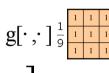
BBM 413 Fundamentals of Image Processing

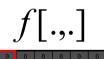
Erkut Erdem Dept. of Computer Engineering Hacettepe University

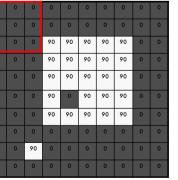
Frequency Domain Techniques – Part I

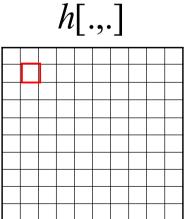
Review – Spatial Filtering



Slide credit: S. Seitz







 $h[m,n] = \sum_{k=1}^{\infty} g[k,l] f[m+k,n+l]$

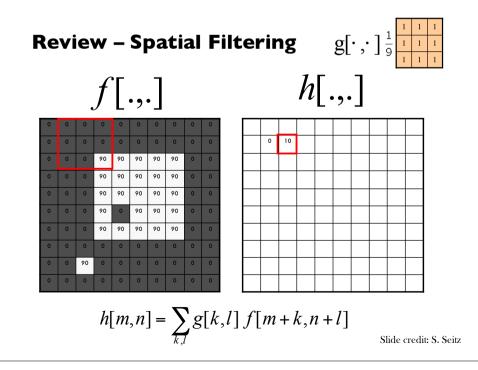
Review - Point Operations

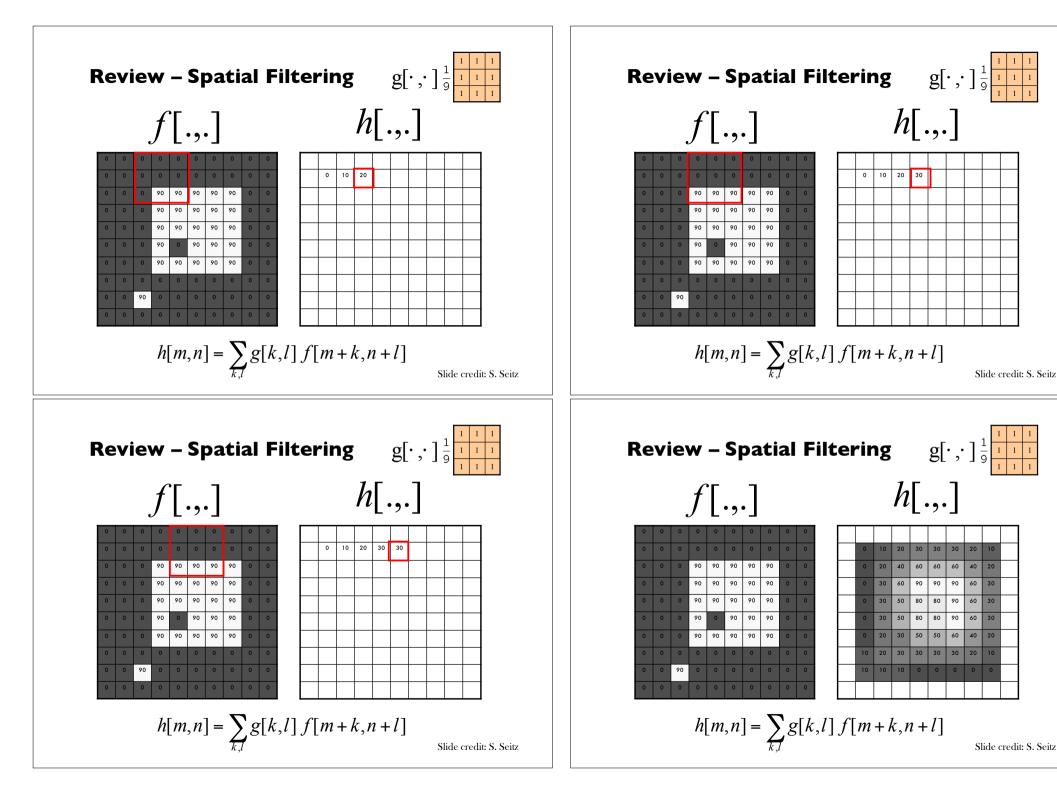
- Smallest possible neighborhood is of size 1x1
- Process each point independently of the others
- Output image g depends only on the value of f at a single point (x,y)
- Transformation function T remaps the sample's value:

s = T(r)

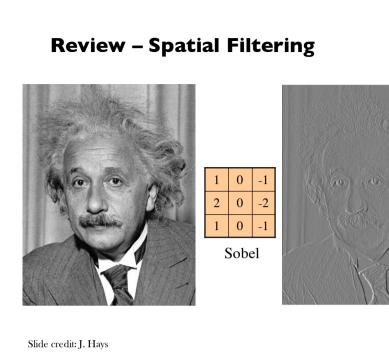
where

- r is the value at the point in question
- s is the new value in the processed result
- T is a intensity transformation function



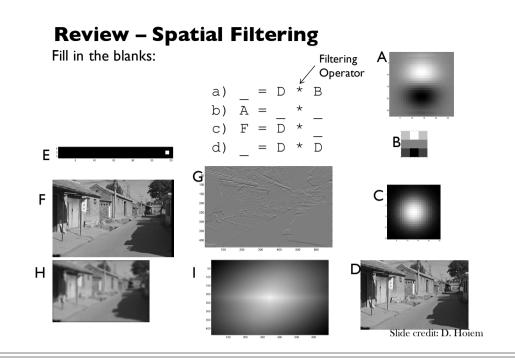


Slide credit: S. Seitz

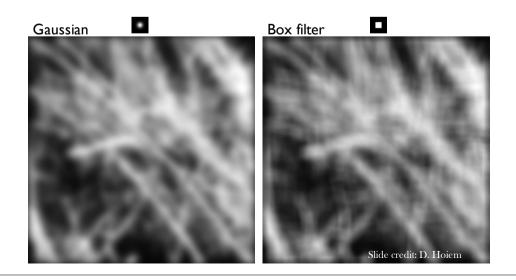


Today

- Frequency domain techniques
- Images in terms of frequency
- Fourier Series
- Convolution Theorem



Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?



