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Review – Signals and Images

•  A signal is composed of low and high frequency 
components

low frequency components: smooth /�
  piecewise smooth

high frequency components: oscillatory

Neighboring pixels have similar brightness values

Neighboring pixels have different brightness values

You’re within a region

You’re either at the edges or noise points



Review - Low-pass, Band-pass, High-
pass filters

low-pass:

High-pass / band-pass:

Slide credit: A. Efros 



Today

•  Edge detection
•  Difference filters
•  Laplacian of Gaussian
•  Canny edge detection

•  Boundary detection
•  Hough transform
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Edge detection

•  Goal:  Identify sudden changes 
(discontinuities) in an image
–  Intuitively, most semantic and 

shape information from the image 
can be encoded in the edges

–  More compact than pixels�

•  Ideal: artist’s line drawing (but 
artist is also using object-level 
knowledge)

Slide credit: D. Lowe 



Why do we care about edges?

•  Extract information, recognize 
objects

•  Recover geometry and viewpoint

Vanishing
 point

Vanishing
 line

Vanishing
 point

 Vertical vanishing
 point

(at infinity)

Source: J. Hays 



Closeup of edges

Slide credit: D. Hoiem 



Closeup of edges

Slide credit: D. Hoiem 



Closeup of edges

Slide credit: D. Hoiem 



Closeup of edges

Slide credit: D. Hoiem 



What causes an edge?

Depth discontinuity: 
object boundary

Change in surface 
orientation: shape

Cast shadows

Reflectance change: 
appearance 
information, texture

Slide credit: K. Grauman 



Characterizing edges

•  An edge is a place of rapid change in the image intensity 
function

image
intensity function�

(along horizontal scanline) first derivative

edges correspond to�
extrema of derivative

Slide credit: K. Grauman 



Derivatives with convolution
For 2D function f(x,y), the partial derivative is:

For discrete data, we can approximate using finite differences:

To implement above as convolution, what would be the 
associated filter?
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Slide credit: K. Grauman 



Partial derivatives of an image
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Which shows changes with respect to x?
Slide credit: K. Grauman 



Assorted finite difference filters

>> My = fspecial(‘sobel’); 
>> outim = imfilter(double(im), My);  
>> imagesc(outim); 
>> colormap gray; 

Slide credit: K. Grauman 



The gradient points in the direction of most rapid increase in 
intensity�
�
�

Image gradient
•  The gradient of an image: 

•   

The gradient direction is given by

Slide credit: S. Seitz 

The edge strength is given by the gradient magnitude

•  How does this direction relate to the direction of the edge?



Original Image

Slide credit: K. Grauman 



Gradient magnitude image

Slide credit: K. Grauman 



Thresholding gradient �
with a lower threshold

Slide credit: K. Grauman 



Thresholding gradient �
with a higher threshold

Slide credit: K. Grauman 



Intensity profile

Slide credit: D. Hoiem 



With a little Gaussian noise

Gradient

Slide credit: D. Hoiem 



Effects of noise
•  Consider a single row or column of the image

–  Plotting intensity as a function of position gives a signal

Where is the edge?
Slide credit: S. Seitz 



Effects of noise

•  Difference filters respond strongly to noise
–  Image noise results in pixels that look very different from their neighbors
–  Generally, the larger the noise the stronger the response

•  What can we do about it?

Slide credit: D. Forsyth 



Solution: smooth first

•  To find edges, look for peaks in )( gf
dx
d ∗

f 

g 

f * g 

)( gf
dx
d ∗

Slide credit: S. Seitz 



Smoothing with a Gaussian

Recall: parameter σ is the “scale” / “width” / “spread” of the 
Gaussian kernel, and controls the amount of smoothing.

… 

Slide credit: K. Grauman 



Effect of σ on derivatives 

The apparent structures differ depending on Gaussian’s 
scale parameter.

Larger values: larger scale edges detected
Smaller values: finer features detected

σ = 1 pixel σ = 3 pixels

Slide credit: K. Grauman 



So, what scale to choose?
It depends what we’re looking for.

Slide credit: K. Grauman 



Smoothing and Edge Detection

•  While eliminating noise via smoothing, we also lose some of the 
(important) image details.
–  Fine details
–  Image edges
–  etc.

