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Review - Frequency Domain
Techniques

* The name “filter” is borrowed from frequency domain processing

* Accept or reject certain frequency components

* Fourier (1807):
Periodic functions
could be represented ———
as a weighted sum of
sines and cosines

Image courtesy of T'echnology Review



Review - Fourier Transform

We want to understand the frequency w of our signal. So, let’s
reparametrize the signal by w instead of x:

f(x) , Fourier » F(w)
Transform

For every wfrom 0 to mf, F(w) holds the amplitude A and

phase f of the corresponding sine A sin(cax + ¢)
 How can FFhold both? Complexnumber trick!

F(w)=R(w)+il(w)

I(w
A=+ R(w) + (w)’ ¢ =tan™ Hw)
R(w)
We can always go back:
F(w) | Inverse Fourier v f(x)
Transform Shde credit: A. Efros




Review - The Discrete Fourier transform

e Forward transform

M—-1N-1 .(@+l_nj
Flmnl=) > flklle M ¥
k=0 1[=0
* Inverse transform
M—-1N-1 (km an
k1= M— %%F[m nle N

Slhide credit: B. Freeman and A. Torralba



Review - The Discrete Fourier transform

Vertical orientation Low spatial frequencies

" t|orientation

<. A

High
spatial
fx in cycles/image frequencies

Log power spectrum

Slhide credit: B. Freeman and A. Torralba



Review - The Convolution Theorem

* The Fourier transform of the convolution of two
functions is the product of their Fourier transforms

Flg=h]=F|g]F[A
* The inverse Fourier transform of the product of two

Fourier transforms is the convolution of the two inverse
Fourier transforms

F'[ghl=F'[g]=F [A]

* Convolution in spatial domain is equivalent to
multiplication in frequency domain!

Slide credit: A. Efros



Review - Filtering in frequency
domain

intensity image

log fit magnitude
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Shde credit: D. Hoiem



Review - Low-pass, Band-pass, High-
pass filters

low-pass:
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d-pass:
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Slide credit: A. Efros



Today - Image pyramids

* Gaussian pyramid
* lLaplacian pyramid
* Woavelet/QMF pyramid

* Steerable pyramid

Shide credit: B. Freeman and A. Torralba



Template matching
* Goal: find f@® in image

* Main challenge: Whatis a good
similarity or distance measure
between two patches?

— Correlation

— Zero-mean correlation

— Sum Square Difference

— Normalized Cross Correlation

Slide: Hoiem



Matching with filters
* Goal: find @ in image

* Method O: filter the image with eye patch

h[m,n] = Z o[k,1] fim+k,n+1]

f = image
g = filter

What went wrong!?

response is stronger
for higher intensity

Input Filtered Image Slide: Hoiem



Matching with filters
* Goal: find @ in image

* Method I: filter the image with zero-mean eye

h{m,n] = E(f [k, []1-1) (g[m +k,n +1])

\

mean of f




Matching with filters
* Goal: find @ in image

e Method 2: SSD

h[m,n] = Z(g[k,l] — flm+k,n+1])

|- sqrt(SSD) Thresholded Image




Matching with filters
* Goal: find in image

e Method 2: SSD
h[m,n] = Z(g[k’” — fim+k,n+1])
oD L l

What' s the potential
downside of SSD?

SSD sensitive to
average intensity

Input | - Sq I"t(SSD) Slide: Hoiem



Matching with filters
* Goal: find @ in image

e Method 3: Normalized cross-correlation

mean template mean image patch

i |
Z(g[kal]_g)(.f[m_kan_l]_fm,n)

hlm,n] =

0.5

(§<g[k,l]—g>22<f[m—k,n—1]—fm,n>2

k.l k.l

Matlab: normxcorr2 (template, im)



Matching with filters
* Goal: find @ in image

e Method 3: Normalized cross-correlation

Input Normalized X-Correlation Thresholded Image



Matching with filters
* Goal: find @ in image

e Method 3: Normalized cross-correlation

Invariant to mean and scale of intensity




Q: What is the best method to use?

A: Depends
* SSD: faster, sensitive to overall intensity

* Normalized cross-correlation: slower, invariant to local average
intensity and contrast



Q: What if we want to find larger or
smaller eyes?