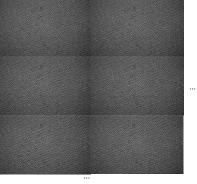
Why does a lower resolution image still make sense to us? What do we lose?

Image: http://www.flickr.com/photos/igorms/136916757/

Slide credit: D. Hoiem

Answer to these questions?

- Thinking images in terms of frequency.
- Treat images as infinite-size, continuous periodic functions.



How is it that a 4MP image can be compressed to a few hundred KB without a noticeable change?

Slide credit: J. Hays

Jean Baptiste Joseph Fourier (1768-1830)

had crazy idea (1807):

Any univariate function can be rewritten as a weighted sum of sines and cosines of different frequencies.

Slide credit: A. Efros

Jean Baptiste Joseph Fourier (1768-1830) ...the manner in which the author arrives at these had crazy idea equations is not exempt of difficulties and ... his analysis had crazy idea (1807): to integrate them still leaves something to be desired Any univariate fu **Any** univariate function can be on the score of generality and even rigour. rewritten as a weighted sum of rewritten as a wei sines and cosines sines and cosines of different frequencies. frequencies. Don't believe it?

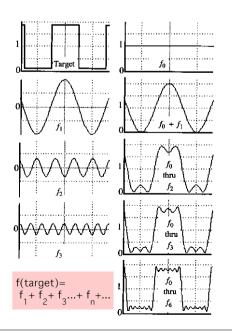
- Neither did Lagrange, Laplace, Poisson and other big wigs
- Not translated into English until 1878!

A sum of sines

Our building block:

$$A\sin(\omega x + \phi)$$

Add enough of them to get any signal f(x) you want!



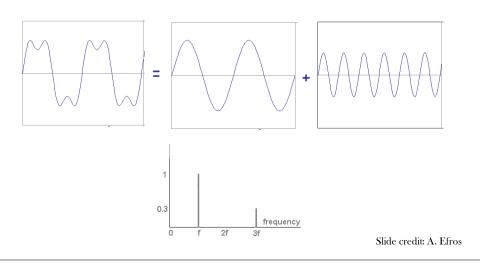
Jean Baptiste Joseph Fourier (1768-1830)

- Don't believe it?
 - Neither did Lagrange, Laplace, Poisson and other big wigs
 - Not translated into English until 1878!
- But it's (mostly) true! • - called Fourier Series
 - there are some subtle restrictions