•  What can we do to preserve such details?
–  Use edge information during denoising!
–  This requires a definition for image edges. 

•  Edge preserving image smoothing (Next week’s topic!)

Chicken-and-egg dilemma!



•  Differentiation is convolution, and convolution is associative: �

•  This saves us one operation: g
dx
dfgf

dx
d ∗=∗ )(

Derivative theorem of convolution

g
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g
dx
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Slide credit: S. Seitz 



Derivative of Gaussian filter

x-direction y-direction

Slide credit: S. Lazebnik 
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Derivative of Gaussian filter

•  Which one finds horizontal/vertical edges?

x-direction y-direction

Slide credit: S. Lazebnik 



Smoothing vs. derivative filters
•  Smoothing filters

–  Gaussian: remove “high-frequency” components; �
“low-pass” filter

–  Can the values of a smoothing filter be negative?
–  What should the values sum to?

•  One: constant regions are not affected by the filter

�

•  Derivative filters
–  Derivatives of Gaussian
–  Can the values of a derivative filter be negative?
–  What should the values sum to? 

•  Zero: no response in constant regions
–  High absolute value at points of high contrast

Slide credit: S. Lazebnik 



Reading Assignment #4 

•  One of the 60 seminal articles appeared in the journal 
Philosophical Transactions, which is made available 
online due to the celebration of 350th birthday of the 
Royal Society in 2010. �
[http://trailblazing.royalsociety.org]

•  Due on 21st of December

doi: 10.1098/rspb.1980.0020
, 187-217207 1980 Proc. R. Soc. Lond. B

 
D. Marr and E. Hildreth
 
Theory of Edge Detection
 
 

References
ls
http://rspb.royalsocietypublishing.org/content/207/1167/187#related-ur

 Article cited in:

Email alerting service  herethe box at the top right-hand corner of the article or click 
Receive free email alerts when new articles cite this article - sign up in

 http://rspb.royalsocietypublishing.org/subscriptions
 go to: Proc. R. Soc. Lond. BTo subscribe to 

 on November 27, 2012rspb.royalsocietypublishing.orgDownloaded from 



Laplacian of Gaussian
Consider  

Laplacian of Gaussian!
operator!

Where is the edge?  Zero-crossings of bottom graph
Slide credit: K. Grauman 



2D edge detection filters

•   The Laplacian operator:

Laplacian of Gaussian

Gaussian derivative of Gaussian

Slide credit: K. Grauman 



Laplacian of Gaussian

 on December 1, 2009rspb.royalsocietypublishing.orgDownloaded from 

original image

Source: D. Marr and E. Hildreth (1980) 



Laplacian of Gaussian

 on December 1, 2009rspb.royalsocietypublishing.orgDownloaded from 

convolution with

Source: D. Marr and E. Hildreth (1980) 



Laplacian of Gaussian

 on December 1, 2009rspb.royalsocietypublishing.orgDownloaded from 

convolution with

(pos. values – white, neg. values – black)

Source: D. Marr and E. Hildreth (1980) 



Laplacian of Gaussian

 on December 1, 2009rspb.royalsocietypublishing.orgDownloaded from 

zero-crossings

Source: D. Marr and E. Hildreth (1980) 



Designing an edge detector

•  Criteria for a good edge detector:
–  Good detection: the optimal detector should find all real edges, 

ignoring noise or other artifacts
–  Good localization

•  the edges detected must be as close as possible to the true edges
•  the detector must return one point only for each true edge point

•  Cues of edge detection
–  Differences in color, intensity, or texture across the boundary
–  Continuity and closure
–  High-level knowledge

Slide credit: L. Fei-Fei 



The Canny edge detector

original image (Lena)

Slide credit: K. Grauman 



The Canny edge detector

norm of the gradientthresholding

Slide credit: K. Grauman 



The Canny edge detector

thresholding

How to turn 
these thick 
regions of the 
gradient into 
curves?

