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Frequency Domain
Techniques — Part 2

Review - Frequency Domain Techniques

* Thinking images in terms of frequency.

* Treat images as infinite-size, continuous periodic
functions.

Review - Fourier Transform

We want to understand the frequency w of our signal. So, let’s
reparametrize the signal by w instead of x:

flx) — Fourier —— Fw)
Transform

For every w from 0 to inf, F(w) holds the amplitude A and
phase f of the corresponding sine Asin(cax + ¢)

* How can F hold both? Complex number trick!

F(w) = R(w)+il(w)

I(w
A=+ R@) + (o) ¢ = tan™ L)
R(w)
We can always go back:
Fw) Inverse Fourier f(x)
Transfo m Slide credit: A. Efros

Review - Fourier Transform

* Fourier transform stores the magnitude and phase at each
frequency
— Magnitude encodes how much signal there is at a particular frequency
— Phase encodes spatial information (indirectly)

— For mathematical convenience, this is often notated in terms of real and
complex numbers

1
Amplitude: A = *_r\/R(a))2 +I(w)’ Phase: ¢ = tan™ 1(w)

R(w)




Review - Discrete Fourier transform

¢ Forward transform

M-1N-1

B 1 _j27(ux/M+vyIN)
Fuv=——% Y f(xye

x=0 y=0

foru=0,1,2,..,.M-1,v=0,1,2,...,.N -1

¢ = cosf +isin@

¢ Inverse transform
M-1N-1

_ 271w/ M+vy/ N
f(x9 y) - E F(u,v)ej e Euler’s definition of e/

u=0 v

forx =0,1,2,...,M -1,y =0,,2,..., N -1

u,v :the transform or frequency variables
X, y : the spatial or image variables

Slide credit: B. Freeman and A. Torralba

Review - The Fourier Transform

* Represent function on a new basis

— Think of functions as vectors, with many
components

— We now apply a linear transformation to transform
the basis
* dot product with each basis element

* In the expression, u and v select the basis
element, so a function of x and y becomes a
function of u and v

. —-i2x(ux+v
* basis elements have the form € ( ?)

Slide credit: S. Thrun

Review - The Fourier Transform

Vertical orientation Low spatial frequencies

2| 45 deg.
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orientation
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spatial
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Log power spectrum

Slide credit: B. Freeman and A. Torralba

Review - The Convolution Theorem

* The Fourier transform of the convolution of two
functions is the product of their Fourier transforms

Flg=h]=F[g]F[A]
* The inverse Fourier transform of the product of two

Fourier transforms is the convolution of the two inverse
Fourier transforms

F'[gh]=F '[g]=F[A]

+ Convolution in spatial domain is equivalent to
multiplication in frequency domain!

Slide credit: A. Efros




Review - Filtering in frequency
domain

intensity image.

log it magnitude
1

Inverse FFT ;

FF

uue credit: D. Holem

Today

* Sampling

* Gabor wavelets, Steerable filters

Today

* Sampling

e Gabor wavelets, Steerable filters

Sampling

Why does a lower resolution image still make sense to us?
What do we lose?

Image: http://www.flickr.com/photos/igorms/136916757/ Slide credit: D. Hoiem




Sampled representations

* How to store and compute with continuous functions?

* Common scheme for representation: samples
— write down the function’s values at many points

Y e

l Sampling

Slide credit: S. Marschner

Reconstruction

* Making samples back into a continuous function

— for output (need realizable method)
— for analysis or processing (need mathematical method)
— amounts to “guessing” what the function did in between

l Reconstruction

%

Slide credit: S. Marschner

Sampling in digital audio

* Recording: sound to analog to samples to disc

* Playback: disc to samples to analog to sound again
— how can we be sure we are filling in the gaps correctly?

Ayt ] bbbyt~ @)
R e mE R ()

Slide credit: S. Marschner

Sampling Theorem

Continuous signal: f(x)
(Real world signal)

Shah function (Impulse train):
(What the image measures) _ w
S(x) s(x)— E(S

n=-0o

X

(o=, )

Sampled function:

£.6)= FEH0)= 1) T o-nx, )

n=-00

Slide credit: S. Narasimhan




Sampling Theorem

Sampled function:

Sampling 1

1) FEHE)= S @)D d-mx,) reseny
= /
FS(M) F( )*S *znz Lu——)

Xo

Slide credit: S. Narasimhan

. . FT of an “impulse train”
Fourier Transform Pairs impulse train!