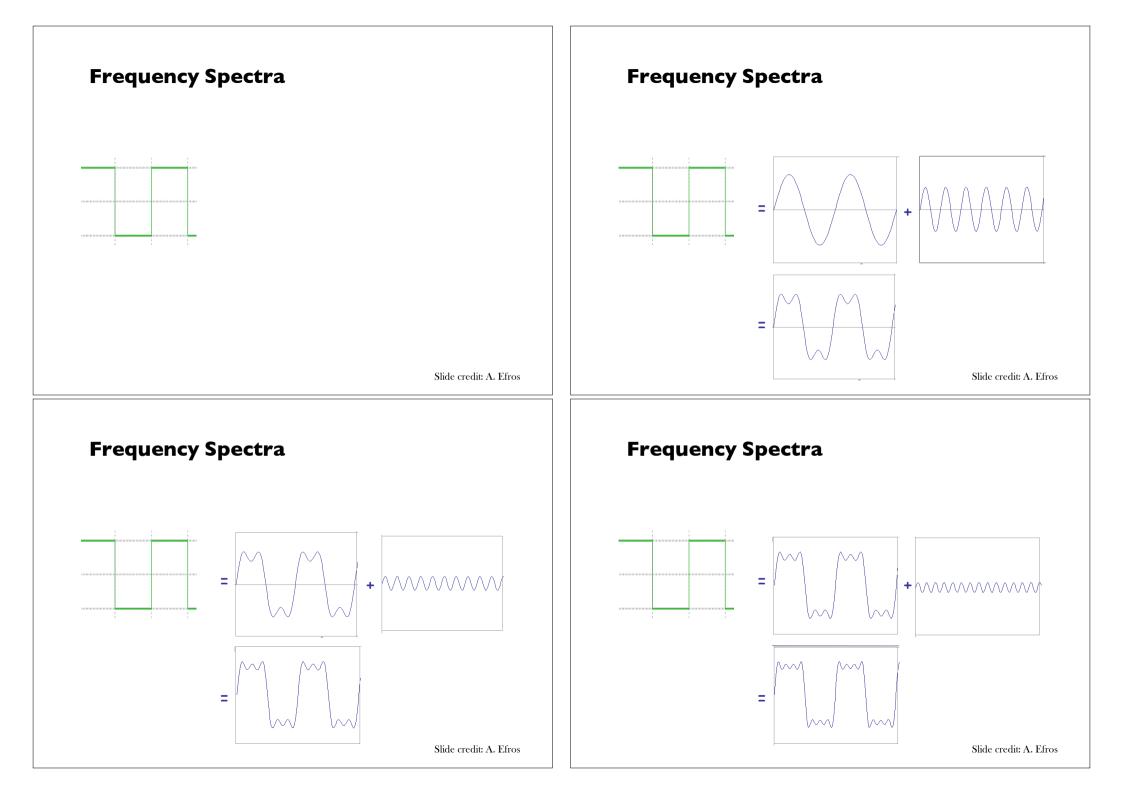
Slide credit: A. Efros

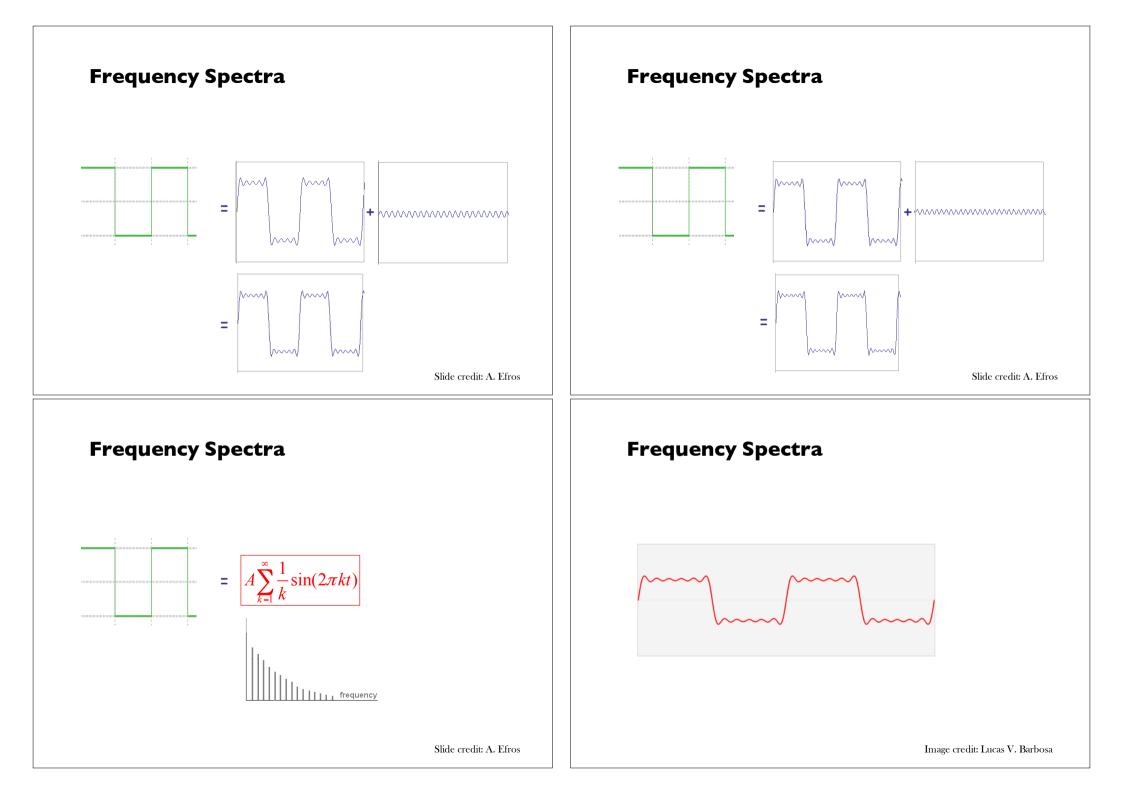
Frequency Spectra

• example: $g(t) = \sin(2\pi f t) + (1/3)\sin(2\pi(3f) t)$



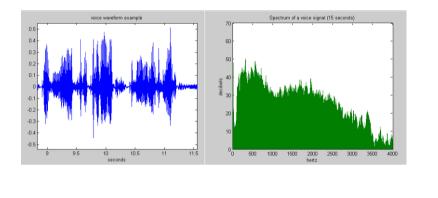
Slide credit: A. Efros





Example: Music

• We think of music in terms of frequencies at different magnitudes.



Slide credit: D . Hoeim

Fourier Transform

We want to understand the frequency w of our signal. So, let's reparametrize the signal by w instead of x:

$$\begin{array}{ccc} f(x) & \longrightarrow & Fourier \\ & & Transform & \longrightarrow & F(w) \end{array}$$

For every w from 0 to inf, F(w) holds the amplitude A and phase f of the corresponding sine $A\sin(ax + \phi)$

• How can F hold both? Complex number trick!

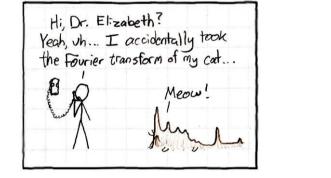
$$F(\omega) = R(\omega) + iI(\omega)$$
$$A = \pm \sqrt{R(\omega)^2 + I(\omega)^2} \qquad \phi = \tan^{-1} \frac{I(\omega)}{R(\omega)}$$

We can always go back:

$$\begin{array}{c} F(w) \longrightarrow \\ \hline \\ Inverse Fourier \\ \hline \\ Transform \\ \hline \\ \\ Slide credit: A. Efros \\ \hline \\ \end{array}$$

Other signals

• We can also think of all kinds of other signals the same way



xkcd.com

Slide credit: J. Hays

Fourier Transform

- Fourier transform stores the magnitude and phase at each frequency
 - Magnitude encodes how much signal there is at a particular frequency
 - Phase encodes spatial information (indirectly)
 - For mathematical convenience, this is often notated in terms of real and complex numbers