Slide credit: K. Grauman 



Non-maximum suppression

Check if pixel is local maximum along gradient direction, 
select single max across width of the edge

–  requires checking interpolated pixels p and r

Slide credit: K. Grauman 



The Canny Edge Detector

thinning
(non-maximum suppression)

Problem: pixels along 
this edge didn’t survive �
the thresholding

Slide credit: K. Grauman 



Hysteresis thresholding

•  Threshold at low/high levels to get weak/strong edge pixels

•  Do connected components, starting from strong edge pixels

Slide credit: J. Hays 



Hysteresis thresholding
•  Check that maximum value of gradient value is 

sufficiently large
–  drop-outs?  use hysteresis

•  use a high threshold to start edge curves and a low threshold to 
continue them.

Slide credit: S. Seitz 



Hysteresis thresholding

original image

high threshold
(strong edges)

low threshold
(weak edges)

hysteresis threshold

Slide credit: L. Fei-Fei 



original image 

high threshold
(strong edges)

low threshold
(weak edges)

hysteresis threshold

Slide credit: L. Fei-Fei 

Hysteresis thresholding



Recap: Canny edge detector

1.  Filter image with derivative of Gaussian 
2.  Find magnitude and orientation of gradient
3.  Non-maximum suppression:

–  Thin wide “ridges” down to single pixel width
4.  Linking and thresholding (hysteresis):

–  Define two thresholds: low and high
–  Use the high threshold to start edge curves and the 

low threshold to continue them�

•  MATLAB:   edge(image, ‘canny’); 

Slide credit: D. Lowe, L. Fei-Fei 



Effect of σ (Gaussian kernel spread/size)

Canny with Canny with original 

The choice of σ depends on desired behavior
•  large σ detects large scale edges

•  small σ detects fine features

Slide credit: S. Seitz 



Background Texture Shadows

Low-level edges vs. perceived contours

Slide credit: K. Grauman 



Edge detection is just the 
beginning…

•  Berkeley segmentation database: �
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

image human segmentation gradient magnitude

Source: S. Lazebnik



[D. Martin et al. 
PAMI 2004]

Human-marked segment boundaries

Learn from 
humans which 
combination of 
features is most 
indicative of a 
“good” contour?

Slide credit: K. Grauman 



Today

•  Edge detection
•  Difference filters
•  Laplacian of Gaussian
•  Canny edge detection

•  Boundary detection
•  Hough transform



Edges vs. Boundaries

•  Edges
–  abrupt changes in the intensity
–  discontinuities in intensity values
–  a local entity

•  Edge detection may result in
–  Breaks in the edges due to non-uniform illumination
–  Spurious edges

•   Boundaries
–  related to regions
–  a global entity
–  assemble of meaningful edge points 

•  Boundary detection requires grouping or fitting



Fitting

•  Want to associate a model with observed features

[Fig from Marszalek & Schmid, 2007] 

 
 

For example, the model could be a line, a circle, or an arbitrary 
shape.

Slide credit: K. Grauman 



Fitting: Main idea

•  Choose a parametric model to represent a set of features

•  Membership criterion is not local
–  Can’t tell whether a point belongs to a given model just by looking 

at that point

•  Three main questions:
–  What model represents this set of features best?
–  Which of several model instances gets which feature?
–  How many model instances are there?

•  Computational complexity is important
–  It is infeasible to examine every possible set of parameters and 

every possible combination of features

Slide credit: L. Lazebnik 



Example: Line fitting

•  Why fit lines?  
–  Many objects characterized by presence of straight lines

Wait, why aren’t we done just by running edge detection?

Slide credit: K. Grauman 



•  Extra edge points (clutter), 
multiple models:

–  which points go with which line, 
if any?

•  Only some parts of each line 
detected, and some parts are 
missing:

–  how to find a line that bridges 
missing evidence?

•  Noise in measured edge 
points, orientations:

–  how to detect true underlying 
parameters?

Difficulty of line fitting

Slide credit: K. Grauman 



Voting

•  It’s not feasible to check all combinations of features by fitting 
a model to each possible subset.

•  Voting is a general technique where we let the features vote 
for all models that are compatible with it.

–  Cycle through features, cast votes for model parameters.

–  Look for model parameters that receive a lot of votes.

•  Noise & clutter features will cast votes too, but typically their 
votes should be inconsistent with the majority of “good” 
features.

Slide credit: K. Grauman 



Fitting lines: Hough transform

•  Given points that belong to a line, what is 
the line?

•  How many lines are there?

•  Which points belong to which lines?

