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Techniques – Part 2

Review – Frequency Domain Techniques

• Thinking images in terms of frequency.

• Treat images as infinite-size, continuous periodic 
functions.
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Review - Fourier Transform
We want to understand the frequency w of our signal.  So, let’s 
reparametrize the signal by w instead of x:

)+φωxAsin(

f(x) F(w)Fourier 
Transform

F(w) f(x)Inverse Fourier 
Transform

For every w from 0 to inf, F(w) holds the amplitude A and 
phase f of the corresponding sine  

• How can F hold both?  Complex number trick!
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We can always go back:

Slide credit: A. Efros

• Fourier	transform	stores	the	magnitude	and	phase	at	each	
frequency
– Magnitude	encodes	how	much	signal	there	is	at	a	particular	frequency
– Phase	encodes	spatial	information	(indirectly)
– For	mathematical	convenience,	 this	is	often	notated	in	terms	of	real	and	

complex	numbers
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Review - Fourier Transform



Slide credit: B. Freeman and A. Torralba

Review - Discrete Fourier transform

• Forward transform

• Inverse transform

Euler’s definition of eiθ

u, v : the transform or frequency variables
x, y : the spatial or image variables
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Review - The Fourier Transform
• Represent function on a new basis

– Think of functions as vectors, with many 
components

– We now apply a linear transformation to transform 
the basis

• dot product with each basis element

• In the expression, u and v select the basis 
element, so a function of x and y becomes a 
function of u and v

• basis elements have the form

€ 

e−i2π ux+vy( )

Slide credit: S. Thrun

How to interpret a 2-d Fourier 
Spectrum 

Horizontal 
orientation 

Vertical orientation 

45 deg. 

0 fmax 

0 

fx in cycles/image 

Low spatial frequencies 

High  
spatial  
frequencies 

Log power spectrum 

Slide credit: B. Freeman and A. Torralba

Review - The Fourier Transform

Log power spectrum

Review - The Convolution Theorem

• The Fourier transform of the convolution of two 
functions is the product of their Fourier transforms

• The inverse Fourier transform of the product of two 
Fourier transforms is the convolution of the two inverse 
Fourier transforms

• Convolution in spatial domain is equivalent to 
multiplication in frequency domain!
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Slide credit: A. Efros



Review - Filtering in frequency 
domain

FFT

FFT

Inverse FFT

=

Slide credit: D. Hoiem

Today

• Sampling

• Gabor wavelets, Steerable filters

Today

• Sampling

• Gabor wavelets, Steerable filters
Why does a lower resolution image still make sense to us?  
What do we lose?

Image: http://www.flickr.com/photos/igorms/136916757/ 

Sampling

Slide credit: D. Hoiem



Sampled representations

• How to store and compute with continuous functions?

• Common scheme for representation: samples
– write down the function’s values at many points

Slide credit: S. Marschner

Reconstruction

• Making samples back into a continuous function
– for output (need realizable method)
– for analysis or processing (need mathematical method)
– amounts to “guessing” what the function did in between

Slide credit: S. Marschner

Sampling in digital audio

• Recording: sound to analog to samples to disc

• Playback: disc to samples to analog to sound again
– how can we be sure we are filling in the gaps correctly?

Slide credit: S. Marschner

Continuous signal:

Shah function (Impulse train):
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(What the image measures)

Sampling Theorem

Slide credit: S. Narasimhan



Sampled function:
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Slide credit: S. Narasimhan

Sampling Theorem

angular frequency (    )iuxe−
Note that these are derived using

Slide credit: S. Narasimhan

Fourier Transform Pairs FT of an “impulse train”
is an impulse train!
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Sampling Theorem
Sampled function:
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Sampling Theorem
Sampled function:



Throw away every other row and column 
to create a 1/2 size image

Slide credit: D. Hoiem

Subsampling by a factor of 2 Undersampling

• What if we “missed” things between the samples?

• Simple example: undersampling a sine wave
– unsurprising result: information is lost
– surprising result: indistinguishable from lower frequency
– also was always indistinguishable from higher frequencies
– aliasing: signals “traveling in disguise” as other frequencies

Slide credit: S. Marschner

• Sub-sampling may be dangerous….

• Characteristic errors may appear: 
– “Wagon wheels rolling the wrong way in movies”
– “Checkerboards disintegrate in ray tracing”
– “Striped shirts look funny on color television”

Aliasing problem

Slide credit: D. Forsyth

Moire patterns	in	real-world	images.	Here	are	comparison	images	by	Dave	Etchells of	Imaging	Resource using	
the	Canon	D60	(with	an	antialias filter)	and	the	Sigma	SD-9	(which	has	no	antialias filter).	The	bands	below	the	
fur	in	the	image	at	right	are	the	kinds	of	artifacts	that	appear	in	images	when	no	antialias filter	 is	used.	Sigma	
chose	to	eliminate	 the	filter	 to	get	more	sharpness,	but	the	resulting	apparent	detail	may	or	may	not	reflect	
features	in	the	image.