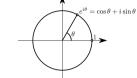
Amplitude:
$$A = \pm \sqrt{R(\omega)^2 + I(\omega)^2}$$
 Phase: $\phi = \tan^{-1} \frac{I(\omega)}{R(\omega)}$

Discrete Fourier transform

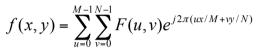
• Forward transform

$$F(u,v) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M + vy/N)}$$

for $u = 0, 1, 2, ..., M - 1, v = 0, 1, 2, ..., N - 1$



• Inverse transform



Euler's definition of $e^{i\theta}$

for $x = 0, 1, 2, \dots, M - 1, y = 0, 1, 2, \dots, N - 1$

u, *v* : the transform or frequency variables *x*, *y* : the spatial or image variables

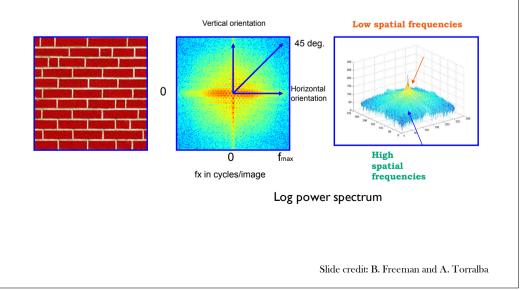
Slide credit: B. Freeman and A. Torralba

The Fourier Transform

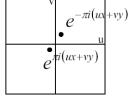
- Represent function on a new basis
 - Think of functions as vectors, with many components
 - We now apply a linear transformation to transform the basis
 - dot product with each basis element
- In the expression, u and v select the basis element, so a function of x and y becomes a function of u and v
- basis elements have the form $e^{-i2\pi(ux+vy)}$