A: Image Pyramid



* over a range

- -




Image pyramids

* Gaussian pyramid
* lLaplacian pyramid
* Woavelet/QMF pyramid

* Steerable pyramid

Shide credit: B. Freeman and A. Torralba



Image pyramids

* Gaussian pyramid

Shide credit: B. Freeman and A. Torralba



Review of Sampling

Gaussian

Fil
eer Low-Pass >ample Low-Res

image Filtered Image Image



The Gaussian pyramid

e Smooth with Gaussians, because
— A Gaussian®Gaussian = another Gaussian

* Gaussians are low pass filters, so representation
is redundant.

* Gaussian pyramid creates versions of the input image
at multiple resolutions.

* This is useful for analysis across different spatial scales,
but doesn’t separate the image into different frequency

bands.

Shde adapted from: B. Freeman and A. Torralba



The computational advantage of pyramids

GAUSSIAN PYRAMID
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Fig 1. A one-dimensional graphic representation of the process which
generates a Gaussian pyramid Each row of dots represents nodes
within a level of the pyramid. The value of each node in the zero
level is just the gray level of a corresponding image pixel. The value
of each node in a high level is the weighted average of node values
in the next lower level. Note that node spacing doubles from level
to level, while the same weighting pattern or “generating kernel” is
used to generate all levels.

[Burt and Adelson, 1983]

Shide credit: B. Freeman and A. Torralba



The Gaussian Pyramid

GAUSSIAN PYRAMID

E
4 5

Fig. 4. First six levels of the Gaussian pyramid for the "Lady" image The original image, level 0, meusures 257 by 257 pixels and each
higher level array is roughly half the dimensdons of its predecessor. Thus, level 5 measures just 9 by 9 pixels.

[Burt and Adelson, 1983]

Shide credit: B. Freeman and A. Torralba
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Convolution and subsampling as
a matrix multiply (1D case)
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(Normalization constant of /16 omitted for visual clarity.)

Slide credit: B. Freeman and A. Torralba



Next pyramid level

x, = G,x,
G, =
1 4 6 4 1 0 0 O
O o0 1 4 6 4 1 0
o 0 0 0 1 4 6 4
o 0 0 0 0 0 1 4

Shide credit: B. Freeman and A. Torralba



The combined effect of the two
pyramid levels

x, = G,Gx,
G2G1=
1 4 10 920 81 40 44 40 31 2 10 4 1 0 0 0 0 0 0 0
0 0 0 0 1 4 10 2 31 40 44 40 81 20 10 4 1 0 0 0
0 0 0 0 0 0 0 0 1 4 10 9 81 40 44 40 30 16 4 0
0O 0 0 0 0 0 0 0 00 0 0 1 4 10 92 9 16 4 0

Shide credit: B. Freeman and A. Torralba
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Fig. 2. The equivalent weighting functions /A (x) for nodes in levels 1, 2, 3,
and infinity of the Gaussian pyramid. Note that axis scales have been
adjusted by factors of 2 to aid comparison Here the parameter a of the
generating kernel is 0.4, and the resulting equivalent weighting
functions closely resemble the Gaussian probability density functions.

Shide credit: B. Freeman and A. Torralba



Gaussian pyramids used for

* up- or down- sampling images.

* Multi-resolution image analysis
— Look for an object over various spatial scales

— Coarse-to-fine image processing: form blur estimate or the
motion analysis on very low-resolution image, upsample and
repeat. Often a successful strategy for avoiding local minima
in complicated estimation tasks.

Shide credit: B. Freeman and A. Torralba



ID Gaussian pyramid matrix,
for [1 464 1] low-pass filter

full-band image,
highest resolution

lower-resolution
image

lowest resolution
image

Shide credit: B. Freeman and A. Torralba



Template Matching with Image
Pyramids

Input: Image, Template

|.  Match template at current scale
2. Downsample image
3. Repeat |-2 until image is very small

4. Take responses above some threshold, perhaps with non-
maxima suppression



Coarse-to-fine Image Registration

|. Compute Gaussian pyramid
2. Align with coarse pyramid

3. Successively align with finer
pyramids

—  Search smaller range

Why is this faster?

Are we guaranteed to get the same
result?

/
medium / \ \ I=1
\

\

/ & o & & & o & &




Image pyramids

* lLaplacian pyramid

Shide credit: B. Freeman and A. Torralba



The Laplacian Pyramid

* Synthesis

— Compute the difference between upsampled
Gaussian pyramid level and Gaussian pyramid level.

— band pass filter - each level represents spatial
frequencies (largely) unrepresented at other level.

* Laplacian pyramid provides an extra level of

analysis as compared to Gaussian pyramid by
breaking the image into different isotropic

spatial frequency bands.

