BBM 413

Fundamentals of
Image Processing

Erkut Erdem
Dept. of Computer Engineering Hacettepe University

Frequency Domain
 Techniques - Part 2

Review - Fourier Transform

We want to understand the frequency w of our signal. So, let's reparametrize the signal by w instead of x :

For every w from 0 to inf, $\boldsymbol{F}(\mathbf{w})$ holds the amplitude A and phase f of the corresponding sine $A \sin (\omega x+\phi)$

- How can F hold both? Complex number trick!
$F(\omega)=R(\omega)+i I(\omega)$
$A= \pm \sqrt{R(\omega)^{2}+I(\omega)^{2}} \quad \phi=\tan ^{-1} \frac{I(\omega)}{R(\omega)}$
We can always go back:

Inverse Fourier Transform $\longrightarrow f($ $f(x)$

Review - Frequency Domain Techniques

- Thinking images in terms of frequency.
- Treat images as infinite-size, continuous periodic functions.

Review - Fourier Transform

- Fourier transform stores the magnitude and phase at each frequency
- Magnitude encodes how much signal there is at a particular frequency
- Phase encodes spatial information (indirectly)
- For mathematical convenience, this is often notated in terms of real and complex numbers

Amplitude: $A= \pm \sqrt{R(\omega)^{2}+I(\omega)^{2}}$ Phase: $\phi=\tan ^{-1} \frac{I(\omega)}{R(\omega)}$

Review - Discrete Fourier transform

- Forward transform

$$
\begin{aligned}
& F(u, v)=\frac{1}{M N} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{-j 2 \pi(u v / M+v / N)} \\
& \text { for } u=0,1,2, \ldots, M-1, v=0,1,2, \ldots, N-1
\end{aligned}
$$

- Inverse transform

$$
f(x, y)=\sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u, v) e^{j 2 \pi(u x / M+v y / N)}
$$

Euler's definition of $e^{i \theta}$
for $x=0,1,2, \ldots, M-1, y=0,1,2, \ldots, N-1$
u, v : the transform or frequency variables
x, y : the spatial or image variables

Review - The Fourier Transform

Review - The Fourier Transform

- Represent function on a new basis
- Think of functions as vectors, with many components
- We now apply a linear transformation to transform the basis
- dot product with each basis element
- In the expression, u and v select the basis element, so a function of x and y becomes a function of u and v
- basis elements have the form $e^{-i 2 \pi(u x+v y)}$

Review - The Convolution Theorem

- The Fourier transform of the convolution of two functions is the product of their Fourier transforms

$$
\mathrm{F}[g * h]=\mathrm{F}[g] \mathrm{F}[h]
$$

- The inverse Fourier transform of the product of two Fourier transforms is the convolution of the two inverse Fourier transforms

$$
\mathrm{F}^{-1}[g h]=\mathrm{F}^{-1}[g] * \mathrm{~F}^{-1}[h]
$$

- Convolution in spatial domain is equivalent to multiplication in frequency domain!

Today

- Sampling
- Gabor wavelets, Steerable filters

Today

- Sampling
- Gabor wavelets, Steerable filters

Sampling

Why does a lower resolution image still make sense to us? What do we lose?

Sampled representations

- How to store and compute with continuous functions?
- Common scheme for representation: samples
- write down the function's values at many points

Sampling in digital audio

- Recording: sound to analog to samples to disc
- Playback: disc to samples to analog to sound again
- how can we be sure we are filling in the gaps correctly?