Slide credit: S. Thrun

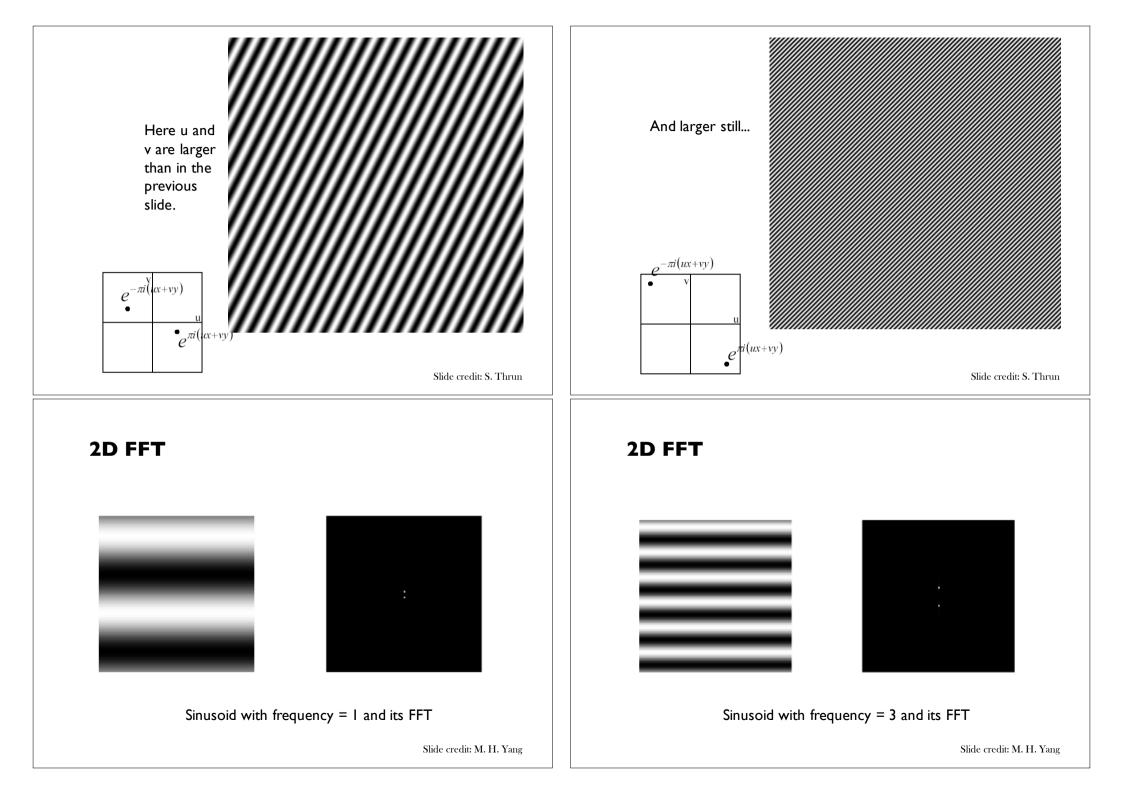
How to interpret 2D Fourier Spectrum

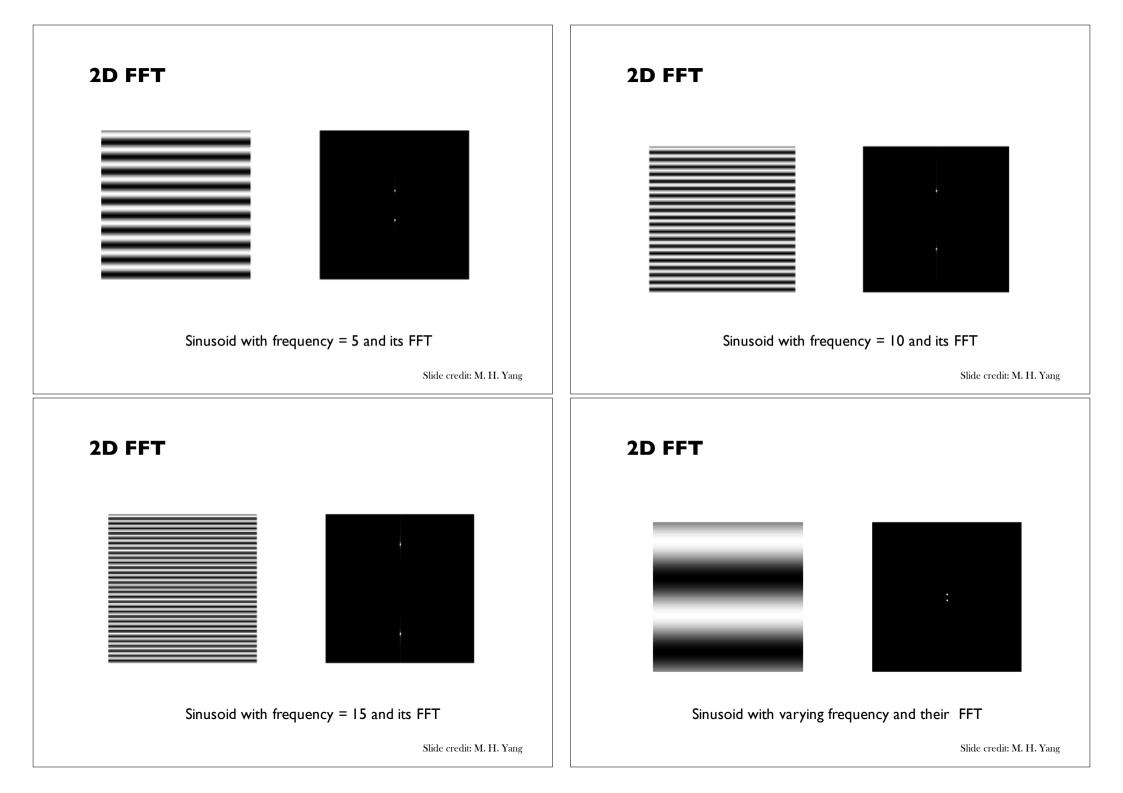


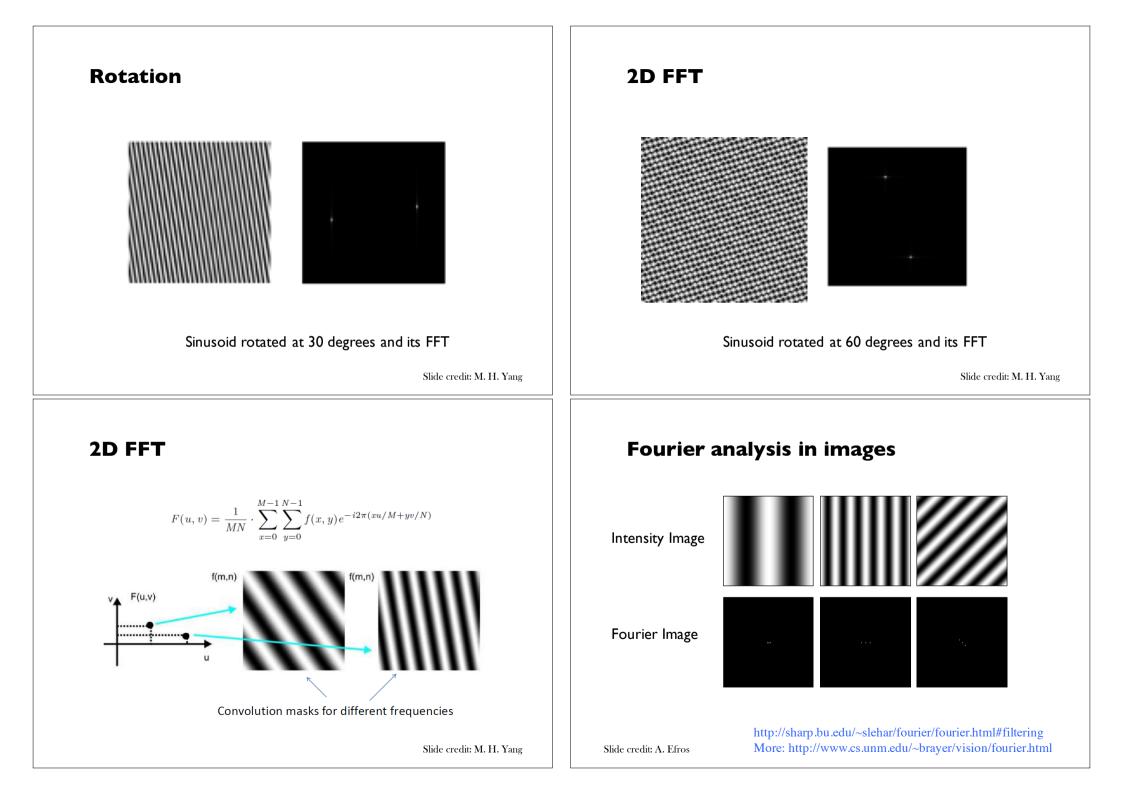
Fourier basis element $e^{-i2\pi(ux+vy)}$ example, real part F^{u,v}(x,y) F^{u,v}(x,y)=const. for (ux+vy)=const. Vector (u,v) • Magnitude gives frequency • Direction gives orientation.