S | L

- 378 (=) +8 (E+wo) ]
nnnnnnn

N

Note that these are derived using
angular frequency ( ¢ )

Slide credit: S. Narasimhan

Sampling Theorem

Sampled function:

Sampling 1

1,60)= Fleb)= 1) T o) [Feerer

Slide credit: S. Narasimhan

Sampling Theorem

Sampled function:

Sampling 1

fs(x)=f(x)f(x)=f(x)§5(x—nxo) frequency_x,
al /
Fy(u) = F(u)sS(u) = F(u)s— 3 & L”‘—J

X, &

F(”) Fs(”) |
ﬁ\ TN XN
Je

Slide credit: S. Narasimhan




Subsampling by a factor of 2

Throw away every other row and column

to create a |/2 size image

Slide credit: D. Holem

Undersampling

* What if we “missed” things between the samples?

* Simple example: undersampling a sine wave
unsurprising result: information is lost

surprising result: indistinguishable from lower frequency
also was always indistinguishable from higher frequencies
aliasing: signals “traveling in disguise” as other frequencies

Slide credit: S. Marschner

Aliasing problem

* Sub-sampling may be dangerous....

* Characteristic errors may appear:
— “Wagon wheels rolling the wrong way in movies”
— “Checkerboards disintegrate in ray tracing”
— “Striped shirts look funny on color television”

Slide credit: D. Forsyth

Moire patternsin real-world images. Here are comparisonimages by Dave Etchells of Imaging Resource using

the Canon D60 (with an antialias filter) and the Sigma SD-9 (which has no antialias filter)

. The bands below the

furin the image at right are the kinds of artifacts that appear in images when no antialias filter is used. Sigma

chose to eliminate the filter to get more sharpness, butthe resulting apparent detail ma
features in the image.

y or may not reflect

Slide credit: N. Kumar




More examples

Check out Moire patterns

on the web. A _ _
Slide credit: A. Farhadi

Aliasing in video
Imagine a spoked wheel moving to the right (rotating clockwise).
Mark wheel with dot so we can see what’s happening.

If camera shutter is only open for a fraction of a frame time (frame
time = 1/30 sec. for video, 1/24 sec. for film):

DPODD

frame 0 frame 1 frame 2 frame 3 frame 4

»
>

shutter open time

Without dot, wheel appears to be rotating slowly backwards!
(counterclockwise)

Slide credit: S. Seitz

Aliasing in graphics

e m e
e T

Disintegrating textures

Slide credit: A. Efros

Sampling and aliasing

256x256 128x128 64x64 32x32 16x16

Slide credit: D. Hoiem




Sampling Theorem

Sampled function:

0 Sampling i
()= FEH)= 16T 0G-n) [y T,
7

ﬁ\ T XN
=

Slide credit: S. Narasimhan

Nyquist Frequency
. >L FS(”)
™ e

\/-—\/'—v— Yo : A"aSing

u

u

1
max

<>

/
XU

When can we recover F(u)from Fy(u)?

1
Onlyif u, . <-—— (Nyquist Frequency)
2x,

We can use 1
C)- { < Jhs,

0  otherwise

Then F(u)=F,(u)C() and f(x)=TFT[F(u)]

Sampling frequency must be greater than 21,

Slide credit: S. Narasimhan

Nyquist-Shannon Sampling Theorem

* When sampling a signal at discrete intervals, the
sampling frequency must be 22 x f__.

e f

m

. — max frequency of the input signal

» This will allows to reconstruct the original perfectly
from the sampled version

Po do % 5o S 4
AT I

AN
\/ \ bad

Slide credit: D. Hoiem

2D example

Good sampling

Bad sampling

Slide credit: N. Kumar




Anti-aliasing

Solutions:

* Sample more often

Get rid of all frequencies that are greater than half the new
sampling frequency

—  Will lose information

— Butit's better than aliasing

— Apply a smoothing filter

Slide credit: D. Holem

Preventing aliasing

* Introduce lowpass filters:
— remove high frequencies leaving only safe, low frequencies
— choose lowest frequency in reconstruction (disambiguate)