Slide credit: N. Kumar



More examples

Check out Moire patterns 
on the web.

Slide credit: A. Farhadi

Aliasing in video

Slide credit: S. Seitz

Aliasing in graphics

Slide credit: A. Efros

Sampling and aliasing

Slide credit: D. Hoiem
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Sampling Theorem
Sampled function:

Slide credit: S. Narasimhan

Nyquist Frequency
If
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Sampling frequency must be greater than max2u

• When sampling a signal at discrete intervals, the 
sampling frequency must be ≥ 2 × fmax

• fmax = max frequency of the input signal

• This will allows to reconstruct the original perfectly 
from the sampled version

good

bad

v v v

Nyquist-Shannon Sampling Theorem

Slide credit: D. Hoiem

2D example

Good sampling

Bad sampling

Slide credit: N. Kumar



Anti-aliasing

Solutions:

• Sample more often

• Get rid of all frequencies that are greater than half the new 
sampling frequency
– Will lose information
– But it’s better than aliasing
– Apply a smoothing filter

Slide credit: D. Hoiem

Preventing aliasing

• Introduce lowpass filters:
– remove high frequencies leaving only safe, low frequencies
– choose lowest frequency in reconstruction (disambiguate)

Slide credit: S. Marschner

Impulse Train

• Define a comb function (impulse train) in 1D as follows 

where M is an integer 

Frequency and Fourier Transform CS 4495 Computer Vision – A. Bobick 
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B.K. Gunturk 
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Slide credit: B. K. Gunturk

Impulse Train in 2D (bed of nails)

• Fourier Transform of an impulse train is also an impulse train: 

Frequency and Fourier Transform CS 4495 Computer Vision – A. Bobick 

Impulse Train in 2D (bed of nails) 
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As the comb samples get further apart, the 
spectrum samples get closer together! 

 
 
 

• Fourier Transform of an impulse train is also an impulse train: 

B.K. Gunturk 
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• Fourier Transform of an impulse train is also an impulse train: 

B.K. Gunturk 

As the comb samples get further apart,
the spectrum samples get closer together!

Slide credit: B. K. Gunturk



Impulse Train in 1D

• Remember: 

Frequency and Fourier Transform CS 4495 Computer Vision – A. Bobick 
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Slide credit: B. K. Gunturk

Sampling low frequency signal
Frequency and Fourier Transform CS 4495 Computer Vision – A. Bobick 

Sampling low frequency signal 
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Multiply: Convolve: 

Slide credit: B. K. Gunturk

Sampling low frequency signal
Frequency and Fourier Transform CS 4495 Computer Vision – A. Bobick 

Sampling low frequency signal 
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“No problem” if

Sampling low frequency signal

If there is no overlap, the original signal can be recovered from its 
samples by low-pass filtering.

Frequency and Fourier Transform CS 4495 Computer Vision – A. Bobick 
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Sampling high frequency signal

Slide credit: B. K. Gunturk
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Overlap:  The high frequency 
energy is folded over into low 
frequency.  It is “aliasing” as lower 
frequency energy.  And you 
cannot fix it once it has happened.  
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frequency energy. And you cannot 
fix it once it has happened.

Sampling high frequency signal

Slide credit: B. K. Gunturk
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Sampling high frequency signal

• Without anti-aliasing filter: 

• With anti-aliasing filter: 

Slide credit: B. K. Gunturk
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Algorithm for downsampling by 
factor of 2

1. Start with image(h, w)

2. Apply low-pass filter
im_blur = imfilter(image, fspecial(‘gaussian’, 7, 1))

3. Sample every other pixel
im_small = im_blur(1:2:end, 1:2:end);

Slide credit: D. Hoiem

Anti-aliasing

Slide credit: Forsyth and Ponce

Subsampling without pre-filtering

1/4  (2x zoom) 1/8  (4x zoom)1/2

Slide credit: S. Seitz

G 1/4 G 1/8Gaussian 1/2

Subsampling with Gaussian pre-filtering

Slide credit: S. Seitz



1000 pixel width [Philip Greenspun]

Slide credit: S. Marschner

250 pixel width

by dropping pixels gaussian filter

[Philip Greenspun]

Slide credit: S. Marschner

Up-sampling

How do we compute the values of pixels at 
fractional positions?

Slide credit: A. Farhadi

Up-sampling

f (x,y) f (x+1,y)

f (x+1,y+1)f (x,y+1)

f (x+0.8,y+0.3) f (x + a, y + b)  = 
(1 - a)(1 - b) f (x, y) + 
a(1 - b) f (x + 1, y) + 
(1 - a)b f (x,y + 1) + 
ab f (x + 1, y + 1) 

Bilinear sampling:

Bicubic sampling fits a higher order function using a 
larger area of support.

How do we compute the values of pixels at 
fractional positions?