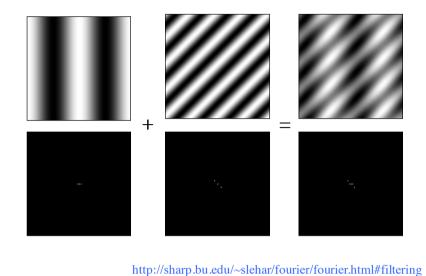
Slide credit: S. Thrun







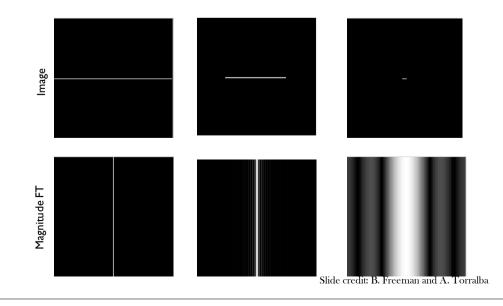
Signals can be composed



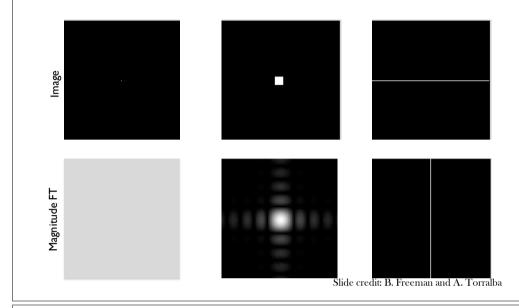
Slide credit: A. Efros

Some important Fourier Transforms

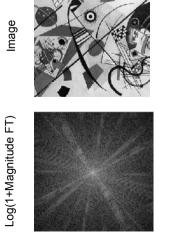
More: http://www.cs.unm.edu/~brayer/vision/fourier.html



Some important Fourier Transforms

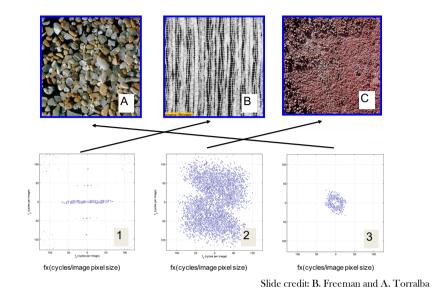


The Fourier Transform of some well-known images



Slide credit: B. Freeman and A. Torralba

Fourier Amplitude Spectrum



Masking out the fundamental and harmonics from periodic pillars



Fourier transform magnitude

What in the image causes the dots?

The Convolution Theorem

• The Fourier transform of the convolution of two functions is the product of their Fourier transforms

$$\mathbf{F}[g * h] = \mathbf{F}[g]\mathbf{F}[h]$$

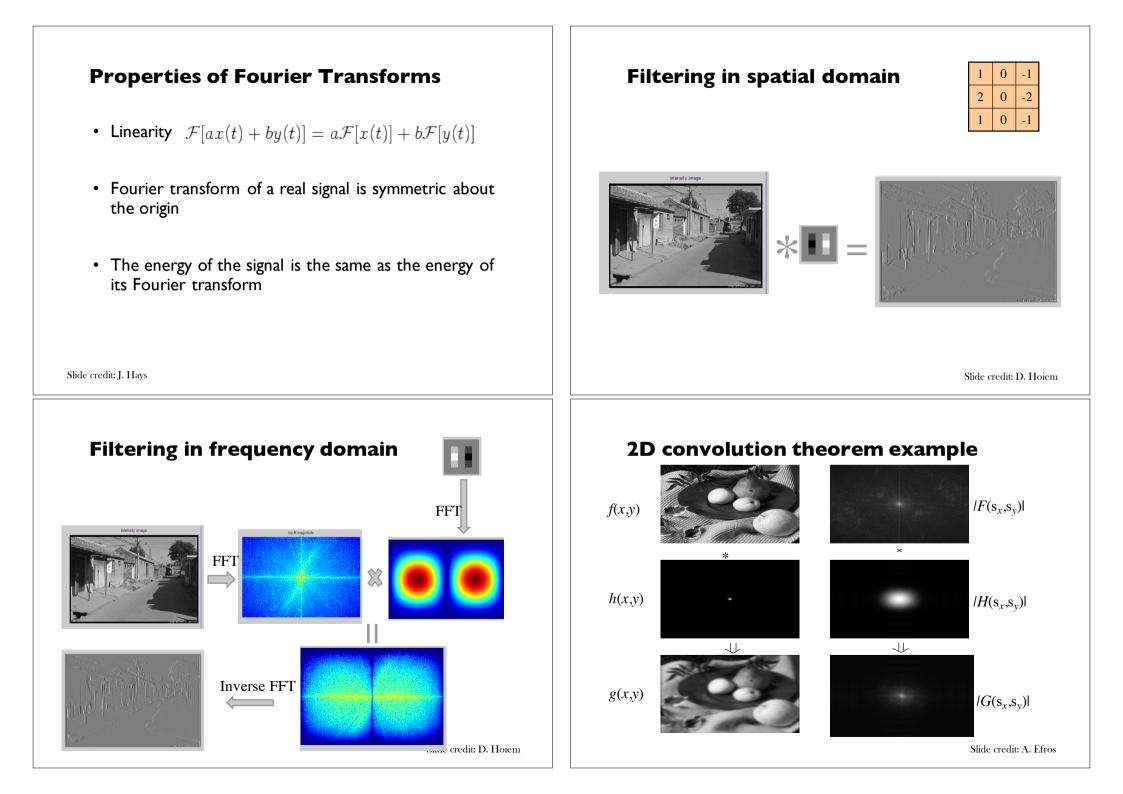
• The inverse Fourier transform of the product of two Fourier transforms is the convolution of the two inverse Fourier transforms