•  Hough Transform is a voting 
technique that can be used to answer all of 
these questions.
Main idea: 
1.  Record vote for each possible line on 

which each edge point lies.
2.  Look for lines that get many votes.

Slide credit: K. Grauman 



Finding lines in an image: Hough space

Connection between image (x,y) and Hough (m,b) spaces
–  A line in the image corresponds to a point in Hough space
–  To go from image space to Hough space:

•  given a set of points (x,y), find all (m,b) such that y = mx + b

x 

y 

m 

b 

m0 

b0 

image space Hough (parameter) space

Slide credit: S. Seitz 



Finding lines in an image: Hough space

Connection between image (x,y) and Hough (m,b) spaces
–  A line in the image corresponds to a point in Hough space
–  To go from image space to Hough space:

•  given a set of points (x,y), find all (m,b) such that y = mx + b
–  What does a point (x0, y0) in the image space map to?

x 

y 

m 

b 

–  Answer:  the solutions of b = -x0m + y0

–  this is a line in Hough space

x0 

y0 

image space Hough (parameter) space

Slide credit: S. Seitz 



Finding lines in an image: Hough space

What are the line parameters for the line that contains both �
(x0, y0) and (x1, y1)?
–  It is the intersection of the lines b = –x0m + y0 and �

b = –x1m + y1 

x 

y 

m 

b 

x0 

y0 

b = –x1m + y1 

(x0, y0) 
(x1, y1) 

image space Hough (parameter) space

Slide credit: K. Grauman 



How can we use this to find the most likely parameters (m,b) for 
the most prominent line in the image space?

•  Let each edge point in image space vote for a set of possible parameters in 
Hough space

•  Accumulate votes in discrete set of bins; parameters with the most votes 
indicate line in image space.

x 

y 

m 

b 

Finding lines in an image: Hough space

image space Hough (parameter) space

Slide credit: K. Grauman 



Polar representation for lines

    : perpendicular distance 
from line to origin

   : angle the perpendicular 
makes with the x-axis

Point in image space à sinusoid segment in Hough space

dyx =− θθ sincos

d

θ

[0,0]

d
θ

x

y

Issues with usual (m,b) parameter space: can take on infinite 
values, undefined for vertical lines.

Image columns

Im
ag

e 
ro

w
s

Slide credit: K. Grauman 



Hough transform algorithm

Using the polar parameterization:

Basic Hough transform algorithm
1.  Initialize H[d, Θ]=0
2.  for each edge point I[x,y] in the image

    for Θ = [Θmin  to  Θmax ]  // some quantization

    H[d, Θ] += 1
3.  Find the value(s) of (d, Θ) where H[d, Θ] is maximum
4.  The detected line in the image is given by

H: accumulator array (votes)

d

Θ

Time complexity (in terms of number of votes per pt)?

dyx =− θθ sincos

Slide credit: S. Seitz 

θθ sincos yxd −=

θθ sincos yxd −=



Original image Canny edges

Vote space and top peaks

Slide credit: K. Grauman 

Hough transform algorithm



Showing longest segments found
Slide credit: K. Grauman 

Hough transform algorithm



Impact of noise on Hough

Image space
edge coordinates

Votes
Θx

y d

What difficulty does this present for an implementation?

Slide credit: K. Grauman 



Image space
edge coordinates

Votes

Here, everything appears to be “noise”, or random edge points, 
but we still see peaks in the vote space.

Impact of noise on Hough

Slide credit: K. Grauman 



Hough transform for circles

•  For a fixed radius r, unknown gradient direction

•  Circle: center (a,b) and radius r
222 )()( rbyax ii =−+−

Image space Hough space a

b

Slide credit: K. Grauman 



Hough transform for circles

•  For a fixed radius r, unknown gradient direction

•  Circle: center (a,b) and radius r
222 )()( rbyax ii =−+−

Image space Hough space

Intersection: 
most votes 
for center 
occur here.

Slide credit: K. Grauman 



Hough transform for circles

•  For an unknown radius r, unknown gradient direction

•  Circle: center (a,b) and radius r
222 )()( rbyax ii =−+−

Hough spaceImage space

b

a

r

?