Shde adapted from: B. Freeman and A. Torralba



The Laplacian Pyramid

Slide credit: B. Freeman and A. Torralba



The Laplacian Pyramid

X Gle

P—I

Slide credit: B. Freeman and A. Torralba



The Laplacian Pyramid

X Gle

P—I

Slide credit: B. Freeman and A. Torralba



The Laplacian Pyramid

Slide credit: B. Freeman and A. Torralba



The Laplacian Pyramid

Slide credit: B. Freeman and A. Torralba



The Laplacian Pyramid

Slide credit: B. Freeman and A. Torralba



The Laplacian Pyramid

X, Gx =X, X, X,
— R W
I

ll N0 F3G3)x3

Slide credit: B. Freeman and A. Torralba



Upsampling

Y, = F;x;

&

Insert zeros between pixels, then
apply a low-pass filter, [| 4 6 4 1]
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Shide credit: B. Freeman and A. Torralba



Showing, at full resolution, the information
captured at each level of a Gaussian (top)
and Laplacian (bottom) pyramid.

Fag & Fust Dar levds of the Gawssan and Laphbcan pommed. Gawssan srages, wpper row, were obdamedby expandeg povamd amas (Fg 4)
throagh Gassim st apohioa. Fach keve ofthe Laphcnin pymmmd 15 the di flemence bt neen the cormespondng and next bagha kevels of the
Cavesssan e d

Shide credit: B. Freeman and A. Torralba



Laplacian pyramid reconstruction algorithm:
recover X, from L, L,, L; and x,

G# is the blur-and-downsample operator at pyramid level #
F# is the blur-and-upsample operator at pyramid level #

Laplacian pyramid elements:
LI = (-FI GI)xI
L2 = (I - F2 G2) x2
L3 =(1-F3 G3)x3

x2 =Gl xl
x3 = G2 x2
x4 = G3 x3

Reconstruction of original image (x|) from Laplacian pyramid elements:
x3 =L3 + F3 x4
x2 =12 + F2x3
x| =LI + Fl x2

Shide credit: B. Freeman and A. Torralba



Laplacian pyramid reconstruction
algorithm: recover x, fromUL,, L, L;

,WI

Shide credit: B. Freeman and A. Torralba
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Shide credit: B. Freeman and A. Torralba




1D Laplacian pyramid matrix,
for[1 46 4 1] low-pass filter

high frequencies

mid-band
frequencies

low frequencies I —n

Shide credit: B. Freeman and A. Torralba



Laplacian pyramid applications

* Texture synthesis
* Image compression

e Noise removal

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-3],NO. 4, APRIL 1983

The Laplacian Pyramid as a Compact Image Code

PETER J. BURT, Mmemser, ieeE, AND EDWARD H. ADELSON

Shide credit: B. Freeman and A. Torralba



Image blending

Slide credit: B. Freeman and A. Torralba



(a)

@

Szeliski, Computer Vision, 2010

lG.

)
Figure 3.42 Laplacian pyramid blending details (Burt and Adelson 1983b) © 1983 ACM.
The first three rows show the high, medium, and low frequency parts of the Laplacian pyramid Slide credit:
(taken from levels 0, 2, and 4). The left and middle columns show the original apple and
orange images weighted by the smooth interpolation functions, while the right column shows
the averaeed contributions.

B. Freeman &
A. Torralba



Image blending

* Build Laplacian pyramid for both images: LA, LB
* Build Gaussian pyramid for mask: G

* Builda combined Laplacian pyramid:
L(j) = G(j) LAG) + (1-G())) LB())

* CollapselL to obtain the blended image

Slide credit: B. Freeman and A. Torralba



Eulerian Video Magnification

 Video

Eulerian Video Magnification

for Revealing Subtle Changes in the World

Hao-Yu Wu' Michael Rubinstein’ Eugene Shih?
John Guttag' Frédo Durand' William T. Freeman'

IMIT CSAIL 2Quzmta Research Cambridge, Inc.




Image pyramids

* Woavelet/QMF pyramid

Shide credit: B. Freeman and A. Torralba



Wavelet/QMF pyramid

* Subband coding

* Wavelet or QMF (quadrature mirror filter) pyramid
provides some splitting of the spatial frequency bands
according to orientation (although in a somewhat
limited way).

* Image is decomposed into a set of band-limited
components (subbands).