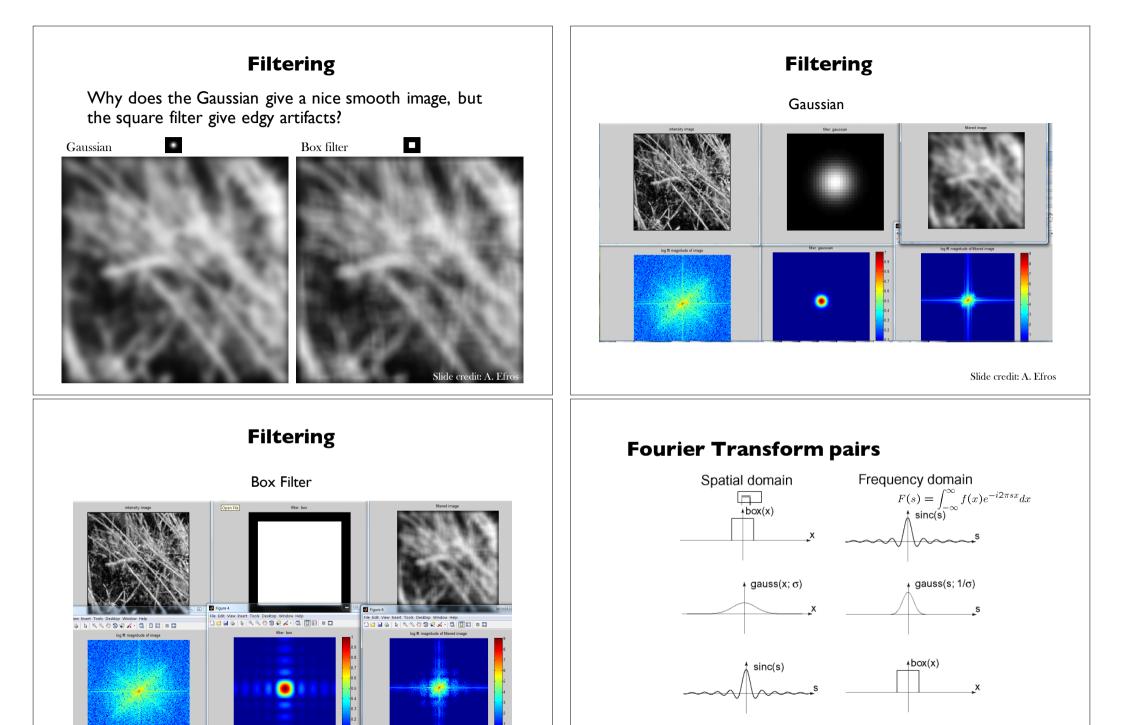
$$F^{-1}[gh] = F^{-1}[g] * F^{-1}[h]$$

• **Convolution** in spatial domain is equivalent to **multiplication** in frequency domain!

Slide credit: B. Freeman and A. Torralba

Slide credit: B. Freeman and A. Torralba





Slide credit: A. Efros

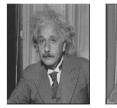
Slide credit: A. Efros

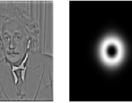
Low-pass, Band-pass, High-pass filters

low-pass:



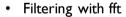
High-pass / band-pass:





Slide credit: A. Efros

FFT in Matlab



im = ... % "im" should be a gray-scale floating point image [imh, imw] = size(im); fftsize = 1024; % should be order of 2 (for speed) and include padding im_fft = fft2(im, fftsize, fftsize); % 1) fft im with padding hs = 50; % filter half-size fil = fspecial('gaussian', hs*2+1, 10); fil_fft = fft2(fil, fftsize, fftsize); % 2) fft fil, pad to same size as image im_fil_fft = im_fft .* fil_fft; % 3) multiply fft images im_fil = ifft2(im_fil_fft); % 4) inverse fft2 im_fil = im_fil(1+hs:size(im,1)+hs, 1+hs:size(im, 2)+hs); % 5) remove padding

• Displaying with fft

figure(1), imagesc(log(abs(fftshift(im_fft)))), axis image, colormap
jet

Phase and Magnitude

Edges in images

- Curious fact
 - all natural images have about the same magnitude transform
 - hence, phase seems to matter, but magnitude largely doesn't
- Demonstration
 - Take two pictures, swap the phase transforms, compute the inverse what does the result look like?

