Slide credit: K. Grauman

Median filter

Salt and pepper[—] noise

Plots of a row of the image
Matlab:output im = medfilt2(im, [h w]);

Slide credit: M. Hebert

Median

filtered

Median filter

- What advantage does median filtering have over Gaussian filtering?
 - Robustness to outliers
 - Median filter is edge preserving

filters have width 5 :

Slide credit: K. Grauman

Nextweek

- Introduction to frequency domain techniques
- The Fourier Transform