* Oiriginal image can be reconstructed without error by
reassemblying these subbands.
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2D Haar transform

Basic elements:
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200

1 1
1 1]-1
1 -1
111 Low pass
1 1|_ SR P
1 111
High pass
1 1= 1)1 vertical
1 11 -1
High pass
1 1 | = 1[1 horizontal
-1 -11 -1
250
1 - :
11= 1)1 S8 1 High pass
-1 11 diagonal

Shide credit:zuB“.u Freeman and A. Torralba



2D Haar transform

80 100 120

80 100 120

80 100 120

80 100 120

Sketch of the Fourier transform
|

Horizontal low pass,
Vertical low-pass

Horizontal high
pass, vertical
[ low-pass

Horizontal low
pass, vertical
" high-pass

Horizontal
| _high pass,
vertical high
pass

Shide creJlit: B. Freeman and A. Torralba



Pyramid cascade
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Figure 4.12: Idealized diagram of the partition of the frequency plane

resulting from a 4-level pyramid cascade of separable 2-band filters. The

. . top plot represents the frequency spectrum of the original image. with axes
Simoncelliand Adelson’ ranging, from —7 to 7. This is divided into four subbands at the next

in “Subband COding”, Kluwer, 1990. level. On each subsequent level, the lowpass subban@¥outlined in bold) is
subdivided furtker. Shide credit: B. Freeman and A. Torralba



Wavelet/QMF representation

Same number of pixels!

Slide credit: B. Freeman and A. Torralba



Image pyramids

* Steerable pyramid

Shide credit: B. Freeman and A. Torralba



Steerable Pyramid

Low pass
residual

O
(» ( )) Subbands

N - J

* The Steerable pyramid provides a clean separation of the image
into different scales and orientations.

2 Level decomposition
of white circle example:

Images from: http://www.cis.upenn.edu/~eero/steerpyr.html Slide credit: B. Freeman and A. Torralba



Steerable Pyramid

We may combine Steerability with Pyramids to get a Steerable
Laplacian Pyramid as shown below.

Decomposition Reconstruction
n By(c) > Byew)
-I: ) ~ > By{e) :I-

I: Brg<s) > By :I
Lyi~) > 2T P Lyl

Images from: http://www.cis.upenn.edu/~eero/steerpyr.ntmi Shide credit: B. Freeman and A. Torralba



Steerable Pyramid

We may combine Steerability with Pyramids to get a Steerable

Laplacian Pyramid as shown below

Decomposition

Reconstruction

Byl
-I: Byis)

> Byleo)
> Brleo) ]_

Li(<)

2]

> Byde) j
Byleo) 2T P Lylew)

Byl >
Byl > Bxie) [
Ly« P 2l =1 = 27 o Li{w) =

Images from: http://www.cis.upenn.edu/~eero/steerpyr.html

Shide credit: B. Freeman and A. Torralba



Steerable Pyramid

But we need to get rid of
the corner regions before
starting the recursive

My

circular filtering

Figure 1. Idealized illustration of the spectral
decomposition performed by a steerable pyra-
mid with £ = 4. Frequency axes range from
—.m to w. The basis functions are related by
translations, dilations and rofations (except for
the initial highpass subband and the final low-
pass subband). For example, the shaded region
Simoncelliand Freeman, corresponds to the spectral support of a single

ICIP 1995 (Vertlcally-orlented) subband. Shide credit: B. Freeman and A. Torralba



Filter Kernels

Coarsest scalen

Image /

Finest scale

Reprinted from “ Shiftable MultiScale Transforms,” by Simoncelli et al., IEEE Transactions
on Information Theory, 1992, copyright 1992, IEEE

There is also a high pass residual. ..
Shide credit: B. Freeman and A. Torralba



Phase-based Video Magnification

 Video

‘ SIGGRAPH2013

Phase-Based Video Motion Processing

Neal Wadhwa Michael Rubinstein
Frédo Durand William T. Freeman

MIT CSAIL




Image pyramids

Gaussian

Laplacian

Woavelet/ QMF

Steerable pyramid

Shide credit: B. Freeman and A. Torralba



Progressively blurred and

* Gaussian \ / . .
_ subsampled versions of the image.
] " Adds scale invariance to fixed-size
=) algorith
S) gorithms.
2
* Laplacian

e Wavelet/ QMF

* Steerable pyramid

Shide credit: B. Freeman and A. Torralba



Image pyramids

Gaussian //

Laplacian

Woavelet/ QMF

Steerable pyramid

i

o’

Progressively blurred and
subsampled versions of the image.
Adds scale invariance to fixed-size
algorithms.

Shows the information added in
Gaussian pyramid at each spatial
scale. Useful for noise reduction &
coding.