Iowpass filter

I —>» |A/D conv.| —>» MTT‘JHTWL—-L‘THT”—L — @

Iowpass filter

© - vty A of )

Slide credit: S. Marschner

Impulse Train

* Define a comb function (impulse train) in 1D as follows

00

comb, [x]= Y S[x—kM]

k=—o0
where M is an integer

comb,[x]

LI

X

Slide credit: B. K. Gunturk

Impulse Train in 2D (bed of nails)

combM’N(x,y)é i i5(x—kM,y—lN)

k=—00 [=—x

* Fourier Transform of an impulse train is also an impulse train:

Zi5x kM, y— ZN @—ZZ [ ——v—%}
k:w o J Cw - J
Y

~
comb,, , (x,y) comb, | (u,v)
M’N

As the comb samples get further apart,

the spectrum samples get closer together!
Slide credit: B. K. Gunturk




Impulse Train in ID

AT
-

Slide credit: B. K. Gunturk

Sampling low frequency signal

f(x) F(u)
A - 4
X u
comb,, (x) comb, (u)
tretret,, < 4t 1,
LYJ 1
" W
Multiply: Convolve:
F(u)*comb, (u)
S (x)comb,, (x) o

g, @ v

Slide credit: B. K. Gunturk

Sampling low frequency signal

f(x) Fu)
* u
f(x)comb,, (x) Fu)* combﬁ (u)
o i
| I ‘ I Tl AN i Jauy
T o

1

M
“No problem” if 1o
M

Slide credit: B. K. Gunturk

Sampling low frequency signal

F(x)comb, (x) Fu)* combL (u)

e, = oo,

T LVXR
M 1

M 1

2M

If there is no overlap, the original signal can be recovered from its
samples by low-pass filtering.

Slide credit: B. K. Gunturk




Sampling high frequency signal

J(x) F(u)

f(x)comb,,(x)

el

Overlap: The high frequency
energy is folded over into low
frequency. It is “aliasing” as lower
frequency energy.And you cannot

fix it once it has happened' Slide credit: B. K. Gunturk

Sampling high frequency signal
f@) F(u)

- 2__ Anti-aliasing
o ] | filter
__ : T fter

w \”\

1

F0)* h(x) = W
RN
[f(x) * h(x)] comb,, (x) R — W
u
%(_/
Yt

Slide credit: B. K. Gunturk

Sampling high frequency signal

* Without anti-aliasing filter:

f(x)comb,, (x) G

w
1
M
* With anti-aliasing filter:
[f(x) * h(x)] comb,, (x) (= W

u

%/_/
1

M

Slide credit: B. K. Gunturk

Sampling high frequency signal

Without anti-aliasing filter:

S (x)comb,, (x)

u

With anti-aliasing filter: ﬁ

[f(x) * h(x)] comb,,(x) R — W
u
-
s
B.K. Gunturk




Algorithm for downsampling by
factor of 2

I. Start with image(h, w)
2. Apply low-pass filter

im_blur = imfilter(image, fspecial(‘gaussian’, 7, 1))
3. Sample every other pixel

im_small = im_blur(1:2:end, |:2:end);

Slide credit: D. Holem

Anti-aliasing

256x256 [28x128 64x64 32x32 16x16

256x256 128x128 64x64

Slide credit: Forsyth and Ponce

Subsampling without pre-filtering

Subsampling with Gaussian pre-filtering

1/2 1/4 (2x zoom) 1/8 (4x zoom)

Slide credit: S. Seitz

Gaussian 1/2 G l1/4 G 1/8

Slide credit: S. Seitz




1000 pixel width [Phil Greenspan]
Slide credit: S. Marschner

ilip Greenspun

by dropping pixels gaussian filter

250 pixel width
Slide credit: S. Marschner

Up-sampling

How do we compute the values of pixels at
fractional positions?