Slide credit: A. Farhadi



Up-sampling Methods

Slide credit: A. Farhadi

Up-sampling

Nearest 
neighbor

Bilinear Bicubic

Slide credit: A. Farhadi

Up-sampling

Nearest 
neighbor

Bilinear Bicubic

Slide credit: A. Farhadi

Today

• Sampling

• Gabor wavelets, Steerable filters



Fourier Filtering

Images from Steve Lehar http://cns-alumni.bu.edu/~slehar An Intuitive Explanation of Fourier Theory 

Fourier
Amplitude

Multiply by a filter in the
frequency domain => 
convolve with the filter in
spatial domain.

Slide credit: S. Thrun

Phase Caries More Information

Magnitude
and
Phase:

Raw
Images:

Reconstruct
(inverse FFT)
mixing the
magnitude and
phase images

Phase “Wins”

Slide credit: S. Thrun

What is a good representation for 
image analysis?
• Fourier transform domain tells you “what” (textural 

properties), but not “where”.
• Pixel domain representation tells you “where” (pixel 

location), but not “what”.
• Want an image representation that gives you a local 

description of image events—what is happening where.

Slide credit: B. Freeman and A. Torralba

Analyzing local image structuresAnalyzing local image structures 

Too much 

Too little 

Too much

Too little

Slide credit: B. Freeman and A. Torralba



The image through the Gaussian 
window 

Too much 

Too little 

Probably  still  too  little… 
…but  hard  enough  for  now 
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Analyzing local image structures 
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Too little 
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...but hard enough for 
now

Slide credit: B. Freeman and A. Torralba
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Gabor wavelets
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Slide credit: B. Freeman and A. Torralba

Gabor filters at different
scales and spatial frequencies

Top row shows anti-symmetric 
(or odd) filters;  these are good for detecting 
odd-phase structures like edges.  
Bottom row shows the
symmetric (or even) filters, good for 
detecting line phase contours.

Gabor filters

Slide credit: B. Freeman and A. Torralba
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Quadrature filter pairs 
• A quadrature filter is a complex filter whose real part is related to its 

imaginary part via a Hilbert transform along a particular axis through the 
origin 

Gabor wavelet:
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Slide credit: 
B. Freeman & A. Torralba

Quadrature filter pairs 

Contrast invariance! (same energy response for white dot on 

black background as for a black dot on a white background).

Slide credit: B. Freeman and A. Torralba
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edge
energy response 

to an edge

Slide credit: B. Freeman and A. Torralba

Quadrature filter pairs 

line energy response to 
a line

Quadrature filter pairs 

Slide credit: B. Freeman and A. Torralba

How quadrature pair filters work

Slide credit: B. Freeman and A. Torralba

How quadrature pair filters work
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Slide credit: B. Freeman and A. Torralba



Gabor wavelet: 
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Tuning filter orientation: 

��

x' cos(D)x � sin(D)y
y' �sin(D)x � cos(D)y

Space 

Fourier domain 

Real 

Imag 

Real 

Imag 

Oriented Filters
• Gabor wavelet: 

• Tuning filter orientation:

Quadrature filter pairs 
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Tuning filter orientation: 

��

x' cos(D)x � sin(D)y
y' �sin(D)x � cos(D)y
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Slide credit: B. Freeman and A. Torralba

Simple example
�Steerability�-- the ability to synthesize a filter of any orientation 

from a linear combination of filters at fixed orientations.

Filter Set:
0o 90o Synthesized 30o

Response:
Raw Image

Taken from:
W. Freeman, T. Adelson, 
�The Design and Use of 
Sterrable Filters�, IEEE 
Trans. Patt, Anal. and 
Machine Intell., vol 13, #9, 
pp 891-900, Sept 1991

Slide credit: B. Freeman and A. Torralba

Steerable filters
Derivatives of a Gaussian:

An arbitrary orientation can be computed as a linear combination of those 
two basis functions:

The representation is “shiftable” on orientation:  We can interpolate any 
other orientation from a finite set of basis functions.
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Derivatives of a Gaussian: 

cos(¢ ) +sin(¢ ) = 
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Slide credit: B. Freeman and A. TorralbaFreeman & Adelson, 1992

Steerable filters

Slide credit: B. Freeman and A. Torralba



Local image representations

V1 sketch:
hypercolumns

A pixel
[r,g,b]

An image patch

J.G.Daugman, �Two dimensional spectral analysis of cortical receptive field profiles,� Vision Res., vol.20.pp.847-856.1980

L. Wiskott, J-M. Fellous, N. Kuiger, C. Malsburg, �Face Recognition by Elastic Bunch Graph Matching�, IEEE Transactions on Pattern Analysis and Machine 
Intelligence, vol.19(7), July 1997, pp. 775-779.

Gabor filter
pair in quadrature Gabor jet

Slide credit: B. Freeman and A. Torralba

Gabor Filter Bank

or = [12 6 3 2];or = [4 4 4 4];
Not for image reconstruction. It does NOT cover the entire space!

Slide credit: B. Freeman and A. Torralba

Summary

• Sampling

• Gabor wavelets, Steerable filters

Next week

• Image pyramids