Reconstruction

- Making samples back into a continuous function
- for output (need realizable method)
- for analysis or processing (need mathematical method)
- amounts to "guessing" what the function did in between

Sampling Theorem

Continuous signal:
(Real world signal)

Shah function (Impulse train):
(What the image measures)

Sampled function:

$$
f_{s}(x)=f(x) s(x)=f(x) \sum_{n=-\infty}^{\infty} \delta\left(x-n x_{0}\right)
$$

Sampling Theorem

Sampled function:

$$
\begin{gathered}
f_{s}(x)=f(x) s(x)=f(x) \sum_{n=-\infty}^{\infty} \delta\left(x-n x_{0}\right) \\
F_{S}(u)=F(u) * S(u)=F(u) * \frac{1}{x_{0}} \sum_{n=-\infty}^{\infty} \delta\left(u-\frac{n}{x_{0}}\right)
\end{gathered}
$$

Fourier Transform Pairs

Note that these are derived using
Slide credit: S. Narasimhan

Sampling Theorem

Sampled function:

$$
\begin{gathered}
f_{s}(x)=f(x) s(x)=f(x) \sum_{n=-\infty}^{\infty} \delta\left(x-n x_{0}\right) \\
F_{S}(u)=F(u) * S(u)=F(u) * \frac{1}{x_{0}} \sum_{n=-\infty}^{\infty} \delta\left(u-\frac{n}{x_{0}}\right) \\
\begin{array}{l}
\text { Sampling } \\
\text { frequency }
\end{array} \frac{1}{x_{0}}
\end{gathered}
$$

Subsampling by a factor of 2

Throw away every other row and column to create a I/2 size image

Aliasing problem

- Sub-sampling may be dangerous....
- Characteristic errors may appear:
- "Wagon wheels rolling the wrong way in movies"
- "Checkerboards disintegrate in ray tracing"
- "Striped shirts look funny on color television"

Undersampling

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
- unsurprising result: information is lost
- surprising result: indistinguishable from lower frequency
- also was always indistinguishable from higher frequencies
- aliasing: signals "traveling in disguise" as other frequencies

Slide credit: S. Marschner

Moire patterns in real-world images. Here are comparison images by Dave Etchells of Imaging Resource using the Canon D60 (with an antialias filter) and the Sigma SD-9 (which has no antialias filter). The bands below the fur in the image at right are the kinds of artifacts that appear in images when no antialias filter is used. Sigma chose to eliminate the filter to get more sharpness, but the resulting apparent detail may or may not reflect features in the image.

More examples

Check out Moire patterns on the web.

Aliasing in graphics

Aliasing in video

Imagine a spoked wheel moving to the right (rotating clockwise). Mark wheel with dot so we can see what's happening.
If camera shutter is only open for a fraction of a frame time (frame time $=1 / 30 \mathrm{sec}$. for video, $1 / 24 \mathrm{sec}$. for film):

Without dot, wheel appears to be rotating slowly backwards! (counterclockwise)

Sampling and aliasing

Sampling Theorem

Sampled function:

$$
\begin{gathered}
f_{s}(x)=f(x) s(x)=f(x) \sum_{n=-\infty}^{\infty} \delta\left(x-n x_{0}\right) \\
F_{S}(u)=F(u) * S(u)=F(u) * \frac{1}{x_{0}} \sum_{n=-\infty}^{\infty} \delta\left(u-\frac{n}{x_{0}}\right)
\end{gathered}
$$

Nyquist-Shannon Sampling Theorem

- When sampling a signal at discrete intervals, the sampling frequency must be $\geq 2 \times f_{\text {max }}$
- $f_{\text {max }}=$ max frequency of the input signal
- This will allows to reconstruct the original perfectly from the sampled version

Nyquist Frequency

If $u_{\text {max }}>\frac{1}{2 x_{0}}$
When can we recover $F(u)$ from $\quad F_{S}(u)$?

$$
\begin{aligned}
& \text { Only if } \quad u_{\max } \leq \frac{1}{2 x_{0}} \text { (Nyquist Frequency) } \\
& \text { We can use } \\
& \qquad C(u)=\left\{\begin{aligned}
x_{0} & |u|<1 / 2 x_{0} \\
0 & \text { otherwise }
\end{aligned}\right.
\end{aligned}
$$

Then $\quad F(u)=F_{S}(u) C(u)$ and $\quad f(x)=\operatorname{IFT}[F(u)]$ Sampling frequency must be greater than $2 u_{\text {max }}$