® o e
—@ ®

[ ] [ ] e
—@ @

L L L

Slide credit: A. Farhadi

Up-sampling

How do we compute the values of pixels at
fractional positions?

fo) g & Bilinear sampling:
f(x+0.8,y-:).3) f(X + a,y + b) =
(I-a)(1 -b) f(xy) +
a(l -b)f(x+ 1,y) +
fxy+l) fx+ly+l)
—e + (I-a)bflxy+ 1)+
abf(x+ L,y +1)

Bicubic sampling fits a higher order function using a
larger area of support. Slide credit: A. Farhadi




Up-sampling Methods

Up-sampling

v

%S?;

-

T Nearest Bilinear Bicubic
neighbor
Slide credit: A. Farhadi Slide credit: A. Farhadi
Up-sampling Today
* Sampling

Nearest Bilinear Bicubic
neighbor

Slide credit: A. Farhadi

¢ Gabor wavelets, Steerable filters




Fourier Filtering

Low-Pass Filtered Inverse Transforme

Brightness Iinage Fowrier Transform

High-Pass Filtered Inverse Transforme

Multiply by a filter in the
frequency domain =>
convolve with the filter in
spatial domain.

Fourier
Amplitude
Band-Pass Filtered Inverse Transforme
Images from Steve Lehar http://cns-alumni bu.edu/~slehar An Intuitive Explanation of Fourier Theory Slide credit: S. Thrun

Phase Caries More Information

Raw
Images:

Magnitude
and
Phase:

Reconstruct
(inverse FFT)
mixing the
magnitude and
phase images

Phase “Wins”

‘Slide credit: S. Thrun

What is a good representation for
image analysis?
* Fourier transform domain tells you “what” (textural

properties), but not “where”.

* Pixel domain representation tells you “where” (pixel
location), but not “what”.

* Want an image representation that gives you a local
description of image events—what is happening where.

Slide credit: B. Freeman and A. Torralba

Analyzing local image structures

3 Too much

Too little

Slide credit: B. Freeman and A. Torralba




The image through the Gaussian
window
i |

l(2+y2

h(x,y)=e

i Too much

Probably still too little...
...but hard enough for
now

Too little

Slide credit: B. Freeman and A. Torralba

Analysis of local frequency

Fourier basis:
J2 migx

e

Gabor wavelet:
_xz +y2

(//(x,y)=e 257 o 2

) )’

h(x,y;x0,y,) =€ 7

~ We can look at the real and imaginary
parts:

2
X~ +y2

v (x.y)=e > cos(2mu,x)

x24y?

w(x,y)=e 2 sin(2mu,x)

Slide credit: B. Freeman and A. Torralba

Gabor wavelets

2 4y?

w.(x,y)=e 2 cos(27mu,x)

U0=0

2
xl+y?

v.(xy)=e 20 sin(27mu,x)

Slide credit: B. Freeman and A. Torralba

Gabor filters
I ] [l l [l“ Gabor filters at different
scales and spatial frequencies

Top row shows anti-symmetric

n m IIn (or odd) filters; these are good for detecting
odd-phase structures like edges.

u n nn Bottom row shows the
symmetric (or even) filters, good for
detecting line phase contours.

Slide credit: B. Freeman and A. Torralba
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2D Receptive Field
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Fig. 5. Top row: illustrations of empirical 2-D receptive field profiles
measured by J. P. Jones and L. A. Palmer (personal communication) in
simple cells of the cat visual cortex. Middle row: best-fitting 2-D Gabor
elementary function for each neuron, described by (10). Bottom row:
residual error of the fit, indistinguishable from random error in the Chi-
squared sense for 97 percent of the cells studied.

00

Slide credit: B. Freem‘;;l and A. Torralba

Quadrature filter pairs

* A quadrature filter is a complex filter whose real part is related to its
imaginary part via a Hilbert transform along a particular axis through the

origin
Gabor wavelet:
f eut
02 Wxp)=e el
I
)?
Slide credit:
. Freeman & A. Torralba

Quadrature filter pairs

Contrast invariance! (same energy response for white dot on

black background as for a black dot on a white background).

Slide credit: B. Freeman and A. Torralba




Quadrature filter pairs

4
4

4
energy response

edge to an edge

Slide credit: B. Freeman and A. Torralba

Quadrature filter pairs
energy response to
a line

Slide credit: B. Freeman and A. Torralba

line

How quadrature pair filters work

f,
ANNA

E H+% +HI
|\

(a) Frequency response of even filter, G
(real)

£
N
—- M+ =

\_/ \/

(b) Frequency response of odd filter, H
(imaginary)