Slide credit: K. Grauman 



Hough transform for circles

•  For an unknown radius r, unknown gradient direction

•  Circle: center (a,b) and radius r
222 )()( rbyax ii =−+−

Hough spaceImage space

b

a

r

Slide credit: K. Grauman 



Hough transform for circles

•  For an unknown radius r, known gradient direction

•  Circle: center (a,b) and radius r
222 )()( rbyax ii =−+−

Hough spaceImage space

θ

x

Slide credit: K. Grauman 



Hough transform for circles

For every edge pixel (x,y) : 
For each possible radius value r:
    For each possible gradient direction θ: 

// or use estimated gradient at (x,y)
    a = x – r cos(θ) // column
    b = y + r sin(θ)  // row
    H[a,b,r] += 1

end
end

    Check out online demo : http://www.markschulze.net/java/hough/
 

Time complexity per edgel?

Slide credit: K. Grauman 



Original Edges

Example: detecting circles with Hough

Votes: Penny

Note: a different Hough transform (with separate accumulators) �
was used for each circle radius (quarters vs. penny).

Slide credit: K. Grauman 



Original Edges

Example: detecting circles with Hough

Votes: QuarterCombined detections

Coin finding sample images from: Vivek Kwatra

Slide credit: K. Grauman 



Example: iris detection

Hemerson Pistori and Eduardo Rocha Costa http://rsbweb.nih.gov/ij/plugins/hough-circles.html

Gradient+threshold Hough space 
(fixed radius)

Max detections

Slide credit: K. Grauman 



Voting: practical tips

•  Minimize irrelevant tokens first

•  Choose a good grid / discretization

•  Vote for neighbors, also (smoothing in accumulator array)

•  Use direction of edge to reduce parameters by 1

•  To read back which points voted for “winning” peaks, keep tags 
on the votes.

Too coarseToo fine ?

Slide credit: K. Grauman 



Hough transform: pros and cons

Pros

•  All points are processed independently, so can cope with occlusion, gaps

•  Some robustness to noise: noise points unlikely to contribute consistently 
to any single bin

•  Can detect multiple instances of a model in a single pass

Cons

•  Complexity of search time increases exponentially with the number of 
model parameters 

•  Non-target shapes can produce spurious peaks in parameter space

•  Quantization: can be tricky to pick a good grid size

Slide credit: K. Grauman 



Generalized Hough Transform

Model image Vote spaceNovel image

xx
x

x
x

Now suppose those colors encode gradient directions…

•  What if we want to detect arbitrary shapes?

Intuition:

Ref. point

Displacement 
vectors

Slide credit: K. Grauman 



•  Define a model shape by its boundary points and a 
reference point.

[Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980]

x

 

a

p1

θ
p2
θ

At each boundary point, 
compute displacement 
vector: r = a – pi.

Store these vectors in a 
table indexed by gradient 
orientation θ.

Offline procedure: 

Model shape

θ

θ

…

…

…

Slide credit: K. Grauman 

Generalized Hough Transform



 p1

θ θ

For each edge point:

•  Use its gradient orientation θ 
to index into stored table 

•  Use retrieved r vectors to vote 
for reference point

Detection procedure: 

Assuming translation is the only transformation here, 
i.e., orientation and scale are fixed.

x

θ θ

Novel image

θ

θ

…

…

…

θ

xx

xx

Slide credit: K. Grauman 

Generalized Hough Transform



Generalized Hough for object detection

•  Instead of indexing displacements by gradient orientation, �
index by matched local patterns.

B. Leibe, A. Leonardis, and B. Schiele, 
Combined Object Categorization and Segmentation with an Implicit Shape Model, �
ECCV Workshop on Statistical Learning in Computer Vision 2004

training image

“visual codeword” with�
displacement vectors

Slide credit: S. Lazebnik 



•  Instead of indexing displacements by gradient orientation, index 
by “visual codeword”

test image

Slide credit: S. Lazebnik 

B. Leibe, A. Leonardis, and B. Schiele, 
Combined Object Categorization and Segmentation with an Implicit Shape Model, �
ECCV Workshop on Statistical Learning in Computer Vision 2004

Generalized Hough for object detection



Summary

•  Edge detection
•  Difference filters
•  Laplacian of Gaussian
•  Canny edge detection

•  Boundary detection
•  Hough transform



Next week

•  Image segmentation