Slide credit: B. Freeman and A. Torralba



Image pyramids

i

Gaussian //

Laplacian

Woavelet/ QMF

Steerable pyramid

Progressively blurred and
subsampled versions of the image.
Adds scale invariance to fixed-size
algorithms.

Shows the information added in
Gaussian pyramid at each spatial
scale. Useful for noise reduction &
coding.

Bandpassed representation,complete, but with
aliasing and some non-oriented subbands.

Slide credit: B. Freeman and A. Torralba



Image pyramids
) Y 4 .
Gaussian / \\ // Progressively qu.rred and |
: - subsampled versions of the image.
Y . Adds scale invariance to fixed-size
algorithms.

Shows the information added in

LaPIaCIan Gaussian pyramid at each spatial

scale. Useful for noise reduction &

coding.

Band d tation, lete, but with
Wavelet/QMF andpassed representation,complete, but wi

aliasing and some non-oriented subbands.

Shows components at each scale
B and orientation separately. Non-

e aliased subbands. Good for
’ .
texture and feature analysis. But
overcomplete and with HF

residual.
Slide credit: B. Freeman and A. Torralba

Steerable pyramid



Schematic pictures of each matrix

transform
Shown for |-d images

The matrices for 2-d images are the same idea, but more
complicated, to account for vertical, as well as horizontal,

neighbor relationships.

transformed image

F’ — (]_> «— Vectorized image

Fourier transform, or
Wavelet transform, or

Steerable pyramid transform
Shide credit: B. Freeman and A. Torralba



Fourier transform

imaginary

: :l.::'l

s
!

i

color key

Fourier Fourier bases pixel domain
transform are global: each image
transform
coefficient
depends on all
pixel locations.

Shide credit: B. Freeman and A. Torralba



Gaussian pyramid

Gaussian
pyramid

pixel image

i h: | '

Overcomplete representation.
Low-pass filters, sampled
Shide credit: B. Freeman and A. Torralba appropriately for th eir blur.



Laplacian pyramid

Laplacian
pyramid

pixel image

Overcomplete representation.
Transformed pixels represent
Shide credit: B. Freeman and A. Torralba bandpassed image infO rmation.



Wavelet (QMF) transform

Wavelet
pyramid

e

Ortho-normal
transform (like
Fourier transform),
but with localized
basis functions.

pixel image

Slide credit: B. Freeman and A. Torralba



Steerable
pyramid

Multiple
orientations at <

== ONe scale

Multiple
orientations at
the next scale

<

N

the next scale..

pixel image

Over-complete
representation,
but non-aliased
subbands.

Shide: B. Freeman and A. Torralba



Why use image pyramids?

* Handle real-world size variations with a constant-size vision
algorithm.

* Remove noise

* Analyze texture

* Recognize objects

* Label image features

* Image priors can be specified naturally in terms of wavelet
pyramids.

Shide credit: B. Freeman and A. Torralba



Reading Assighment #3 - Hybrid Images

* A. Oliva, A. Torralba, P.G. Schyns (2006). Hybrid

Images. ACM Transactions on Graphics, ACM
SIGGRAPH, 25-3, 527-530.

e Due on 10% of December

© 2006 Aude Oliva and Antonio Torralba



Salvador Dali invented Hybrid Images?

Salvador Dali

“Gala Contemplating the Mediterranean Sea,
which at 30 meters becomes the portrait

of Abraham Lincoln”, 1976 g Slide credit: J. Hays@




Why do we get different, distance-dependent
interpretations of hybrid images?

Slide credit: D. Holem



Hybrid Images

0
frec%émcy (c/h)

Shde credit: J. Hays



Fourier bases

Shde credit: M. H. Yang



Hybrid Image in FFT

Hybrid Image Low-passed Image a7 High-passed Image

’ : 1000

L 1200

ATES Frexadss e TR s
100 200 300 400 500 600 700

Shde credit: J. Hays



Salvador Dali

“Gala Contemplating the Mediterranean Sea,
which at 30 meters becomes the portrait

of Abraham Lincoln”, 1976




Salvador Dali

“Gala Contemplating the Mediterranean Sea,
which at 30 meters becomes the portrait

of Abraham Lincoln”, 1976 Shide credit: J. Hayss




Summary - Image pyramids

* Gaussian pyramid
* lLaplacian pyramid
* Woavelet/QMF pyramid

* Steerable pyramid

Shide credit: B. Freeman and A. Torralba



Nextweek

* Edge detection