Figure 3-5: I'requency content of two bandpass lilters in quadrature. (a) even

phase filter, called ¢ in text. and (b} odd phase filter. H. Plus and minus sign
illustrate relative sign of regions in the frequency domain. See Fig, 36 lor
calculation of the frequency content of the energy measure derived from these

two filters. Slide credit: B. Freeman and A. Torralba

How quadrature pair filters work

AYWAYA 4\-.92
: [+ A

\ ‘

N / N / \_/ N

(a) Fourier transform of G"G %Aﬁf
N \ N\
- '—4 + 0— -

/

\/ \/ \_/

(b) Fourier transform of H*H

: Derivation of energy measure {requency content for the filters

(a) Fourier transform of 7+ (/. (b} Fourier transform of / «

H. Each squared response has 3 lobes in the frequency domain. arising from
convolution of the frequency domain responses. The center lobe is modulated
down in frequency while the two outer lobes are modulated up. (There are
two sign changes which combine to give the signs shown in (b). To convolve

H with itsell. we flip it in [, and f,. which interchanges the 4+ and — lobes of

iy Fig. 3-5 (b). Then we slide it over an unflipped version of itself. and integrate
/ \ the product of the two. That operation will give positive outer lobes. and
[ \ a negative inner lobe. However, H has an imaginary frequency response, so
| 4 | multiplying it by itself gives an extra factor . which vields the signs
| ,’ A shown in (b)), (¢} Fourier transform of the energy measure, (7« (/+ H « 1.

I'he high frequency lobes cancel. leaving only the baseband spectrum. which

\ / has been demodulated in frequency from the original bandpass response. This

spectrum is proportional to the sum of the auto-correlation functions of either

(c) Fourier transform of G*G + H'H lobe of Fig. 3-5 (2} and cithegphe @ddit-BPFreeman and A. Torralba




Oriented Filters o

* Gabor wavelet: wix,y)=e 257 J2migx

x'=cos(a)x + sin(a)y
* Tuningfilter orientation: |

y'=—sin(a)x + cos(a)y

svenpart

W W W g Yy

Real &
Space
mag & e (e e W 4 W
Fourier Real E‘ oMo BooBoo B oo B O
Domain —
Imag -
%,* e ‘e 'y ‘Y, *y O™

Slide credit: B. Freeman and A. Torralba

Simple example

“Steerability”-- the ability to synthesize a filter of any orientation
from a linear combination of filters at fixed orientations.

G, = cos(0)G, +sin(0)Gy,

0° 90° Synthesized 30°
N H u
Response: Taken from:
l l l W. Freeman, T. Adelson,
Raw Image “The Design and Use of

Sterrable Filters”, IEEE
Trans. Patt, Anal. and
Machine Intell., vol 13, #9,
pp 891-900, Sept 1991

d8 S

Slide credit: B. Freeman and A. Torralba

Steerable filters

Derivatives of a Gaussian:

Xyt
2

_M(xy) _ —x
173 270"

e 2

Mxy) v
& 270" :

h(x.y) by (x,) =

An arbitrary orientation can be computed as a linear combination of those
two basis functions:
ho(x.) = cos(@)h,(x,y) +sin(a)h,(x.y)

The representation is “shiftable” on orientation: We can interpolate any
other orientation from a finite set of basis functions.

Slide credit: B. Freeman and A. Torralba

Freeman & Adelson, 1992

Steerable filters

K} maps
Basis
filter
bank

Summing Adaptively

Input junction filtered image

image

g

Fig. 3. Steerable filter system block diagram. A bank of dedicated filters
process the image. Their outputs are multiplied by a set of gain maps that
adaptively control the orientation of the synthesized filter.

Slide credit: B. Freeman and A. Torralba




Local image representations

A pixel
= [rg.b]

An image patch

Gaborfilter

pair in quadrature Gabor jet V1 sketch:

hypercolumns

J.G.Daugman, “Two dimensiona spectral analysis of cortical receptive field profiles,” Vision Res., vol.20.pp.847-856.1980

L. Wiskott, J-M. Fellous, N. Kuiger, C. Malsburg, “ Face Recognition by Elastic Bunch Graph Matching”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol.19(7), July 1997, pp. 775-779.

Slide credit: B. Freeman and A. Torralba

Gabor Filter Bank

e
or=[4444]: or=[126 3 2];

Not for image reconstruction. It does NOT cover the entire space!

Slide credit: B. Freeman and A. Torralba

Summary

* Sampling

* Gabor wavelets, Steerable filters

Next week

* Image pyramids