Image with cheetah phase (and zebra magnitude)

Slide credit: A. Efros

- U ×

AL.BMP 1

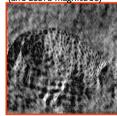
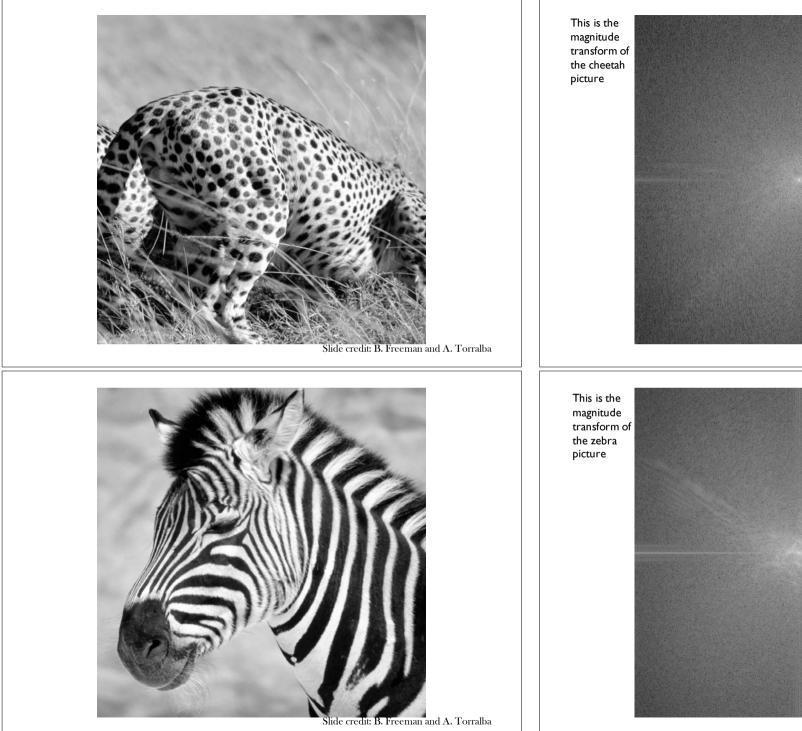


Image with zebra phase

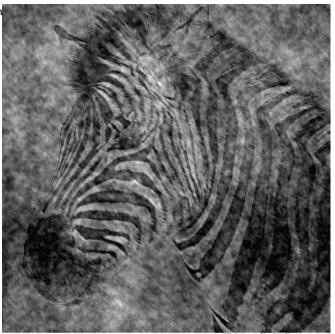
Slide credit: B. Freeman and A. Torralba

Slide credit: D. Hoiem



Slide credit: B. Freeman and A. Torralba

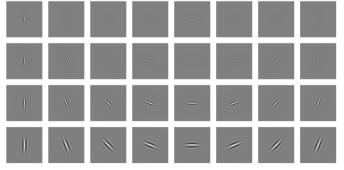
Slide credit: B. Freeman and A. Torralba



Slide credit: B. Freeman and A. Torralba

Clues from Human Perception

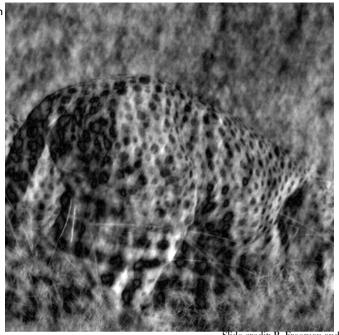
- Early processing in humans filters for various orientations and scales of frequency
- Perceptual cues in the mid-high frequencies dominate perception
- When we see an image from far away, we are effectively subsampling it



Early Visual Processing: Multi-scale edge and blob filters

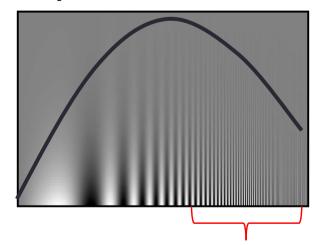
Slide credit: J. Hays

Reconstruction with cheetah phase, zebra magnitude



Slide credit: B. Freeman and A. Torralba

Campbell-Robson contrast sensitivity curve



The higher the frequency the less sensitive human visual system is...

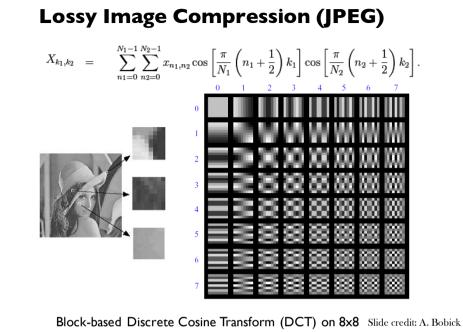
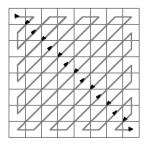


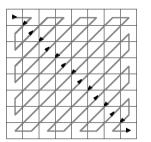
Image compression using DCT

- DCT enables image compression by concentrating most image information in the low frequencies
- Loose unimportant image info (high frequencies) by cutting B(u,v) at bottom right
- The decoder computes the inverse DCT IDCT



Using DCT in JPEG

- The first coefficient B(0,0) is the DC component, the average intensity
- The top-left coeffs represent low frequencies, the bottom right high frequencies



Slide credit: A. Bobick

JPEG compression comparison

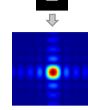
I2k

Slide credit: A. Bobick

Things to Remember

- Sometimes it makes sense to think of images and filtering in the frequency domain

 Fourier analysis
- Can be faster to filter using FFT for large images (N logN vs. N² for auto-correlation)
- Images are mostly smooth
 Basis for compression



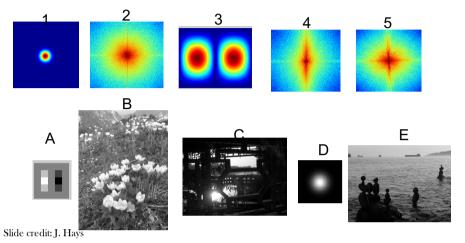
Slide credit: J. Hays

Summary

- Frequency domain techniques
- Images in terms of frequency
- Fourier Series
- Convolution Theorem

Practice question

1. Match the spatial domain image to the Fourier magnitude image



Next Week

- Sampling
- Gabor wavelets
- Steerable filters