2D example

Anti-aliasing

Solutions:

- Sample more often
- Get rid of all frequencies that are greater than half the new sampling frequency
- Will lose information
- But it's better than aliasing
- Apply a smoothing filter

Preventing aliasing

- Introduce lowpass filters:
- remove high frequencies leaving only safe, low frequencies
- choose lowest frequency in reconstruction (disambiguate)

Impulse Train in 2D (bed of nails)

$$
\operatorname{comb}_{M, N}(x, y) \triangleq \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta(x-k M, y-l N)
$$

- Fourier Transform of an impulse train is also an impulse train:

As the comb samples get further apart,
the spectrum samples get closer together!

Impulse Train in ID

$\operatorname{comb}_{2}(x)$ $\frac{1}{2} \operatorname{comb}_{\frac{1}{2}}(u)$

- Remember:

$$
\text { Scaling } \quad f(a x) \quad \frac{1}{|a|} F\left(\frac{u}{a}\right)
$$

Sampling low frequency signal

Sampling low frequency signal

Slide credit: B. K. Gunturk

Sampling low frequency signal

If there is no overlap, the original signal can be recovered from its samples by low-pass filtering.

Sampling high frequency signal

$f(x) \operatorname{comb}_{M}(x)$

Overlap:The high frequency energy is folded over into low frequency. It is "aliasing" as lower frequency energy. And you cannot
fix it once it has happened.

Sampling high frequency signal

- Without anti-aliasing filter:

- With anti-aliasing filter:
$[f(x) * h(x)] \operatorname{comb}_{M}(x)$

Slide credit: B. K. Gunturk

Sampling high frequency signal

Sampling high frequency signal

- Without anti-aliasing filter:
$f(x) \operatorname{comb}_{M}(x)$
- With anti-aliasing filter:

$\left[f(x)^{*} h(x)\right] \operatorname{comb}_{M}(x)$

Algorithm for downsampling by factor of 2

I. Start with image(h, w)
2. Apply low-pass filter
im_blur = imfilter(image, fspecial('gaussian', 7, I))
3. Sample every other pixel im_small = im_blur(I :2:end, I:2:end);

Subsampling without pre-filtering

I/2

1/4 (2x zoom)

I/8 (4x zoom)

Anti-aliasing

$256 \times 256 \quad 128 \times 128$
64×64
32×32
16×16

Slide credit: Forsyth and Ponce

Subsampling with Gaussian pre-filtering

Gaussian I/2

G I/4

G I/8

Up-sampling

How do we compute the values of pixels at fractional positions?

by dropping pixels

gaussian filter

250 pixel width

Up-sampling

How do we compute the values of pixels at fractional positions?

Bilinear sampling:
$f(x+a, y+b)=$
$(I-a)(I-b) f(x, y)+$ $a(l-b) f(x+I, y)+$ $(I-a) b f(x, y+I)+$ $a b f(x+1, y+1)$

Bicubic sampling fits a higher order function using a larger area of support.

Up-sampling Methods

Up-sampling

Nearest neighbor

Bilinear

Fourier Filtering

What is a good representation for image analysis?

- Fourier transform domain tells you "what" (textural properties), but not "where".
- Pixel domain representation tells you "where" (pixel location), but not "what".
- Want an image representation that gives you a local description of image events-what is happening where.

Phase Caries More Information

Raw
Images:

Magnitude and Phase:

Reconstruct (inverse FFT) mixing the magnitude and phase images

Phase "Wins"

Analyzing local image structures

Too much

The image through the Gaussian window

Slide credit: B. Freeman and A. Torralba

Gabor wavelets

Slide credit: B. Freeman and A. Torralba

Analysis of local frequency

Gabor filters

Gabor filters at different
scales and spatial frequencies

Top row shows anti-symmetric
(or odd) filters; these are good for detecting
odd-phase structures like edges.
Bottom row shows the
symmetric (or even) filters, good for detecting line phase contours.

Quadrature filter pairs

- A quadrature filter is a complex filter whose real part is related to its imaginary part via a Hilbert transform along a particular axis through the

Quadrature filter pairs

Contrast invariance! (same energy response for white dot on black background as for a black dot on a white background).

Quadrature filter pairs

How quadrature pair filters work

(a) Frequency response of even filter, G

(b) Frequency response of odd filter, H (imaginary)

Figure 3-5: Frequency content of two bandpass filters in quadrature. (a) ever phase filter, called G in text, and (b) odd phase filter, H. Plus and minus sign illustrate relative sign of regions in the frequency domain. See Fig. 36 for calculation of the frequency content of the energy measure derived from these two filters

Quadrature filter pairs

How quadrature pair filters work

(c) Fourier transform of $\mathrm{G}^{*} \mathrm{G}+\mathrm{H}^{*} \mathrm{H}$

Figure 3-6: Derivation of energy measure frequency content for the filters of Fig. 3-5. (a) Fourier transform of $G * G$. (b) Fourier transform of H : H. Each squared response has 3 lobes in the frequency domain, arising from
convolution of the frequency domain tesponses. .the center lobe is modulated onvolution of the frequency domain responses. The center Iobe is modulated
lovn in frequency while the two outer lobes are modulated up. (There are lown in frequency while the two outer lobes are modulated up. (There are
wo sign changes which combine to give the signs shown in (b). To convolve 1 with it self. we flip it in f_{x} and f_{y}, which interchanges the + and - lobee of Fig. 3 -5 (b). Then we slide it over an unflipped verion of itself, and integrate he product of the two. That operation will give positive outer lobes, and a negative innert lobe. However, H has an imaginary requency response, so
nultiplying it by itself gives an extra factor of -1 , which yields the signs shown in (b)). (c) Fourier transform of the energy measure, $G * G+H * H$.,
The high frequency lobes cancel. leaving only the baseband spectrum. which The high frequency lobes cancel, leaving only the baseband spectrum, which
las been demodulated in frecuence from the origiual bandpass ersponse. This las been demodulated in frequency from the original bandpass response. This
-pectrum is proportional to the sum of the auto-correlation functions of either lobe of Fig. 3-5 (a) and cith Slitle errédit: B. ${ }^{(1) F r e e m a n ~ a n d ~ A . ~ T o r r a l b a ~}$

Oriented Filters

- Gabor wavelet: $\psi(x, y)=e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}} e^{j 2 \pi u_{0} x}$
- Tuning filter orientation:

$$
x^{\prime}=\cos (\alpha) x+\sin (\alpha) y
$$

$$
y^{\prime}=-\sin (\alpha) x+\cos (\alpha) y
$$

Steerable filters

Derivatives of a Gaussian:

$$
h_{x}(x, y)=\frac{\partial h(x, y)}{\partial x}=\frac{-x}{2 \pi \sigma^{4}} e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}} h_{y}(x, y)=\frac{\partial h(x, y)}{\partial y}=\frac{-y}{2 \pi \sigma^{4}} e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}
$$

An arbitrary orientation can be computed as a linear combination of those two basis functions:

$$
h_{\alpha}(x, y)=\cos (\alpha) h_{x}(x, y)+\sin (\alpha) h_{y}(x, y)
$$

The representation is "shiftable" on orientation: We can interpolate any other orientation from a finite set of basis functions.

Freeman \& Adelson, 1992
Slide credit: B. Freeman and A. Torralba

Simple example

"Steerability"-- the ability to synthesize a filter of any orientation from a linear combination of filters at fixed orientations.

$$
G_{\theta}^{1}=\cos (\theta) G_{0}^{1}+\sin (\theta) G_{90}^{1}
$$

Steerable filters

Fig. 3. Steerable filter system block diagram. A bank of dedicated filters process the image. Their outputs are multiplied by a set of gain maps that adaptively control the orientation of the synthesized filter.

